Эффект близнецов. Парадокс близнецов Теория близнецов

Просим прощения, что давно не репостили увлекательные статьи по ТО. Продолжаем. Начало вот тут:

Ну а сегодня мы рассмотрим, пожалуй, самый известный из парадоксов относительности, который называется "парадокс близнецов".
Сразу говорю, что никакого парадокса на самом деле нет, а проистекает он от неправильного понимания происходящего. И если всё правильно понять, а это, уверяю, совсем не сложно, то никакого парадокса не будет.



Начнём мы с логической части, где посмотрим, как парадокс получается и какие логические ошибки к нему приводят. А потом перейдем к предметной части, в которой посмотрим механику того, что происходит при парадоксе.

Сперва напомню вам наше базовое рассуждение о замедлении времени.

Помните анекдот про Жору Батарейкина, когда за Жорой послали следить полковника, а за полковником - подполковника? Нам понадобится воображение, чтбы представить себя на месте подполковника, то есть, понаблюдать за наблюдателем.

Итак, постулат относительности гласит, что скорость света одинакова с точки зрения всех наблюдателей (во всех системах отсчёта, выражаясь наукообразно). Так вот, даже если наблюдатель полетит вдогонку свету со скоростью 2/3 скорости света, он всё равно увидит, что свет убегает от него с прежней скоростью.

Давайте посмотрим на эту ситуацию со стороны. Свет летит вперед со скоростью 300000 км/с, а вдогонку ему летит наблюдатель, со скоростью 200000 км/с. Мы-то видим, что расстояние между наблюдателем и светом увеличивается (в оригинале у автора описка - прим. Quantuz ) со скоростью 100000 км/с, но сам наблюдатель этого не видит, а видит те же самые 300000 км/с. Как это может быть так? Единственной (почти! ;-) причиной такому явлению может быть то, что наблюдатель замедлен. Он медленно двигается, медленно дышит и медленно измеряет скорость по медленным часам. В результате удаление со скоростью 100000 км/с он воспринимает, как удаление со скоростью 300000 км/с.

Помните другой анекдот, про двух наркоманов, которые увидели, как по небу несколько раз пронесся огненный шар, а потом оказалось, что они простояли на балконе три дня, а огненный шар - это было солнце? Так вот этот наблюдатель как раз и должен находиться в состоянии такого замедленного наркомана. Разумеется, это будет видно только нам, а сам он ничего особенного не заметит, ведь замедлятся все процессы вокруг него.

Описание эксперимента

Чтобы драматизировать данный вывод, неведомый автор из прошлого, возможно, сам Эйнштейн, придумал следующий мысленный эксперимент. На земле живут два брата-близнеца - Костя и Яша.


Если бы братья жили вместе на земле, то они синхронно прошли бы следующие стадии взросления и старения (прошу прощения за некоторую условность):


Но всё происходит не так.

Еще подростком Костя, назовём его космическим братом, садится в ракету и отправляется к звезде, расположенной в нескольких десятках световых лет от Земли.
Полёт совершается с околосветовой скоростью и поэтому путь туда и обратно занимает шестьдесят лет.

Костя, которого назовём земным братом, никуда не летит, а терпеливо ждет своего родственника дома.

Предсказание относительности

Когда космический брат возвращается, то земной оказывается постаревшим на шестьдесят лет.

Однако, поскольку космический брат находился всё время в движении, его время шло медленнее, поэтому, по возвращении, он окажется постаревшим всего на 30 лет. Один близнец окажется старше другого!



Многим кажется, что данное предсказание ошибочно и эти люди называют парадоксом близнецов само это предсказание. Но это не так. Предсказание совершенно истинно и мир устроен именно так!

Давайте еще раз посмотрим логику предсказания. Допустим, земной брат неотрывно наблюдает за космическим.

Кстати, я уже неоднократно говорил о том, что многие допускают здесь ошибку, неправильно интерпретируя понятие "наблюдает". Они думают, что наблюдение обязательно должно происходить при помощи света, например, в телескоп. Тогда, думают они, поскольку свет распространяется с конечной скоростью, всё, что наблюдается, будет видеться таким, каким оно было раньше, в момент испускания света. Из-за этого, думают эти люди, и возникает замедление времени, которое, таким образом, является кажущимся явлением.
Другим вариантом этого же заблуждения является списание всех явлений на эффект Доплера: поскольку космический брат удаляется от земного, то каждый новый "кадр изображения" приходит на Землю всё позже, а сами кадры, таким образом, следуют реже, чем надо, и влекут за собой замедление времени.
Оба объяснения неверны. Теория относительности не настолько глупа, чтобы не учитывать эти эффекты. Посмотрите сами на наше утверждение относительно скорости света. Мы там написали "всё равно увидит, что", но мы не имели в виду именно "увидит глазами". Мы имели в виду "получит в результате, с учётом всех известных явлений". Обратите внимание, что вся логика рассуждений нигде не основывается на том, что наблюдение происходит при помощи света. И если Вы всё время представляли себе именно это, то перечитайте всё заново, представляя, как надо!

Для неотрывного наблюдения надо, чтобы космический брат, допустим, каждый месяц отсылал на Землю факсы (по радио, со скоростью света) со своим изображением, а земной брат развешивал бы их на календаре с учётом задержки передачи. Получалось бы, что сначала земно брат вешает свою фотографию, а фотографию брата того же времени вешает позже, когда она до него долетает.

По теории он будет всё время видеть, что время у космического брата течёт медленнее. Оно будет течь медленнее в начале пути, в первой четверти пути, в последней четверти пути, в конце пути. И из-за этого будет постоянно накапливаться отставание. Только во время разворота космического брата, в тот миг, когда он остановится, чтобы полететь назад, его время будет идти с той же скоростью, что и на Земле. Но это не изменит итогового результата, так как суммарное отставание всё равно будет. Следовательно, в момент возвращения космического брата отставание сохранится и значит, оно уже останется навсегда.


Как видите, логических ошибок тут нет. Однако, вывод выглядит очень удивительным. Но тут ничего не поделаешь: мы живем в удивительном мире. Данный вывод многократно подтверждался, как для элементарных частиц, которые проживали больше времени, если находились в движении, так и для самых обыкновенных, только очень точных (атомных) часов, которые отправлялись в космический полёт и потом обнаруживалось, что они отстают от лабораторных на доли секунды.

Подтвердился не только сам факт отставания, но и его численное значение, которое можно рассчитать по формулам из одного из предыдущих выпусков.

Кажущееся противоречие

Итак, отставание будет. Космический брат будет моложе земного, можете не сомневаться.

Но возникает другой вопрос. Ведь движение относительно! Следовательно, можно считать, что космический брат никуда не летал, а оставался всё время неподвижным. Зато вместо него в путешествие летал земной брат, вместе с самой планетой Земля и всем остальным. А раз так, то значит больше постареть должен космический брат, а земной - остаться более молодым.

Получается противоречие: оба рассмотрения, которые должны быть равнозначными по теории относительности, приводят к противоположным выводам.

Вот это противоречие и называется парадоксом близнецов.

Инерциальные и неинерциальные системы отсчёта

Как же нам разрешить это противоречие? Как известно, противоречий быть не может:-)

Поэтому мы должны придумать, что же мы такого не учли, из-за чего возникло противоречие?

Сам вывод того, что время должно замедляться - безупречен, ибо он слишком прост. Следовательно, ошибка в рассуждениях должна присутствовать позже, там, где мы предположили, что братья равноправны. Значит, на самом деле братья неравноправны!

Я уже говорил в самом первом выпуске, что не всякая относительность, которая кажется, существует на самом деле. Например, может показаться, что если космический брат разгоняется прочь от Земли, то это равносильно тому, что он остаётся на месте, а разгоняется сама Земля, прочь от него. Но это не так. Природа не соглашается с этим. По каким-то причинам природа создаёт для того, кто разгоняется перегрузки: его прижимает к креслу. А для того, кто не разгоняется - перегрузок не создаёт.

Почему природа так поступает - в данный момент не важно. В данный момент важно научиться представлять себе природу как можно правильней.

Итак, братья могут быть неравноправны при условии, что один из них разгоняется или тормозит. Но у нас ведь именно такая ситуация: улететь с Земли и вернуться на неё можно только разогнавшись, развернувшись и затормозив. Во всех этих случаях космический брат испытывал перегрузки.

Каков вывод? Логический вывод прост: мы не имеем права заявлять, что братья равноправны. Следовательно, рассуждения о замедлении времени верны лишь с точки зрения одного из них. Какого? Разумеется, земного. Почему? Потому, что мы не задумывались о перегрузках и представляли все так, словно их не было. Мы, например, не можем утверждать, что в условиях перегрузок скорость света остаётся постоянной. Следовательно, мы не можем утверждать, что в условиях перегрузок происходит замедление времени. Всё, что мы утверждали - мы утверждали для случая отсутствия перегрузок.

Когда учёные дошли до этого момента, они поняли, что им требуется специальное название для описания "нормального" мира, мира без перегрузок. Такое описание было названо описанием с точки зрения инерциальной системы отсчёта (сокращенно - ИСО). Новое же описание, которое еще не было создано, было названо, естественно, описанием с точки зрения неинерциальной системы отсчёта .

Что же такое инерциальная система отсчёта (ИСО)

Ясно, что первое , что мы можем сказать об ИСО - это такое описание мира, которое нам кажется "нормальным". То есть, это то описание, с которого мы начали.

В инерциальных системах отсчёта действует так называемый закон инерции - каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого системы и были так называны.

Если сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения - тоже будет ИСО.

Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО - также будет ИСО.

Что же мы можем сказать об не-ИСО? О них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением - будет не-ИСО.

Часть последняя: история Кости

Теперь попробуем выяснить, как же будет выглядеть мир с точки зрения космического брата? Пусть он также получает факсы от земного брата и развешивает их на календаре с учётом времени полета факса с Земли до корабля. Что он получит?

Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время путешествия космического брата есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.

Разумеется, если посчитать, какие нам нужны скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов - не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются супер-пупер противоперегрузочные кресла, а корабль сделан из инопланетянской стали.

Что же получится?

В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша - только на 5.

К сожалению, я не нарисовал 15-летнего близнеца, поэтому я буду использовать 10-летнюю картинку с припиской "+5".

Аналогичный результат получается из анализа конца пути. В самый последний миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.

Опять-таки, у меня нет 65-летнего рисунка и я буду использовать 70-летний с пометкой "-5".

Сводку наблюдений космического брата я поместил ниже.



Как видим, у космического брата получается нестыковка. Всю первую половину пути он наблюдает, что земной брат стареет медленно и еле отрывается от начального возраста в 10 лет. Всю вторую половину полёта он наблюдает, как земной брат еле-еле подтягивается к возрасту 70 лет.

Где-то между этими участками, в самой середине полёта, должно происходить что-то, что "сшивает" процесс старения земного брата воедино.

Мы собственно, не будем дальше темнить и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!

Выводы

Итак мы увидели, что существует так называемый парадокс близнецов, который заключается в кажущемся противоречии в том, у кого именно из двух близнецов замедляется время. Сам факт замедления времени - парадоксом не является.

Мы увидели, что существуют инерциальные и неинерциальные системы отсчёта, причём законы природы, полученные нами ранее, относились лишь к инерциальным системам. Именно в инерциальных системах наблюдается замедление времени на движущихся космических кораблях.

Мы получили, что в неинерциальных системах отсчёта, например, с точки зрения разворачивающихся космических кораблей, время ведёт себя еще более странно - оно проматывается вперёд.

Прим. Quantuz: автор дал еще ссылку на дополнительное разъяснение парадокса близнецов с флеш-анимацией. Можете попробовать перейти по ссылке на вэб-архив , где бережно сохранена эта статья. Рекомендуем для более глубокого понимания. До встречи на страницах нашего уютненького.


Хотите удивить всех своей молодостью? Отправляйтесь в длительный космический полет! Хотя, когда вернетесь, удивляться, скорее всего, уже будет некому...

Давайте проанализируем историю двух братьев-близнецов.
Один из них - «путешественник» отправляется в космический полёт (где скорость движения ракет околосветовая), второй - «домосед» остаётся на Земле. А вопрос-то в чем? - в возрасте братьев!
После космического путешествия останутся они одного возраста, или кто-то из них (и кто именно)станет старше?

Еще в 1905 г. Альбертом Эйнштейном в Специальной Теории Относительности (СТО) был сформулирован эффект релятивистского замедления времени , согласно которому часы, движущиеся относительно инерциальной системы отсчета, идут медленнее неподвижных часов и показывают меньший промежуток времени между событиями. Причем заметно это замедление при околосветовых скоростях.

Именно после выдвижения Эйнштейном СТО французским физиком Полем Ланжевеном был сформулирован «парадокс близнецов» (или иначе "парадокс часов") . Парадокс близнецов (иначе "парадокс часов") – это мысленный эксперимент, с помощью которого пытались объяснить возникшие противоречия в СТО.

Итак, вернемся к братьям –близнецам!

Домоседу должно показаться, что часы движущегося путешественника имеют замедленный ход времени, поэтому при возвращении они должны отстать от часов домоседа.
А с другой стороны, относительно путешественника двигается Земля, поэтому он считает, что отстать должны часы домоседа.

Но, не могут оба брата быть одновременно один старше другого!
Вот в этом и парадокс …

С точки зрения существовавшей на время возникновения «парадокса близнецов» в данной ситуации возникало противоречие.

Однако, парадокса, как такового, в действительности не существует, т.к. надо помнить, что СТО - это теория для инерциальных систем отсчёта! А, система отсчёта по крайней мере одного из близнецов не было инерциальной!

На этапах разгона, торможения или разворота путешественник испытывал ускорения, и поэтому к нему в эти моменты неприменимы положения СТО.

Здесь надо пользоваться Общей Теорией Относительности , где с помощью расчетов доказывается, что:

Вернемся , к вопросу о замедлении времени в полете!
Если свет проходит какой либо путь за время t.
Тогда продолжительность полета корабля для «домоседа» будет Т= 2vt/c

А для «путешественника» на космическом корабле по его часам (основываясь на преобразовании Лоренца) пройдет всего To=Tумноженное на корень квадратный из (1-v2/c2)
В результате, расчеты (в ОТО) величины замедления времени с позиции каждого брата покажут, что брат- путешественник окажется моложе своего брата-домоседа.




Для примера можно просчитать мысленно полёт к звёздной системе Альфа Центавра, удалённой от Земли на расстояние в 4.3 световых года (световой год – расстояние, которое проходит свет за год). Пусть время измеряется в годах, а расстояния в световых годах.

Пусть половину пути космический корабль двигается с ускорением, близким к ускорению свободного падения, а вторую половину - с таким же ускорением тормозит. Проделывая обратный путь, корабль повторяет этапы разгона и торможения.

В этой ситуации время полёта в земной системе отсчёта составит примерно 12 лет, тогда как по часам на корабле пройдёт 7,3 года. Максимальная скорость корабля достигнет 0,95 от скорости света.

За 64 года собственного времени космический корабль с подобным ускорением может совершить путешествие к галактике Андромеды (туда и обратно). На Земле за время такого полёта пройдёт около 5 млн лет.

Рассуждения, проводимые в истории с близнецами, приводят только к кажущемуся логическому противоречию. При любой формулировке «парадокса» полной симметричности между братьями нет.

Важную роль для понимания того, почему время замедляется именно у путешественника, менявшего свою систему отсчёта, играет относительность одновременности событий.

Уже проведенные эксперименты по удлинению времени жизни элементарных частиц и замедлению хода часов при их движении подтверждают теорию относительности.

Это даёт основание утверждать, что замедление времени, описанное в истории с близнецами, произойдёт и при реальном осуществлении этого мысленного эксперимента.

Мнимые парадоксы СТО. Парадокс близнецов

Путенихин П.В.
[email protected]

В литературе и в интернете до сих пор идут многочисленные дискуссии по этому парадоксу. Предложено и продолжает предлагаться множество его решений (объяснений), из которых делаются выводы как о непогрешимости СТО, так и её ложности. Впервые тезис, послуживший основой для формулировки парадокса, был изложен Эйнштейном в его основополагающей работе по специальной (частной) теор ии относительности «К электродинамике движущихся тел» в 1905 году:

«Если в точке А находятся двое синхронно идущих часов и мы перемещаем одни из них по замкнутой кривой с постоянной скоростью до тех пор, пока они не вернутся в А (...), то эти часы по прибытии в А будут отставать по сравнению с часами, остававшимися неподвижными...».

В дальнейшем этот тезис получил собственные имена «парадокс часов», «парадокс Ланжевена» и «парадокс близнецов». Последнее название прижилось, и в настоящее время чаще встречается формулировка не с часами, а с близнецами и космическими полётами: если один из близнецов улетает на космическом корабле к звёздам, то по возвращению он оказывается моложе своего остававшегося на Земле брата.

Гораздо реже обсуждается другой, сформулированный Эйнштейном в этой же работе и следующий сразу же за первым, тезис об отставании часов на экваторе от часов, находящихся на полюсе Земли. Смыслы обоих тезисов совпадают:

«… часы с балансиром, находящиеся на земном экваторе, должны идти несколько медленнее, чем точно такие же часы, помещённые на полюсе, но в остальном поставленные в одинаковые условия».

На первый взгляд это утверждение может показаться странным, ведь расстояние между часами неизменно и нет относительной скорости между ними. Но на самом деле на изменение темпа хода часов влияет мгновенная скорость, которая, хотя и меняет непрерывно своё направление (тангенциальная скорость экватора), но все в сумме они дают ожидаемое отставание часов.

Парадокс, кажущееся противоречие в предсказаниях теор ии относительности возникает, если движущимся близнецом считать того, который оставался на Земле. В этом случае теперь уже улетавший в космос близнец должен ожидать, что остававшийся на Земле брат окажется моложе него. Так же и с часами: с точки зрения часов на экваторе движущимися следует считать часы на полюсе. Таким образом, и возникает противоречие: так кто же из близнецов окажется моложе? Какие из часов покажут время с отставанием?

Чаще всего парадоксу обычно даётся простое объяснение: две рассматриваемые системы отсчета на самом деле не являются равноправными. Близнец, который улетал в космос, в своём полёте не всегда находился в инерциальной системе отсчета, в эти моменты он не может использовать уравнения Лоренца. Так же и с часами.

Отсюда следует сделать вывод: в СТО не может быть корректно сформулирован «парадокс часов», специальная теор ия не делает двух взаимоисключающих предсказаний. Полное решение задача получила после создания общей теор ии относительности, которая решила задачу точно и показала, что, действительно, в описанных случаях отстают движущиеся часы: часы улетавшего близнеца и часы на экваторе . «Парадокс близнецов» и часов, таким образом, является рядовой задачей теор ии относительности.

Задача об отставании часов на экваторе

Мы опираемся на определение понятия «парадокс» в логике как противоречия, полученного в результате логически формально правильного рассуждения, приводящего к взаимно противоречащим заключениям (Энциплопедический словарь), или как два противоположных утверждения, для каждого из которых имеются убедительные аргументы (Логический словарь). С этой позиции, «парадокс близнецов, часов, Ланжевена» парадоксом не является, поскольку нет двух взаимоисключающих предсказаний теор ии.

Сначала покажем, что тезис в работе Эйнштейна о часах на экваторе полностью совпадает с тезисом об отставании движущихся часов. На рисунке показаны условно (вид сверху) часы на полюсе Т1 и часы на экваторе Т2. Мы видим, что расстояние между часами неизменно, то есть, между ними, казалось бы, нет необходимой относительной скорости, которую можно подставить в уравнения Лоренца. Однако, добавим третьи часы Т3. Они находятся в ИСО полюса, как и часы Т1, и идут, следовательно, синхронно с ними. Но теперь мы видим, что часы Т2 явно имеют относительную скорость по отношению к часам Т3: сначала часы Т2 находятся на близком расстоянии от часов Т3, затем они удаляются и вновь приближаются. Следовательно, с точки зрения неподвижных часов Т3 движущиеся часы Т2 отстают:

Рис.1 Движущиеся по окружности часы отстают от часов, находящихся в центре окружности. Это становится более очевидно, если добавить неподвижные часы вблизи от траектории движущихся.

Следовательно, часы Т2 отстают также и от часов Т1. Переместим теперь часы Т3 настолько близко к траектории Т2, что в какой-то начальный момент времени они окажутся рядом. В этом случае мы получаем классический вариант парадокса близнецов. На следующем рисунке мы видим, что сначала часы Т2 и Т3 были в одной точке, затем часы на экваторе Т2 стали удаляться от часов Т3 и по замкнутой кривой через некоторое время вернулись в исходную точку:

Рис.2. Движущиеся по окружности часы Т2 сначала находятся рядом с неподвижными часами Т3, затем удаляются и через некоторое время вновь сближаются с ними.

Это полностью соответствует формулировке первого тезиса об отставании часов, послужившего основой «парадокса близнецов». Но часы Т1 и Т3 идут синхронно, следовательно, часы Т2 отстали также и от часов Т1. Таким образом, оба тезиса из работы Эйнштейна в равной степени могут служить основой для формулировки «парадокса близнецов».

Величина отставания часов в этом случае определяется уравнением Лоренца, в которое мы должны подставить тангенциальную скорость движущихся часов. Действительно, в каждой точке траектории часы Т2 имеют скорости, равные по модулю, но разные по направлениям:

Рис.3 Движущиеся часы имеют постоянно изменяющееся направление скорости.

Как эти разные скорости внести в уравнение? Очень просто. Давайте, в каждую точку траектории часов Т2 поместим свои собственные неподвижные часы. Все эти новые часы идут синхронно с часами Т1 и Т3, поскольку все они находятся в одной и той же неподвижной ИСО. Часы Т2, проходя каждый раз мимо соответствующих часов, испытывает отставание, вызванное относительной скоростью именно мимо этих часов. За мгновенный интервал времени по этим часам, часы Т2 также отстанут на мгновенно малое время, которое можно вычислить по уравнению Лоренца. Здесь и далее мы будем использовать одни и те же обозначения для часов и их показаний:

Очевидно, что верхним пределом интегрирования являются показания часов Т3 в момент, когда часы Т2 и Т3 вновь встретятся. Как видим, показания часов Т2 < T3 = T1 = T. Лоренцев множитель мы выносим из-под знака интеграла, поскольку он является константой для всех часов. Введённое множество часов можно рассматривать как одни часы - «распределённые в пространстве часы». Это «пространство часов», в котором часы в каждой точке пространства идут синхронно и обязательно некоторые из них находятся рядом с движущимся объектом, с которым эти часы имеют строго определённое относительное (инерциальное) движение.

Как видим, получено решение, полностью совпадающее с решением первого тезиса (с точностью до величин четвертого и высших порядков). По этой причине, дальнейшие рассуждения можно рассматривать как относящиеся ко всем видам формулировок «парадокса близнецов».

Вариации на тему «парадокса близнецов»

Парадокс часов, как отмечено выше, означает, что специальная теор ия относительности, вроде бы, делает два взаимно противоречащих друг другу предсказания. Действительно, как мы только - что вычислили, движущиеся по окружности часы отстают от часов, находящихся в центре окружности. Но и часы Т2, движущиеся по окружности, имеют все основания утверждать, что они находятся в центре окружности, вокруг которой движутся неподвижные часы Т1.

Уравнение траектории движущихся часов Т2 с точки зрения неподвижных Т1:

x, y - координаты движущихся часов Т2 в системе отсчета неподвижных;

R - радиус окружности, описываемой движущимися часами Т2.

Очевидно, что с точки зрения движущихся часов Т2, расстояние между ними и неподвижными часами Т1 также равно R в любой момент времени. Но известно, что геометрическим местом точек, равно удалённых от заданной, является окружность. Следовательно, и в системе отсчета движущихся часов Т2, неподвижные часы Т1 движутся вокруг них по окружности:

x 1 2 + y 1 2 = R 2

x 1 , y 1 - координаты неподвижных часов Т1 в системе отсчета движущихся;

R - радиус окружности, описываемой неподвижными часами Т1.

Рис.4 С точки зрения движущихся часов Т2 вокруг них по окружности движутся неподвижные часы Т1.

А это, в свою очередь, означает, что с точки зрения специальной теор ии относительности и в этом случае должно возникнуть отставание часов. Очевидно, что в этом случае, наоборот: Т2 > T3 = T. Получается, что и на самом деле специальная теор ия относительности делает два взаимоисключающих предсказания Т2 > T3 и Т2 < T3? И это действительно так, если не принять во внимание, что теор ия была создана для инерциальных систем отсчета. Здесь же движущиеся часы Т2 не находятся в инерциальной системе. Само по себе это не запрет, а лишь указание на необходимость учесть это обстоятельство. И это обстоятельство разъясняет общая теор ия относительности . Применять его или нет, можно определить простым опытом. В инерциальной системе отсчета на тела не действуют никакие внешние силы. В неинерциальной системе и согласно принципу эквивалентности общей теор ии относительности на все тела действует сила инерции или тяготения. Следовательно, маятник в ней отклонится, все незакреплённые тела будут стремиться переместиться в одном направлении.

Такой опыт рядом с неподвижными часами Т1 даст отрицательный результат, будет наблюдаться невесомость. А вот рядом с движущимися по окружности часами Т2 на все тела будет действовать сила, стремящаяся отбросить их от неподвижных часов. Мы, разумеется, считаем, что никаких иных гравитирующих тел поблизости нет. Кроме того, движущиеся по окружности часы Т2 сами по себе не вращаются, то есть, движутся не так, как Луна вокруг Земли, обращённая к ней всегда одной и той же стороной. Наблюдатели рядом с часами Т1 и Т2 в своих системах отсчета будут видеть удалённый от них на бесконечность объект всегда под одним и тем же углом.

Таким образом, движущийся с часами Т2 наблюдатель должен учесть факт неинерциальности своей системы отсчета в соответствии с положениями общей теор ии относительности. Эти положения говорят, что часы в поле гравитации или в эквивалентном ему поле инерции, замедляют свой ход. Поэтому в отношении неподвижных (по условиям опыта) часов Т1 он должен признать, что эти часы находятся в гравитационном поле меньшей напряженности, поэтому они идут быстрее его собственных и к их ожидаемым показаниям следует добавить гравитационную поправку.

Напротив, наблюдатель рядом с неподвижными часами Т1 констатирует, что движущиеся часы Т2 находятся в поле инерционной гравитации, поэтому идут медленнее и от их ожидаемых показаний следует отнять гравитационную поправку.

Как видим, мнение обоих наблюдателей полностью совпали в том, что движущиеся в исходном смысл е часы Т2 отстанут. Следовательно, специальная теор ия относительности в «расширенной» трактовке делает два строго согласованных предсказания, что не даёт никаких оснований для провозглашения парадоксов. Это рядовая задача, имеющая вполне конкретное решение. Парадокс в СТО возникает лишь в том случае, если использовать её положения к объекту, не являющимся объектом специальной теор ии относительности. Но, как известно, неверная посылка может привести как к правильному, так и к ложному результату.

Эксперимент, подтверждающий СТО

Следует отметить, что все эти рассмотренные мнимые парадоксы соответствуют мысленным экспериментам на основе математической модели под названием Специальная Теория Относительности. То, что в этой модели данные эксперименты имеют полученные выше решения, не обязательно означает, что в реальном физическом эксперименты будут получены такие же результаты. Математическая модель теор ии прошла многолетнее испытание и в ней не найдено никаких противоречий. Это значит, что все логически корректные мысленные эксперименты неизбежно будут давать результат, подтверждающий её .

В этой связи представляет особый интерес эксперимент, который общепризнанно в реальных условиях показал точно такой же результат, что и рассмотренный мысленный эксперимент. Непосредственно это означает, что математическая модель теор ии верно отражает, описывает реальные физические процессы.

Это был первый эксперимент по проверке отставания движущихся часов, известный как эксперимент Хафеле - Китинга, проведённый в 1971 г . Четверо часов, сделанных на основе цезиевых стандартов частоты, были помещены на два самолета и совершили кругосветное путешествие. Одни часы путешествовали в восточном направлении, другие обогнули Землю в западном направлении. Разница в скорости хода времени возникала из-за добавочной скорости вращения Земли, при этом учитывалось и влияние поля тяготения на полетной высоте по сравнению с уровнем Земли. В результате эксперимента удалось подтвердить общую теор ию относительности, измерить различие в скорости хода часов на борту двух самолетов. Полученные результаты были опубликованы в журнале Science в 1972 году.

Литература

1. Путенихин П.В., Три ошибки анти-СТО [прежде, чем критиковать теор ию, её следует хорошо изучить; невозможно опровергнуть безупречную математику теор ии её же математическими средствами, кроме как незаметно отказавшись от её постул атов - но это уже другая теор ия; не используются известные экспериментальные противоречия в СТО - опыты Маринова и других - их нужно многократно повторить], 2011, URL:
http://samlib.ru/p/putenihin_p_w/antisto.shtml (дата обращения 12.10.2015)

2. Путенихин П.В., Итак, парадокса (близнецов) больше нет! [анимированные диаграммы - решение парадокса близнецов средствами ОТО; решение имеет погрешность вследствие использования приближённого уравнения потенциал а; ось времени - горизонтальна, расстояний - вертикальна], 2014, URL:
http://samlib.ru/editors/p/putenihin_p_w/ddm4-oto.shtml (дата обращения 12.10.2015)

3. Эксперимент Хафеле-Китинга, Викпиедия, [убедительное подтверждение эффекта СТО о замедлении хода движущихся часов], URL:
https://ru.wikipedia.org/wiki/Эксперимент_Хафеле_—_Китинга (дата обращения 12.10.2015)

4. Путенихин П.В. Мнимые парадоксы СТО. Парадокс близнецов, [парадокс является мнимым, кажущимся, поскольку его формулировка сделана с ошибочными предположениями; корректные предсказания специальной теор ии относительности не являются противоречивыми], 2015, URL:
http://samlib.ru/p/putenihin_p_w/paradox-twins.shtml (дата обращения 12.10.2015)

Колонка редактора

Здравствуйте, уважаемые читатели!

Многие мужчины умеют готовить лишь одно блюдо – яичницу, и я не исключение. Меньшее количество могут еще пожарить картошку, но это уже сложнее. И уж совсем небольшое количество истинных героев способны воплотить в съедобном виде такие сложнейшие кулинарные конструкции, как мясо или суп.

До недавнего времени мои способности ограничивались только первыми двумя блюдами. Но теперь, благодаря моей подруге, я могу готовить еще одно блюдо. Его прелесть в том, что оно по сложности занимает промежуточное положение между яичницей и жаренной картошкой, и называется онокурица по-оксански (догадайтесь, почему;-).

Для этого блюда нужно:

  • курица в форме разделанных и приправленных кусков (например, бёдрышек или ножек), такие продаются, они уже посыпаны всякой фигнёй и даже иногда посолены
  • одна луковица
  • микроволновка
  • посуда для микроволновки

Вот. Луковицу надо очистить, порезать кружками и побросать на дно посудины. Потом туда покидать куски курицы. Потом накрыть крышкой. Потом поставить всё это в микроволновку и закрыть дверцу. Поставить регулятор на максимум, а часы – на 30 минут, и всё!

В течение 30 минут можно делать всё, что заблагорассудится, а потом можно вкусно поесть и даже не один раз!

И еще вопрос к читателям: кто может сделать на php/MySQL или знает, где взять бесплатно, какой-нибудь хороший тест интеллекта для нашего сайта? Лучше, тест Айзенка!

Введение

Ну а сегодня мы рассмотрим, пожалуй, самый известный из парадоксов относительности, который называетсяпарадокс близнецов.

Сразу говорю, что никакого парадокса на самом деле нет, а проистекает он от неправильного понимания происходящего. И если всё правильно понять, а это, уверяю, совсем не сложно, то никакого парадокса не будет.

Начнём мы с логической части, где посмотрим, как парадокс получается и какие логические ошибки к нему приводят. А потом перейдем к предметной части, в которой посмотрим механику того, что происходит при парадоксе.

Сперва напомню вам наше базовое рассуждение о замедлении времени.

Помните анекдот про Жору Батарейкина, когда за Жорой послали следить полковника, а за полковником – подполковника? Нам понадобится воображение, чтбы представить себя на месте подполковника, то есть, понаблюдать за наблюдателем.

Итак, постулат относительности гласит, что скорость света одинакова с точки зрения всех наблюдателей (во всех системах отсчёта, выражаясь наукообразно). Так вот, даже если наблюдатель полетит вдогонку свету со скоростью 2/3 скорости света, он всё равно увидит, что свет убегает от него с прежней скоростью.

Давайте посмотрим на эту ситуацию со стороны. Свет летит вперед со скоростью 300000 км/с, а вдогонку ему летит наблюдатель, со скоростью 200000 км/с. Мы-то видим, что расстояние между наблюдателем и светом уменьшается со скоростью 100000 км/с, но сам наблюдатель этого не видит, а видит те же самые 300000 км/с. Как это может быть так? Единственной (почти! 😉 причиной такому явлению может быть то, что наблюдатель замедлен. Он медленно двигается, медленно дышит и медленно измеряет скорость по медленным часам. В результате удаление со скоростью 100000 км/с он воспринимает, как удаление со скоростью 300000 км/с.

Помните другой анекдот, про двух наркоманов, которые увидели, как по небу несколько раз пронесся огненный шар, а потом оказалось, что они простояли на балконе три дня, а огненный шар – это было солнце? Так вот этот наблюдатель как раз и должен находиться в состоянии такого замедленного наркомана. Разумеется, это будет видно только нам, а сам он ничего особенного не заметит, ведь замедлятся все процессы вокруг него.

Описание эксперимента

Чтобы драматизировать данный вывод, неведомый автор из прошлого, возможно, сам Эйнштейн, придумал следующий мысленный эксперимент. На земле живут два брата-близнеца – Костя и Яша.

Костя Яша

Если бы братья жили вместе на земле, то они синхронно прошли бы следующие стадии взросления и старения (прошу прощения за некоторую условность):

10 20 30 40 50 60 70

подросток

трудный возраст

молодой повеса

молодой работник

заслуженный работник

пенсионер

дряхлый старик

Но всё происходит не так.

Еще подростком Костя, назовём его космическим братом, садится в ракету и отправляется к звезде, расположенной в нескольких десятках световых лет от Земли.

Полёт совершается с околосветовой скоростью и поэтому путь туда и обратно занимает шестьдесят лет.

Костя, которого назовём земным братом, никуда не летит, а терпеливо ждет своего родственника дома.

Предсказание относительности

Когда космический брат возвращается, то земной оказывается постаревшим на шестьдесят лет.

Однако, поскольку космический брат находился всё время в движении, его время шло медленнее, поэтому, по возвращении, он окажется постаревшим всего на 30 лет. Один близнец окажется старше другого!

Костя Яша

Многим кажется, что данное предсказание ошибочно и эти люди называют парадоксом близнецов само это предсказание. Но это не так. Предсказание совершенно истинно и мир устроен именно так!

Давайте еще раз посмотрим логику предсказания. Допустим, земной брат неотрывно наблюдает за космическим.

Кстати, я уже неоднократно говорил о том, что многие допускают здесь ошибку, неправильно интерпретируя понятиенаблюдает. Они думают, что наблюдение обязательно должно происходить при помощи света, например, в телескоп. Тогда, думают они, поскольку свет распространяется с конечной скоростью, всё, что наблюдается, будет видеться таким, каким оно было раньше, в момент испускания света. Из-за этого, думают эти люди, и возникает замедление времени, которое, таким образом, является кажущимся явлением.

Другим вариантом этого же заблуждения является списание всех явлений на эффект Доплера: поскольку космический брат удаляется от земного, то каждый новыйкадр изображения приходит на Землю всё позже, а сами кадры, таким образом, следуют реже, чем надо, и влекут за собой замедление времени.

Оба объяснения неверны. Теория относительности не настолько глупа, чтобы не учитывать эти эффекты. Посмотрите сами на . Мы там написаливсё равно увидит, что, но мы не имели в виду именноувидит глазами. Мы имели в видуполучит в результате, с учётом всех известных явлений. Обратите внимание, что вся логика рассуждений нигде не основывается на том, что наблюдение происходит при помощи света. И если Вы всё время представляли себе именно это, то перечитайте всё заново, представляя, как надо!

Для неотрывного наблюдения надо, чтобы космический брат, допустим, каждый месяц отсылал на Землю факсы (по радио, со скоростью света) со своим изображением, а земной брат развешивал бы их на календаре с учётом задержки передачи. Получалось бы, что сначала земно брат вешает свою фотографию, а фотографию брата того же времени вешает позже, когда она до него долетает.

По теории он будет всё время видеть, что время у космического брата течёт медленнее. Оно будет течь медленнее в начале пути, в первой четверти пути, в последней четверти пути, в конце пути. И из-за этого будет постоянно накапливаться отставание. Только во время разворота космического брата, в тот миг, когда он остановится, чтобы полететь назад, его время будет идти с той же скоростью, что и на Земле. Но это не изменит итогового результата, так как суммарное отставание всё равно будет. Следовательно, в момент возвращения космического брата отставание сохранится и значит, оно уже останется навсегда.

Космический брат
10 20 30 40
Земной брат
10 30 50 70

Как видите, логических ошибок тут нет. Однако, вывод выглядит очень удивительным. Но тут ничего не поделаешь: мы живем в удивительном мире. Данный вывод многократно подтверждался, как для элементарных частиц, которые проживали больше времени, если находились в движении, так и для самых обыкновенных, только очень точных (атомных) часов, которые отправлялись в космический полёт и потом обнаруживалось, что они отстают от лабораторных на доли секунды.

Подтвердился не только сам факт отставания, но и его численное значение, которое можно рассчитать по формулам из одного из .

Кажущееся противоречие

Итак, отставание будет. Космический брат будет моложе земного, можете не сомневаться.

Но возникает другой вопрос. Ведь движение относительно! Следовательно, можно считать, что космический брат никуда не летал, а оставался всё время неподвижным. Зато вместо него в путешествие летал земной брат, вместе с самой планетой Земля и всем остальным. А раз так, то значит больше постареть должен космический брат, а земной – остаться более молодым.

Получается противоречие: оба рассмотрения, которые должны быть равнозначными по теории относительности, приводят к противоположным выводам.

Вот это противоречие и называется парадоксом близнецов.

Инерциальные и неинерциальные системы отсчёта

Как же нам разрешить это противоречие? Как известно, противоречий быть не может 🙂

Поэтому мы должны придумать, что же мы такого не учли, из-за чего возникло противоречие?

Сам вывод того, что время должно замедляться – безупречен, ибо он слишком прост. Следовательно, ошибка в рассуждениях должна присутствовать позже, там, где мы предположили, что братья равноправны. Значит, на самом деле братья неравноправны!

Я уже говорил в самом первом выпуске, что не всякая относительность, которая кажется, существует на самом деле. Например, может показаться, что если космический брат разгоняется прочь от Земли, то это равносильно тому, что он остаётся на месте, а разгоняется сама Земля, прочь от него. Но это не так. Природа не соглашается с этим. По каким-то причинам природа создаёт для того, кто разгоняется перегрузки : его прижимает к креслу. А для того, кто не разгоняется – перегрузок не создаёт.

Почему природа так поступает – в данный момент не важно. В данный момент важно научиться представлять себе природу как можно правильней.

Итак, братья могут быть неравноправны при условии, что один из них разгоняется или тормозит. Но у нас ведь именно такая ситуация: улететь с Земли и вернуться на неё можнотолько разогнавшись, развернувшись и затормозив. Во всех этих случаях космический брат испытывал перегрузки.

Каков вывод? Логический вывод прост: мы не имеем права заявлять, что братья равноправны. Следовательно, рассуждения о замедлении времени верны лишь с точки зрения одного из них. Какого? Разумеется, земного. Почему? Потому, что мы не задумывались о перегрузках и представляли все так, словно их не было. Мы, например, не можем утверждать, что в условиях перегрузок скорость света остаётся постоянной. Следовательно, мы не можем утверждать, что в условиях перегрузок происходит замедление времени. Всё, что мы утверждали – мы утверждали для случая отсутствия перегрузок.

Когда учёные дошли до этого момента, они поняли, что им требуется специальное название для описаниянормального мира, мира без перегрузок. Такое описание было названо описанием с точки зрения инерциальной системы отсчёта (сокращенно – ИСО). Новое же описание, которое еще не было создано, было названо, естественно, описанием с точки зрения неинерциальной системы отсчёта.

Что же такое инерциальная система отсчёта (ИСО)

Ясно, что первое , что мы можем сказать об ИСО – это такое описание мира, которое нам кажетсянормальным. То есть, это то описание, с которого мы начали.

В инерциальных системах отсчёта действует так называемый закон инерции – каждое тело, будучи предоставлено самому себе, либо остаётся в покое, либо движется равномерно и прямолинейно. Из-за этого системы и были так называны.

Если сесть в космический корабль, автомобиль или поезд, которые движутся абсолютно равномерно и прямолинейно с точки зрения ИСО, то внутри такого транспортного средства мы не сможем заметить движения. А это значит, что такая система наблюдения – тоже будет ИСО.

Следовательно, второе, что мы можем сказать об ИСО, что всякая система, движущаяся равномерно и прямолинейно относительно ИСО – также будет ИСО.

Что же мы можем сказать об не-ИСО? О них мы можем сказать пока лишь то, что система, движущаяся относительно ИСО с ускорением – будет не-ИСО.

Часть последняя: история Кости

Теперь попробуем выяснить, как же будет выглядеть мир с точки зрения космического брата? Пусть он также получает факсы от земного брата и развешивает их на календаре с учётом времени полета факса с Земли до корабля. Что он получит?

Чтобы до этого догадаться, нужно обратить внимание на следующий момент: во время путешествия космического брата есть участки, на которых он движется равномерно и прямолинейно. Допустим, при старте брат ускоряется с огромной силой так, что достигает крейсерской скорости за 1 день. После этого он летит много лет равномерно. Затем, в середине пути, он также стремительно за один день разворачивается и летит обратно опять равномерно. В конце пути он очень резко, за один день, тормозит.

Разумеется, если посчитать, какие нам нужны скорости и с каким ускорением надо разгоняться и разворачиваться, мы получим, что космического брата должно попросту размазать по стенкам. Да и сами стенки космического корабля, если они сделаны из современных материалов – не смогут выдержать таких перегрузок. Но нам сейчас важно не это. Допустим, у Кости имеются супер-пупер противоперегрузочные кресла, а корабль сделан из инопланетянской стали.

Что же получится?

В самый первый миг полета, как нам известно, возрасты братьев равны. В течение первой половины полёта он происходит инерциально, а значит, к нему применимо правило замедления времени. То есть, космический брат будет видеть, что земной стареет в два раза медленнее. Следовательно, через 10 лет полета Костя постареет на 10 лет, а Яша – только на 5.

К сожалению, я не нарисовал 15-летнего близнеца, поэтому я буду использовать 10-летнюю картинку с припиской+5 .

Аналогичный результат получается из анализа конца пути. В самый последний миг возрасты братьев равны 40 (Яша) и 70 (Костя), мы это знаем точно. Кроме того, мы знаем, что вторая половина полёта также протекала инерциально, а значит, облик мира с точки зрения Кости соответствует нашим выводам о замедлении времени. Следовательно, за 10 лет до окончания полёта, когда космическому брату будет 30 лет, он заключит, что земному уже 65, ибо до окончания полёта, когда соотношение будет 40/70, он будет стареть в два раза медленнее.

Где-то между этими участками, в самой середине полёта, должно происходить что-то, чтосшивает процесс старения земного брата воедино.

Мы собственно, не будем дальше темнить и гадать, что же там такое происходит. Мы просто прямо и честно сделаем вывод, который следует с неизбежностью. Если за миг до разворота земному брату было 17,5 лет, а после разворота стало 52,5, то это означает ни что иное, как тот факт, что за время разворота космического брата у земного прошло 35 лет!

Выводы

Итак мы увидели, что существует так называемый парадокс близнецов, который заключается в кажущемся противоречии в том, у кого именно из двух близнецов замедляется время. Сам факт замедления времени – парадоксом не является.

Мы увидели, что существуют инерциальные и неинерциальные системы отсчёта, причём законы природы, полученные нами ранее, относились лишь к инерциальным системам. Именно в инерциальных системах наблюдается замедление времени на движущихся космических кораблях.

Мы получили, что в неинерциальных системах отсчёта, например, с точки зрения разворачивающихся космических кораблей, время ведёт себя еще более странно – оно проматывается вперёд.

Взгляд на парадокс близнецов из четырехмерного пространства-времени можно увидеть в .

Димс.

Парадокс близнецов окутан романтикой межзвездных перелетов и туманом неверных толкований. Широкую известность он получил благодаря формулировке Поля Ланжевена (1911 г.), которая в популярном пересказе звучит следующим образом:

Один брат-близнец остаётся на Земле, а второй отправляется в космические странствия с околосветовой скоростью. С точки зрения домоседа, двигающийся относительно него путешественник имеет замедленный ход времени. Поэтому при возвращении он окажется моложе. Однако, с точки зрения космонавта двигалась Земля, поэтому моложе должен оказаться брат-домосед.
Слово "парадокс" имеет несколько значений. Например, парадоксальны многие выводы теории относительности, так как они противоречат привычным представлениям. В такой парадоксальности, конечно, нет ничего плохого. Любая новая теория "непривычна " и требует смены старых представлений. Однако, при описании истории с близнецами "парадокс" является синонимом "логического противоречия ". Проведя рассуждение об одном и том же событии (встреча братьев) двумя различными способами, мы получаем разный результат. Конечно, в непротиворечивой теории подобного происходить не должно.

Парадоксу близнецов посвящена обширнейшая литература. Общепринятое объяснение состоит в следующем. Для того, чтобы братья могли непосредственно сравнить свой возраст, одному из них (путешественнику) необходимо вернуться, а для этого испытать этапы ускоренного движения, перейдя в неинерциальную систему отсчета. Поэтому полной симметрии между братьями нет. Естественно, подобное снятие парадокса не объясняет, почему именно космонавт должен стать моложе. Кроме этого, сразу возникает следующее возражение: "если всё дело в ускорении, то этапы разгона и торможения можно сделать сколь угодно короткими (для каждого наблюдателя!) по сравнению с произвольно длинными и симметричными этапами равномерного движения".

На это отвечают, что расчет, в рамках общей теории относительности, дает одинаковый для каждого брата ответ. Конечно, гравитация к этому расчету не имеет никакого отношения, и используемая при этом дифференциальная геометрия служит математическим аппаратом описания неинерциальных систем отсчёта. Подобные расчёты абсолютно верны, однако физические причины произошедшего с братьями при этом часто оказываются скрытыми.

Наш анализ мы начнем с замечания о том, что возвращаться брату-путешественнику, необязательно. Ему достаточно затормозить, перейдя в систему отсчета, связанную с Землёй. Находясь далеко, но оставаясь относительно друг друга неподвижными, братья без труда могут синхронизировать своё время и выяснить как разошлись их часы (физические и биологические). При желании можно, конечно, рассмотреть новый старт космического корабля и его возвращение на Землю. Однако ни каких новых эффектов при этом не произойдет, и все времена необходимо будет просто умножить на два. По большому счету, нет даже необходимости и в ускоренном старте с Земли. Можно рассмотреть одновременное рождение братьев в двух различных инерциальных системах отсчета, когда они пролетали друг мимо друга. Оставляя в стороне физиологические детали подобного рождения, подчеркнем, что, когда братья находятся в различных системах, но в одной пространственной точке, они легко могут согласовать начальный момент времени (факт их рождения).

Так сформулированную историю мы подробно рассмотрели в разделе "Время ". В результате относительности одновременности части двигающейся системы отсчета, расположенные по ходу её движения, "находятся в прошлом", а части против движения — в будущем. И чем дальше они от точки рождения братьев , тем сильнее эффект:

Космонавт, летящий мимо любых "неподвижных" часов , видит, что они идут медленнее, чем его собственные . Однако на всех таких часах, встречающихся ему на пути , он наблюдает будущее время: в . Аналогично, сотрудники космопортов, мимо которых пролетает космонавт, видят его моложе. Пролетающие в это же время мимо брата-домоседа "племянники-одногодки" (на последних кораблях эскадры) выглядят старше землянина. Эти эффекты абсолютны для наблюдателей разных систем, находящихся в одной пространственной точке, поэтому не изменятся при остановке . Для понимания парадокса близнецов, на самом деле, нет необходимости даже рассматривать неинерциальные системы отсчета! Если остановится космонавт, то он "попадёт в будущее" земной системы отсчета и будет там моложе. Точно так же, если ускорится землянин, то он окажется в будущем системы космонавта и там будет моложе.

"Парадокс" близнецов можно проанализировать и без дорогостоящих инвестиций в строительство космопортов. Предположим, что два брата с момента расставания, начинают транслировать друг другу свои видеоизображения. Путешественник видит брата, сидящего в кресле у камина, на котором стоят часы. Тот, в свою очередь, на мониторе видит кабину космолёта с электронными часами над штурвалом, за которым сидит его мужественный брат-путешественник. Космический корабль должен достичь ближайшей звезды, удалённой на расстояние от Земли, и вернуться обратно. Приведём выписки из бортового журнала космического корабля.

Дневник путешествия . Совершив быстрый разгон, выхожу на околосветовую скорость. Перегрузки колоссальные, но благодаря последним достижениям биокибернетики переношу их сравнительно легко. Время начала путешествия по моим часам совпадает с временем брата-домоседа. Однако частота принимаемого сигнала со стремительно удаляющейся Земли заметно уменьшилась. Движения моего брата выглядят замедленными. Это и понятно, эффект Доплера ещё никто не отменял. Звёзды по курсу сбились в кучу, тогда как сзади, вокруг родной Земли, их заметно поубавилось, и они покраснели. Тут тоже всё понятно — аберрация плюс изменение частоты. Расстояния между автоматическими маяками, расставленными вдоль моей трассы уменьшились , и, следовательно, время полёта к звезде по моим часам составит , а не , как виделось нам с братом с Земли. Поэтому время путешествия должно получиться короче , чем по часам моего брата. Посмотрим, посмотрим. Кстати, о брате — секундная стрелка на его каминных часах еле ползёт, и время, которое они показывают, существенно отстаёт от моего. Этот результат — сумма эффекта Доплера и задержки видеотрансляции из-за конечности скорости света .

Достигнув цели путешествия, резко торможу и делаю памятные фотографии на фоне звезды. После торможения стрелка на каминных часах брата сразу начала свой естественный бег, хотя, конечно, общее время, прошедшее с начала полёта не изменилось, и сильно отстаёт от моего. Больше делать у одинокой звезды нечего, поэтому резко ускоряюсь в обратном направлении. Придя в себя после разгона, вижу, что часы брата заметно ускорились, и их секундная стрелка крутится, как угорелая.

До Земли осталось совсем немного. За время обратного путешествия часы брата успели наверстать отставание и, более того, обогнали мой хронометр. Завтра торможение и наша долгожданная встреча. Однако уже нет никаких сомнений в том, что теперь в семье младший брат — я.

Разберёмся с физикой впечатлений, описанных путешественником. Пусть братья передают друг другу каждую секунду (по своим часам) сигналы точного времени. Будем считать, что ускоренные движения космолёта очень короткие (с точки зрения обоих братьев) по сравнению со временем всего путешествия. Пока космолёт удаляется от Земли, каждый брат, в силу эффекта Доплера , видит уменьшение частоты (увеличение периода) принимаемых сигналов. После торможения у звезды путешественник перестаёт "убегать" от земных сигналов, и их период сразу становится равным его секунде. Развернувшись и разогнавшись, путешественник начинает "наскакивать" на идущие ему навстречу сигналы и их частота увеличивается (период уменьшается).

Время путешествия по его часам в одну сторону равно , и такое же в обратную. Количество принятых "земных секунд" за время путешествия равно их частоте , умноженной на время:

Поэтому при удалении от Земли космонавт получил существенно меньше секунд (первое слагаемое), а при приближении, соответственно, больше (второе слагаемое). Суммарное количество секунд, полученных с Земли, больше, чем переданных на неё, в точном соответствии с формулой замедления времени.

Несколько иная арифметика у землянина. Пока его брат удаляется, он также регистрирует увеличение периодов точного времени передаваемых с космолёта. Однако, в отличие от брата, землянин наблюдает такое замедление дольше . Время полёта к звезде составляет по земным часам . Событие торможения путешественником у звезды землянин увидит спустя дополнительное время , требуемое свету для прохождения расстояния от звезды. Поэтому только через от начала путешествия на мониторе он увидит ускоренную работу часов приближающегося брата:

Учитывая, что времена равны и , имеем:

Таким образом, эффект замедления времени брата, менявшего свою систему отсчета, абсолютен, т.е. одинаков для обоих братьев.

Самое парадоксальное в парадоксе близнецов, то, что иногда его проще объяснить, чем сформулировать. Часто этот парадокс воспринимают поверхностно, поэтому приведём следующее "глубокое" рассуждение:

Ладно, пусть близнецы не равноправны и космонавт менял систему отсчёта. Нет особых возражений и к его описанию на основе эффекта Доплера. Однако, это всё равно не снимает парадокса в следующей формулировке. Космонавт, пролетая мимо всех часов , неподвижных в земной системе отсчёта, видит, что они идут медленнее его часов. Он "бывший землянин" и знает, что все эти часы одинаковые. Поэтому он должен сделать вывод, что и время его брата течёт медленнее. Интервалы времени, в отличии от длин линеек, накапливаются, и поэтому при остановке показания часов не могут сравняться. Более того, если остановка очень быстрая по сравнению с временем равномерного движения, она ни как не может привести к тому, что отставшие часы земного брата скачком обгонят часы космического корабля. Поэтому время на Земле должно (с точки зрения космонавта) отстать, и земной брат оказаться младше. Однако это противоречит аналогичному рассуждению с точки зрения землянина, относительно которого все процессы у двигающихся объектов замедляются. А раз так, то при возвращении путешественника (когда часы можно сравнить непосредственно), произойдёт непонятно что...

В этом неверном рассуждении забывают, что, кроме замедления времени, есть ещё один эффект — относительность одновременности. В классической механике для всех наблюдателей, независимо от их движения, существует единое настоящее. В теории относительности ситуация иная. Такое "единое настоящее" существует только для неподвижных относительно друг друга наблюдателей. Однако, для наблюдателей, двигающихся мимо такой системы, она представляет собой непрерывное объединение прошлого, настоящего и будущего. Находящиеся далеко впереди по движению наблюдатели видят отдалённое будущее неподвижной системы отсчёта, а двигающиеся сзади — прошлое.

Все часы, мимо которых пролетают космонавты, идут медленнее, чем их собственные. Однако из этого не следует, что они должны показывать меньше "накопленного" времени! Имея более медленный ход, такие часы находятся в будущем земной системы отсчёта, и, когда космонавт до них добирается, они "не успевают" отстать настолько, чтобы скомпенсировать это будущее.

В заключение истории о парадоксе близнецов расскажем сказку .

Релятивистский мир - лекции по теории относительности, гравитации и космологии

 
Статьи по теме:
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение
Кислотно-основной гомеостаз
1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов. 2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода. 4. Индикан мочи,значение исследов
Святой апостол андрей первозванный (†ок
Святой апостол Андрей Первозванный был родом из города Вифсаида, который располагался на берегу Галилейского моря. Его отца звали Иона, и он занимался рыбной ловлей. Этим он кормил семью. Повзрослевшие сыновья Симон и Андрей присоединились к отцу и тоже с