Векторы: правила сложения и вычитания. Правила, по которым происходит сложение векторов

Пусть $\overrightarrow{a}$ и $\overrightarrow{b}$ - два вектора (рис.1, а).

Возьмем произвольную точку О и построим вектор $\overrightarrow{ОА} = \overrightarrow{a}$ . Затем от точки А отложим вектор $\overrightarrow{AB} = \overrightarrow{b}$. Вектор $\overrightarrow{OB}$, соединяющий начало первого слагаемого вектора с концом второго (рис.1, б), называется суммой этих векторов и обозначается $\overrightarrow{a} + \overrightarrow{b}$$ (правило треугольника ).

Ту же самую сумму векторов можно получить иным способом. Отложим от точки О векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{ОС} = \overrightarrow{b} $ (рис.1, в). Построим на этих векторах как на сторонах параллелограмм ОABC. Вектор $\overrightarrow{ОВ}$, служащий диагональю этого параллелограмма, проведенной из вершины О, является, очевидно, суммой векторов $\overrightarrow{a} + \overrightarrow{b}$ {правило параллелограмма ). Из рисунка 1, в непосредственно следует, что сумма двух векторов обладает переместительным свойством: $\overrightarrow{a} + \overrightarrow{b} = \overrightarrow{b} + \overrightarrow{a}$

Действительно, каждый из векторов $\overrightarrow{a} + \overrightarrow{b} \,и\, = \overrightarrow{b} + \overrightarrow{a}$ равен одному и тому же вектору $\overrightarrow{OB}$ .

Пример 1. В треугольнике ABC АВ = 3, ВС = 4, ∠ В = 90°. Найти: $а)\,\ \overrightarrow{|АВ|} + \overrightarrow{|ВС|};\,\,\ б)\,\ |\overrightarrow{АВ} + \overrightarrow{ВС}|$ .

Решение

а) Имеем: $|\overrightarrow{АВ}| = АВ,\,\,\ |\overrightarrow{ВС}| = ВС$ и, значит, $|\overrightarrow{АВ}| + |\overrightarrow{BC}| = 7$ .

б) Так как $\overrightarrow{AB} + \overrightarrow{ВС} = \overrightarrow{АС} \,\,\,\, то\,\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = |\overrightarrow{АС}| = АС$ .

Теперь, применяя теорему Пифагора, находим $$ AC = \sqrt{AB^2 + BC^2} = \sqrt{9 + 16} = 5 \\ т.е.\, |\overrightarrow{АВ} + \overrightarrow{ВС}| = 5. $$

Понятие суммы векторов можно обобщить на случай любого конечного числа слагаемых векторов.

Пусть, например, даны три вектора $\overrightarrow{a}, \overrightarrow{b} \,и\, \overrightarrow{c}$ (рис.2).

Построив сначала сумму векторов $\overrightarrow{a} + \overrightarrow{b}$ , а затем прибавив к этой сумме вектор $\overrightarrow{c}$, получим вектор $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c}$ . На рисунке 2 $$ \overrightarrow{ОА} = \overrightarrow{a}\,; \overrightarrow{АВ} = b\,; \overrightarrow{ОВ} = \overrightarrow{a} + \overrightarrow{b}\,; \overrightarrow{BC} = \overrightarrow{c} \\ и \\ \overrightarrow{ОС} = \overrightarrow{ОВ} + \overrightarrow{ВС} = (\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} $$ Из рисунка 2 видно, что тот же вектор $\overrightarrow{ОС}$ мы получим, если к вектору $\overrightarrow{ОА} = \overrightarrow{a}$ прибавим вектор $\overrightarrow{АВ} = \overrightarrow{b} + \overrightarrow{c}$ . Таким образом, $(\overrightarrow{a} + \overrightarrow{b}) + \overrightarrow{c} = \overrightarrow{a} + (\overrightarrow{b} + \overrightarrow{c})$ , т. е. сумма векторов обладает сочетательным свойством. Поэтому сумму трех векторов $\overrightarrow{a}\,\,\overrightarrow{b}\,\,\overrightarrow{c}$ записывают просто $\overrightarrow{a} + \overrightarrow{b} + \overrightarrow{c}$ .

Разностью двух векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ называется третий вектор $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$ , сумма которого с вычитаемым вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$. Таким образом, если $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}\,\, то\, \overrightarrow{c} + \overrightarrow{b} = \overrightarrow{a}$ .

Из определения суммы двух векторов вытекает правило построения вектора-разности (рис.3).

Откладываем векторы $\overrightarrow{ОА} = \overrightarrow{a} \,и\, \overrightarrow{OB} = \overrightarrow{b}$ из общей точки О. Вектор $\overrightarrow{BA}$ , соединяющий концы уменьшаемого вектора $\overrightarrow{a}$ и вычитаемого вектора $\overrightarrow{b}$ и направленный от вычитаемого к уменьшаемому, является разностью $\overrightarrow{c} = \overrightarrow{a} - \overrightarrow{b}$ . Действительно, по правилу сложения векторов $\overrightarrow{ОВ} + \overrightarrow{ВА} = \overrightarrow{ОА} \text{ , или } \overrightarrow{b} + \overrightarrow{c} = \overrightarrow{a}$ .

Пример 2. Сторона равностороннего треугольника ABC равна а. Найти: $а) |\overrightarrow{ВА} - \overrightarrow{ВС}|\,;\,\ б)\,\,\ |\overrightarrow{АВ} - \overrightarrow{АС}|$ .

Решение а) Так как $\overrightarrow{ВА} - \overrightarrow{ВС} = \overrightarrow{СА}\text{ , а }|\overrightarrow{СА}| = а\text{ , то }|\overrightarrow{ВА} - \overrightarrow{ВС}| = а$ .

б) Так как $\overrightarrow{АВ} - \overrightarrow{АС} = \overrightarrow{СВ}\text{ , а }|\overrightarrow{СВ}| = а\text{ , то }|\overrightarrow{АВ} - \overrightarrow{АС}| = а$ .

Произведением вектора $\overrightarrow{a}$(обозначается $=\lambda\overrightarrow{a}$ или $\overrightarrow{a}\lambda$) на действительное число $\lambda$ называется вектор $\overrightarrow{b}$, коллинеарный вектору $\overrightarrow{a}$, имеющий длину, равную $|\lambda||\overrightarrow{a}|$, и то же направление, что и вектор $\overrightarrow{a}$, если $\lambda > 0$ , и направление, противоположное направлению вектора $\overrightarrow{a}$, если $\lambda < 0$ . Так, например, $2\overrightarrow{a}$ есть вектор, имеющий то же направление, что и вектор $\overrightarrow{a}$ , а длину, вдвое большую, чем вектор $\overrightarrow{a}$ (рис.4).

В случае, когда $\lambda = 0$ или $\overrightarrow{a} = 0$ , произведение $\lambda\overrightarrow{a}$ представляет собой нулевой вектор. Противоположный вектор $-\overrightarrow{a}$ можно рассматривать как результат умножения вектора $\overrightarrow{a}$ на $\lambda = -1$ (см. рис.4): $$ -\overrightarrow{a} = \ (-1)\overrightarrow{a} $$ Очевидно, что $\overrightarrow{a} + (-\overrightarrow{a}) = \overrightarrow{0}$ .

Пример 3. Доказать, что если О, А, В и С - произвольные точки, то $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{ВС} + \overrightarrow{СО} = 0$ .

Решение. Сумма векторов $\overrightarrow{ОА} + \overrightarrow{АВ} + \overrightarrow{СВ} = \overrightarrow{ОС}$ , вектор $\overrightarrow{CO}$ - противоположный вектору $\overrightarrow{ОС}$ . Поэтому $\overrightarrow{ОС} + \overrightarrow{СО} = \overrightarrow{0}$ .

Пусть дан вектор $\overrightarrow{a}$. Рассмотрим единичный вектор $\overrightarrow{a_0}$ , коллинеарный вектору $\overrightarrow{a}$ и одинаково с ним направленный. Из определения умножения вектора на число следует, что $$ \overrightarrow{a} = |\overrightarrow{a}|\,\ \overrightarrow{a_0} $$ , т.е. каждый вектор равен произведению его модуля на единичный вектор того же направления. Далее из того же определения следует, что если $\overrightarrow{b} = \lambda\overrightarrow{a}$ , где $\overrightarrow{a}$ - ненулевой вектор, то векторы $\overrightarrow{a} \,и\, \overrightarrow{b}$ коллинеарны. Очевидно, что и обратно, из коллинеарности векторов $\overrightarrow{a} \,и\, \overrightarrow{b}$ следует, что $\overrightarrow{b} = \lambda\overrightarrow{a}$.

Пример 4. Длина вектора AB равна 3, длина вектора AC равна 5. Косинус угла между этими векторами равен 1/15. Найдите длину вектора AB + AC.

Видео-решение.

В математике и физике студентам и школьникам зачастую попадаются задачи на векторные величины и на выполнение различных операций над ними. В чём же отличие векторных величин от привычных нам скалярных, единственная характеристика которых - это численное значение? В том, что они обладают направлением.

Максимально наглядно применение векторных величин объясняется в физике. Самыми простыми примерами являются силы (сила трения, сила упругости, вес), скорость и ускорение, поскольку помимо численных значений они также обладают направлением действия. Для сравнения приведём пример скалярных величин : это может быть расстояние между двумя точками или масса тела. Для чего же необходимо выполнять действия над векторными величинами такие как сложение или вычитание? Это нужно, чтобы было возможно определить результат действия системы векторов, состоящей из 2 или более элементов.

Определения векторной математики

Введём главные определения, используемые при выполнении линейных операций.

  1. Вектором называют направленный (имеющий точку начала и точку конца) отрезок.
  2. Длина (модуль) - это длина направленного отрезка.
  3. Коллинеарными называют такие два вектора, которые либо параллельны одной и той же прямой, либо одновременно лежат на ней.
  4. Противоположно направленными векторами называют коллинеарные и при этом направленные в разные стороны. Если же их направление совпадает, то они являются сонаправленными.
  5. Вектора являются равными, когда они сонаправлены и одинаковы по модулю.
  6. Суммой двух векторов a и b является такой вектор c , начало которого совпадает с началом первого, а конец - с концом второго при условии, что b начинается в той же точке, в которой заканчивается a .
  7. Разностью векторов a и b называют сумму a и (- b ), где (- b ) - противоположно направленный к вектору b . Также определение разности двух векторов может быть дано следующее: разностью c пары векторов a и b называют такой c , который при сложении с вычитаемым b образует уменьшаемое a.

Аналитический метод

Аналитический способ подразумевает получение координат разности по формуле без построения. Возможно выполнить вычисление для плоского (двухмерного), объёмного (трёхмерного) или же n-мерного пространства.

Для двухмерного пространства и векторных величин a {a₁; a₂ } и b {b₁; b₂ } расчёты будут иметь следующий вид: c {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }.

В случае с добавлением третьей координаты расчёт будет проводиться аналогично, и для a {a₁; a₂ ; a₃ } и b {b₁; b₂; b₃ } координаты разности будут также получены попарным вычитанием: c {c₁; c₂; c₃ } = {a₁ – b₁; a₂ – b₂; a₃ – b₃ }.

Вычисление разности графически

Для того чтобы построить разность графическим способом, следует воспользоваться правилом треугольника. Для этого необходимо выполнить следующую последовательность действий:

  1. По заданным координатам построить векторы, для которых нужно найти разность.
  2. Совместить их концы (т. е. построить два направленных отрезка, равных заданным, которые будут оканчиваться в одной и той же точке).
  3. Соединить начала обоих направленных отрезков и указать направление; результирующий будет начинаться в той же точке, где начинался вектор, являющийся уменьшаемым, и заканчиваться в точке начала вычитаемого.

Результат операции вычитания показан на рисунке ниже .

Также существует метод построения разности, незначительно отличающийся от предыдущего. Его суть заключается в применении теоремы о разности векторов, которая формулируется следующим образом: для того чтобы найти разность пары направленных отрезков, достаточно найти сумму первого из них с отрезком, противоположно направленным ко второму. Алгоритм построения будет иметь следующий вид:

  1. Построить исходные направленные отрезки.
  2. Тот, что является вычитаемым, необходимо отразить, т. е. построить противоположно направленный и равный ему отрезок; затем совместить его начало с уменьшаемым.
  3. Построить сумму: соединить начало первого отрезка с концом второго.

Результат такого решения изображён на рисунке:

Решение задач

Для закрепления навыка разберём несколько заданий, в которых требуется рассчитать разность аналитически или графически.

Задача 1 . На плоскости заданы 4 точки: A (1; -3), B (0; 4), C (5; 8), D (-3; 2). Определить координаты вектора q = AB - CD, а также рассчитать его длину.

Решение . Вначале следует найти координаты AB и CD . Для этого из координат конечных точек вычтем координаты начальных. Для AB началом является A (1; -3), а концом – B (0; 4). Рассчитаем координаты направленного отрезка:

AB {0 - 1; 4 - (- 3)} = {- 1; 7}

Аналогичный расчёт выполняется для CD :

CD {- 3 - 5; 2 - 8} = {- 8; - 6}

Теперь, зная координаты, можно найти разность векторов. Формула для аналитического решения плоских задач была рассмотрена ранее: для c = a - b координаты имеют вид {c₁; c₂ } = {a₁ – b₁; a₂ – b₂ }. Для конкретного случая можно записать:

q = {- 1 - 8; 7 - (- 6)} = { - 9; - 1}

Чтобы найти длину q , воспользуемся формулой | q | = √(q₁² + q ₂²) = √((- 9)² + (- 1)²) = √(81 + 1) = √82 ≈ 9,06.

Задача 2 . На рисунке изображены векторы m, n и p.

Необходимо построить для них разности: p - n; m - n; m - n - p. Выяснить, какая из них обладает наименьшим модулем.

Решение . В задаче требуется выполнить три построения. Рассмотрим каждую часть задания более подробно.

Часть 1. Для того чтобы изобразить p - n, воспользуемся правилом треугольника. Для этого при помощи параллельного переноса соединим отрезки так, чтобы совпала их конечная точка. Теперь соединим начальные точки и определим направление. В нашем случае вектор разности начинается там же, где и вычитаемый n.

Часть 2. Изобразим m - n . Теперь для решения воспользуемся теоремой о разности векторов. Для этого следует построить вектор, противоположный n, а затем найти его сумму с m. Полученный результат будет выглядеть так:

Часть 3. Для того чтобы найти разность m - n - p, следует разбить выражение на два действия. Поскольку в векторной алгебре действуют законы аналогичные законам арифметики, то возможны варианты:

  • m - (n + p) : в этом случае вначале строится сумма n + p , которая затем вычитается из m ;
  • (m - n) - p : здесь сначала нужно найти m - n , а затем отнять от этой разности p ;
  • (m - p) - n : первым действием определяется m - p , после чего из полученного результата нужно вычесть n .

Так как в предыдущей части задачи мы уже нашли разность m - n , нам остаётся лишь вычесть из неё p . Построим разность двух данных векторов при помощи теоремы о разности. Ответ показан на изображении ниже (красным цветом обозначен промежуточный результат, а зелёным - окончательный).

Остаётся определить, модуль какого из отрезков является наименьшим. Вспомним, что понятия длины и модуля в векторной математике являются идентичными. Оценим визуально длины p - n, m - n и m - n - p . Очевидно, что самым коротким и обладающим наименьшим модулем является ответ в последней части задачи, а именно m - n - p .

Вектор \(\overrightarrow{AB}\) можно рассматривать как перемещение точки из положения \(A\) (начало движения) в положение \(B\) (конец движения). То есть траектория движения в этом случае не важна, важны только начало и конец!

\(\blacktriangleright\) Два вектора коллинеарны, если они лежат на одной прямой или на двух параллельных прямых.
В противном случае векторы называются неколлинеарными.

\(\blacktriangleright\) Два коллинеарных вектора называются сонаправленными, если их направления совпадают.
Если их направления противоположны, то они называются противоположно направленными.

Правила сложения коллинеарных векторов:

сонаправленных конца первого. Тогда их сумма – вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго (рис. 1).

\(\blacktriangleright\) Для того, чтобы сложить два противоположно направленных вектора, можно отложить второй вектор от начала первого. Тогда их сумма – вектор, начало которого совпадает с началом обоих векторов, длина равна разности длин векторов, направление совпадает с направлением большего по длине вектора (рис. 2).


Правила сложения неколлинеарных векторов \(\overrightarrow {a}\) и \(\overrightarrow{b}\) :

\(\blacktriangleright\) Правило треугольника (рис. 3).

Нужно от конца вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма – это вектор, начало которого совпадает с началом вектора \(\overrightarrow {a}\) , а конец – с концом вектора \(\overrightarrow {b}\) .

\(\blacktriangleright\) Правило параллелограмма (рис. 4).

Нужно от начала вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма \(\overrightarrow {a}+\overrightarrow {b}\) – вектор, совпадающей с диагональю параллелограмма, построенного на векторах \(\overrightarrow {a}\) и \(\overrightarrow {b}\) (начало которого совпадает с началом обоих векторов).

\(\blacktriangleright\) Для того, чтобы найти разность двух векторов \(\overrightarrow {a}-\overrightarrow{b}\) , нужно найти сумму векторов \(\overrightarrow {a}\) и \(-\overrightarrow{b}\) : \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\) (рис. 5).

Задание 1 #2638

Уровень задания: Сложнее ЕГЭ

Дан прямоугольный треугольник \(ABC\) с прямым углом \(A\) , точка \(O\) – центр описанной около данного треугольника окружности. Координаты вектора \(\overrightarrow{AB}=\{1;1\}\) , \(\overrightarrow{AC}=\{-1;1\}\) . Найдите сумму координат вектора \(\overrightarrow{OC}\) .

Т.к. треугольник \(ABC\) - прямоугольный, то центр описанной окружности лежит на середине гипотенузы, т.е. \(O\) - середина \(BC\) .


Заметим, что \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) , следовательно, \(\overrightarrow{BC}=\{-1-1;1-1\}=\{-2;0\}\) .

Т.к. \(\overrightarrow{OC}=\dfrac12 \overrightarrow{BC}\) , то \(\overrightarrow{OC}=\{-1;0\}\) .

Значит, сумма координат вектора \(\overrightarrow{OC}\) равна \(-1+0=-1\) .

Ответ: -1

Задание 2 #674

Уровень задания: Сложнее ЕГЭ

\(ABCD\) – четырёхугольник, на сторонах которого отложены векторы \(\overrightarrow{AB}\) , \(\overrightarrow{BC}\) , \(\overrightarrow{CD}\) , \(\overrightarrow{DA}\) . Найдите длину вектора \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}\) .

\(\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}\) , \(\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}\) , тогда
\(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}= \overrightarrow{AD} + \overrightarrow{DA} = \overrightarrow{AD} - \overrightarrow{AD} = \vec{0}\) .
Нулевой вектор имеет длину, равную \(0\) .

Вектор можно воспринимать как перемещение, тогда \(\overrightarrow{AB} + \overrightarrow{BC}\) – перемещение из \(A\) в \(B\) , а затем из \(B\) в \(C\) – в итоге это перемещение из \(A\) в \(C\) .

При такой трактовке становится очевидным, что \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \vec{0}\) , ведь в итоге здесь из точки \(A\) переместились в точку \(A\) , то есть длина такого перемещения равна \(0\) , значит, и сам вектор такого перемещения есть \(\vec{0}\) .

Ответ: 0

Задание 3 #1805

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Диагонали \(AC\) и \(BD\) пересекаются в точке \(O\) . Пусть , , тогда \(\overrightarrow{OA} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{OA} = \frac{1}{2}\overrightarrow{CA} = \frac{1}{2}(\overrightarrow{CB} + \overrightarrow{BA}) = \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{BA}) = \frac{1}{2}(-\vec{b} - \vec{a}) = - \frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}\] \(\Rightarrow\) \(x = - \frac{1}{2}\) , \(y = - \frac{1}{2}\) \(\Rightarrow\) \(x + y = -1\) .

Ответ: -1

Задание 4 #1806

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(K\) и \(L\) лежат на сторонах \(BC\) и \(CD\) соответственно, причем \(BK:KC = 3:1\) , а \(L\) – середина \(CD\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{KL} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x + y\) .

\[\overrightarrow{KL} = \overrightarrow{KC} + \overrightarrow{CL} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} = \frac{1}{4}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BA} = \frac{1}{4}\vec{b} - \frac{1}{2}\vec{a}\] \(\Rightarrow\) \(x = -\frac{1}{2}\) , \(y = \frac{1}{4}\) \(\Rightarrow\) \(x + y = -0,25\) .

Ответ: -0,25

Задание 5 #1807

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(M\) и \(N\) лежат на сторонах \(AD\) и \(BC\) соответственно, причем \(AM:MD = 2:3\) , а \(BN:NC = 3:1\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{MN} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} = \frac{2}{5}\overrightarrow{DA} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = - \frac{2}{5}\overrightarrow{AD} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = -\frac{2}{5}\vec{b} + \vec{a} + \frac{3}{4}\vec{b} = \vec{a} + \frac{7}{20}\vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = \frac{7}{20}\) \(\Rightarrow\) \(x\cdot y = 0,35\) .

Ответ: 0,35

Задание 6 #1808

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(P\) лежит на диагонали \(BD\) , точка \(Q\) лежит на стороне \(CD\) , причем \(BP:PD = 4:1\) , а \(CQ:QD = 1:9\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{PQ} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x\cdot y\) .

\[\begin{gathered} \overrightarrow{PQ} = \overrightarrow{PD} + \overrightarrow{DQ} = \frac{1}{5}\overrightarrow{BD} + \frac{9}{10}\overrightarrow{DC} = \frac{1}{5}(\overrightarrow{BC} + \overrightarrow{CD}) + \frac{9}{10}\overrightarrow{AB} =\\ = \frac{1}{5}(\overrightarrow{AD} + \overrightarrow{BA}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}(\overrightarrow{AD} - \overrightarrow{AB}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}\overrightarrow{AD} + \frac{7}{10}\overrightarrow{AB} = \frac{1}{5}\vec{b} + \frac{7}{10}\vec{a}\end{gathered}\]

\(\Rightarrow\) \(x = \frac{7}{10}\) , \(y = \frac{1}{5}\) \(\Rightarrow\) \(x\cdot y = 0,14\) . и \(ABCO\) – параллелограмм; \(AF \parallel BE\) и \(ABOF\) – параллелограмм \(\Rightarrow\) \[\overrightarrow{BC} = \overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AB} + \overrightarrow{AF} = \vec{a} + \vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = 1\) \(\Rightarrow\) \(x + y = 2\) .

Ответ: 2

Старшеклассники, которые готовятся к сдаче ЕГЭ по математике и при этом рассчитывают на получение достойных баллов, обязательно должны повторить тему «Правила сложения и вычитания нескольких векторов». Как видно из многолетней практики, подобные задания каждый год включаются в аттестационное испытание. Если у выпускника вызывают трудности задачи из раздела «Геометрия на плоскости», к примеру, в которых требуется применить правила сложения и вычитания векторов, ему обязательно стоит повторить или вновь разобраться в материале, чтобы успешно сдать ЕГЭ.

Образовательный проект «Школково» предлагает новый подход в подготовке к аттестационному испытанию. Наш ресурс выстроен таким образом, чтобы учащиеся смогли выявить наиболее сложные для себя разделы и восполнить пробелы в знаниях. Специалисты «Школково» подготовили и систематизировали весь необходимый материал для подготовки к сдаче аттестационного испытания.

Для того чтобы задачи ЕГЭ, в которых необходимо применить правила сложения и вычитания двух векторов, не вызывали затруднений, мы рекомендуем прежде всего освежить в памяти базовые понятия. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».

Если вы уже вспомнили правило вычитания векторов и основные определения по данной теме, предлагаем закрепить полученные знания, выполнив соответствующие упражнения, которые подобрали специалисты образовательного портала «Школково». Для каждой задачи на сайте представлен алгоритм решения и дан правильный ответ. В теме «Правила сложения векторов» представлены различные упражнения; выполнив два-три сравнительно легких задания, учащиеся могут последовательно переходить к более сложным.

Оттачивать собственные навыки по таким, например, заданиям, как школьники имеют возможность в режиме онлайн, находясь в Москве или любом другом городе России. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

Как происходит сложение векторов, не всегда понятно ученикам. Дети не представляют того, что за ними скрывается. Приходится просто запоминать правила, а не вдумываться в суть. Поэтому именно о принципах сложения и вычитания векторных величин требуется много знаний.

В результате сложения двух и более векторов всегда получается еще один. Причем он всегда обязательно будет одинаковым, независимо от приема его нахождения.

Чаще всего в школьном курсе геометрии рассматривается сложение двух векторов. Оно может быть выполнено по правилу треугольника или параллелограмма. Эти рисунки выглядят по-разному, но результат от действия один.

Как происходит сложение по правилу треугольника?

Оно применяется тогда, когда векторы неколлинеарные. То есть не лежат на одной прямой или на параллельных.

В этом случае от некоторой произвольной точки нужно отложить первый вектор. Из его конца требуется провести параллельный и равный второму. Результатом станет вектор, исходящий из начала первого и завершающийся в конце второго. Рисунок напоминает треугольник. Отсюда и название правила.

Если векторы коллинеарные, то это правило тоже можно применять. Только рисунок будет расположен вдоль одной линии.

Как выполняется сложение по правилу параллелограмма?

Опять же? применяется только для неколлинеарных векторов. Построение выполняется по другому принципу. Хотя начало такое же. Нужно отложить первый вектор. И от его начала - второй. На их основе достроить параллелограмм и провести диагональ из начала обоих векторов. Она и будет результатом. Так выполняется сложение векторов по правилу параллелограмма.

До сих пор их было два. А как быть, если их 3 или 10? Использовать следующий прием.

Как и когда применяется правило многоугольника?

Если требуется выполнить сложение векторов, число которых — больше двух, пугаться не стоит. Достаточно последовательно отложить их все и соединить начало цепочки с ее концом. Этот вектор и будет искомой суммой.

Какие свойства действительны для действий с векторами?

О нулевом векторе. Которое утверждает, что при сложении с ним получается исходный.

О противоположном векторе. То есть о таком, который имеет противоположное направление и равное по модулю значение. Их сумма будет равна нулю.

О коммутативности сложения. То, что известно еще с начальной школы. Смена мест слагаемых не приводит к изменению результата. Другими словами, неважно какой вектор откладывать сначала. Ответ все равно будет верным и единственным.

Об ассоциативности сложения. Этот закон позволяет складывать попарно любые векторы из тройки и к ним прибавлять третий. Если записать это с помощью знаков, то получится следующее:

первый + (второй + третий) = второй + (первый + третий) = третий + (первый + второй).

Что известно о разности векторов?

Отдельной операции вычитания не существует. Это связано с тем, что оно, по сути, является сложением. Только второму из них задается противоположное направление. А потом все выполняется так, как если бы рассматривалось сложение векторов. Поэтому об их разности практически не говорят.

Для того чтобы упростить работу с их вычитанием, видоизменено правило треугольника. Теперь (при вычитании) второй вектор нужно отложить из начала первого. Ответом будет тот, что соединяет конечную точку уменьшаемого с ней же вычитаемого. Хотя можно и откладывать так, как было описано ранее, просто изменив направление второго.

Как найти сумму и разность векторов в координатах?

В задаче даны координаты векторов и требуется узнать их значения для итогового. При этом построений выполнять не нужно. То есть можно воспользоваться несложными формулами, которые описывают правило сложения векторов. Они выглядят так:

а (х, у, z) + в (k, l, m) = с (х+k, y+l, z+m);

а (х, у, z) -в (k, l, m) = с (х-k, y-l, z-m).

Легко заметить, что координаты нужно просто сложить или вычесть в зависимости от конкретного задания.

Первый пример с решением

Условие. Дан прямоугольник АВСД. Его стороны равны 6 и 8 см. Точка пересечения диагоналей обозначена буквой О. Требуется вычислить разность векторов АО и ВО.

Решение. Сначала нужно изобразить эти векторы. Они направлены от вершин прямоугольника к точке пересечения диагоналей.

Если внимательно посмотреть на чертеж, то можно увидеть, что векторы уже совмещены так, чтобы второй из них соприкасался с концом первого. Вот только его направление неверное. Он должен из этой точки начинаться. Это если векторы складываются, а в задаче — вычитание. Стоп. Это действие означает, что нужно прибавить противоположно направленный вектор. Значит, ВО нужно заменить на ОВ. И получится, что два вектора уже образовали пару сторон из правила треугольника. Поэтому результат от их сложения, то есть искомая разность, — вектор АВ.

А он совпадает со стороной прямоугольника. Для того чтобы записать числовой ответ, потребуется следующее. Начертить прямоугольник вдоль так, чтобы большая сторона шла горизонтально. Нумерацию вершин начинать с левой нижней и идти против часовой стрелки. Тогда длина вектора АВ будет равна 8 см.

Ответ. Разность АО и ВО равна 8 см.

Второй пример и его подробное решение

Условие. У ромба АВСД диагонали равны 12 и 16 см. Точка их пересечения обозначена буквой О. Вычислите длину вектора, образованного разностью векторов АО и ВО.

Решение. Пусть обозначение вершин ромба будет таким же, как в предыдущей задаче. Аналогично решению первого примера получается, что искомая разность равна вектору АВ. А его длина неизвестна. Решение задачи свелось к тому, чтобы вычислить одну из сторон ромба.

Для этой цели потребуется рассмотреть треугольник АВО. Он прямоугольный, потому что диагонали ромба пересекаются под углом в 90 градусов. А его катеты равны половинам диагоналей. То есть 6 и 8 см. Искомая в задаче сторона совпадает с гипотенузой в этом треугольнике.

Для ее нахождения потребуется теорема Пифагора. Квадрат гипотенузы будет равен сумме чисел 6 2 и 8 2 . После возведения в квадрат получатся значения: 36 и 64. Их сумма — 100. Отсюда следует, что гипотенуза равна 10 см.

Ответ. Разность векторов АО и ВО составляет 10 см.

Третий пример с детальным решением

Условие. Вычислить разность и сумму двух векторов. Известны их координаты: у первого — 1 и 2, у второго — 4 и 8.

Решение. Для нахождения суммы потребуется сложить попарно первые и вторые координаты. Результатом будут числа 5 и 10. Ответом будет вектор с координатами (5; 10).

Для разности нужно выполнить вычитание координат. После выполнения этого действия получатся числа -3 и -6. Они и будут координатами искомого вектора.

Ответ. Сумма векторов — (5; 10), их разность — (-3; -6).

Четвертый пример

Условие. Длина вектора АВ равна 6 см, ВС — 8 см. Второй отложен от конца первого под углом в 90 градусов. Вычислить: а) разность модулей векторов ВА и ВС и модуль разности ВА и ВС; б) сумму этих же модулей и модуль суммы.

Решение: а) Длины векторов уже даны в задаче. Поэтому вычислить их разность не составит труда. 6 - 8 = -2. Несколько сложнее обстоит дело с модулем разности. Сначала нужно узнать, какой вектор будет являться результатом вычитания. Для этой цели следует отложить вектор ВА, который направлен в противоположную сторону АВ. Потом от его конца провести вектор ВС, направив его в сторону, противоположную исходному. Результатом вычитания получится вектор СА. Его модуль можно вычислить по теореме Пифагора. Несложные вычисления приводят к значению 10 см.

б) Сумма модулей векторов получается равной 14 см. Для поиска второго ответа потребуется некоторое преобразование. Вектор ВА противоположно направлен тому, который дан — АВ. Оба вектора направлены из одной точки. В этой ситуации можно использовать правило параллелограмма. Результатом сложения будет диагональ, причем не просто параллелограмма, а прямоугольника. Его диагонали равны, значит, модуль суммы такой же, как в предыдущем пункте.

Ответ: а) -2 и 10 см; б) 14 и 10 см.

Определение

Сложение векторов иосуществляется поправилу треугольника .

Суммой двух векторов иназывают такой третий вектор, начало которого совпадает с началом, а конец - с концомпри условии, что конец вектораи начало векторасовпадают (рис. 1).

Для сложения векторов применяется также правило параллелограмма.

Определение

Правило параллелограмма - если два неколлинеарных вектора ипривести к общему началу, то векторсовпадает с диагональю параллелограмма, построенного на векторахи(рис. 2). Причем начало векторасовпадает с началом заданных векторов.

Определение

Вектор называетсяпротивоположным вектором к вектору , если онколлинеарен вектору , равен ему по длине, но направлен в противоположную сторону вектору.

Операция сложения векторов обладает следующими свойствами:

Определение

Разностью векторов иназывается вектортакой, что выполняется условие:(рис. 3).

Умножение вектора на число

Определение

Произведением вектора на число называется вектор, удовлетворяющий условиям:

Свойства умножения вектора на число:

Здесь и- произвольные векторы,,- произвольные числа.

Евкли́дово простра́нство (также Эвкли́дово простра́нство ) - в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии . В этом случае предполагается, что пространство имеет размерность равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённымскалярным произведением , либо метрическое пространство , соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

Мерное евклидово пространство обозначается также часто используется обозначение(если из контекста ясно, что пространство обладает евклидовой структурой).

Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения . Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел , на векторах которого задана вещественнозначная функция обладающая следующими тремя свойствами:

Аффинное пространство , соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством .

Пример евклидова пространства - координатное пространство состоящее из всевозможныхn -ок вещественных чисел скалярное произведение в котором определяется формулой

    Базис и координаты вектора

Ба́зис (др.-греч. βασις, основа) - множество таких векторов в векторном пространстве , что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества - базисных векторов .

В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:

    Базис Га́меля , в определении которого рассматриваются только конечные линейные комбинации. Базис Гамеля применяется в основном в абстрактной алгебре (в частности в линейной алгебре).

    Базис Ша́удера , в определении которого рассматриваются и бесконечные линейные комбинации, а именно - разложение в ряды . Это определение применяется в основном в функциональном анализе, в частности для гильбертова пространства ,

В конечномерных пространствах обе разновидности базиса совпадают.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат , равной данному вектору.

где - координаты вектора.

    Скалярное произведение.

операция над двумя векторами , результатом которой является число [когда рассматриваются векторы, числа часто называют скалярами ], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины вектора x на проекцию вектора y на вектор x . Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

    Векторное произведение

это псевдовектор , перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном евклидовом пространстве . Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным ) и, в отличие от скалярного произведения векторов , является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

    Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

    Смешанное произведение

Сме́шанное произведе́ние векторов -скалярное произведение вектора навекторное произведение векторов и:

Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр ).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда , образованного векторами .смешанное произведение трех векторов можно найти через определитель

    Плоскость в пространстве

Плоскость - алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.

Некоторые характеристические свойства плоскости

    Плоскость - поверхность , содержащая полностью каждую прямую , соединяющую любые её точки ;

    Две плоскости являются либо параллельными, либо пересекаются по прямой.

    Прямая либо параллельна плоскости, либо пересекает ее в одной точке, либо находится на плоскости.

    Две прямые, перпендикулярные одной и той же плоскости, параллельны друг другу.

    Две плоскости, перпендикулярные одной и той же прямой, параллельны друг другу.

Аналогично отрезку и интервалу , плоскость, не включающую крайние точки, можно назвать интервальной плоскостью, или открытой плоскостью.

    Общее уравнение (полное) плоскости

где и- постоянные, причёмиодновременно не равны нулю; ввекторной форме:

где - радиус-вектор точки, векторперпендикулярен к плоскости (нормальный вектор).Направляющие косинусы вектора :

 
Статьи по теме:
Университет Бонч-Бруевича: факультеты, проходной балл, подготовительные курсы
телекоммуникаций - структурное подразделение Санкт-Петербургского государственного университета телекоммуникаций имени профессора М.А. Бонч-Бруевича.Готовит специалистов в области телекоммуникаций для Северо-Западного региона и для всей России.В учебн
Международная академия бизнеса и управления Закончил международный университет бизнеса и управления
129594, Москва, 5-й проезд Марьиной рощи, 15а "Марьина Роща" (495) 631-66-65, +7 (495) 688-25-88www.mabiu.ru Добреньков Владимир Иванович - должность "Президент Академии". Профессор В.И. Добреньков - признанный в мировой и отечественной науке специали
Российский государственный социальный университет Профессионального образования российский государственный социальный университет
Российский государственный социальный университет – главный социальный вуз России! В РГСУ обучается 25 000 студентов по 48 направлениям подготовки бакалавриата и 32 направлениям подготовки магистратуры на 13 факультетах. При вузе ведет подготовку специа
Можно ли поступить на бюджет
Тысячи абитуриентов по всей России задаются вопросом о том, как же поступить на бюджетное отделение желаемого университета или колледжа. На данный момент между этими двумя видами учебных заведений существует большая разница. О ней и всех нюансах поступлен