Загрязнение мирового океана и морей и способы их защиты. Загрязнение мирового океана

Привет дорогие читатели! Сегодня хотелось бы поговорить с вами о загрязнении океана.

Океан (подробнее о том что такое океан ) занимает около 360 млн. км 2 поверхности земного шара. К сожалению, человек использует его как место сброса отходов, что наносит огромный вред местной флоре и фауне.

Сушу и океан связывают реки (подробнее о реках ), впадающие в моря (более подробно о том что такое море ) и несущие различные загрязнители. Не распадающиеся при контакте с почвой (о почве более подробно можете ) химические вещества, такие как нефтепродукты, нефть, удобрения (особенно нитраты и фосфаты), инсектициды и гербициды в результате выщелачивания попадают в реки, а затем в океан.

Океан в итоге превращается в место сброса этого коктейля из ядов и питательных веществ. Основные загрязнители океанов – это нефтепродукты и нефть. А загрязнение воздуха, бытовой мусор и сточные воды значительно усугубляют наносимый ими вред.

Выносимые на пляжи нефть и пластмассовые предметы остаются вдоль отметки уровня прилива. Это свидетельствует о загрязнении морей, а также о том, что многие отходы не разлагаются микроорганизмами.

Исследования Северного моря показали, что реками были перенесены около 65% обнаруженных там загрязняющих веществ.

Еще 7% загрязнителей поступили от прямых сбросов (в основном сточные воды), 25% — из атмосферы (включая 7000 т свинца от выхлопов автомобилей), а остальное – от сливов и сбросов отходов с судов.

Отходы в море сжигают десять штатов США (более подробно об этой стране ). В 1980 году таким способом их было уничтожено 160 000 т, но с тех пор эта цифра уменьшилась.

Экологические катастрофы.

С нефтью связаны все серьезные случаи загрязнения океана. Ежегодно в океан сознательно сбрасывается от 8 до 20 млн. баррелей нефти. Это происходит в результате практики мытья танкеров и трюмов, которая широко распространена.

Такие нарушения раньше оставались часто безнаказанными. Сегодня же, с помощью спутников, можно собрать все необходимые улики, а также привлечь к ответственности виновных.

Танкер «Эксон Вальдес» в 1989 году, в районе Аляски, сел на мель. В океан разлито было почти 11 млн. галлонов нефти (около 50 000 тонн), а образовавшееся от этого пятно растянулось вдоль побережья на 1600 км.

Владельца судна – нефтяную компанию «Эксон мобил», суд обязал выплатить штраф штату Аляска, только по делу об уголовной ответственности, 150 млн. долларов, это самый крупный в истории экологический штраф.

Суд из этой суммы простил компании 125 млн. долларов в признание ее участия в ликвидации последствий катастрофы. Но «Эксон» заплатил еще 100 млн. долларов за ущерб природе и еще в течение 10 лет 900 млн. долларов по гражданским искам.

Последняя выплата аляскинским и федеральным властям была совершена в сентябре 2001 года, но правительство может до 2006 года еще подать иск на сумму до 100 млн. долларов, в случае обнаружения экологических последствий, которые, во время суда, нельзя было предусмотреть.

Претензии частных лиц и компаний, также составляют огромную сумму, по многим из этих претензий до сих пор длятся тяжба.

«Эксон Вальдес» — один из самых известных, но, тем не менее, многих случаев разлива нефти в море.

Местом малых и больших экологических бедствий, которые связанны с перевозкой крайне опасных грузов, остается, конечно же, океан.

Так было и с судами «Акацури мару» , которое в 1992 году перевозило из Европы (подробнее об этой части света ) в Японию большую партию радиоактивного плутония для переработки, а так же «Кэрен Би» , на борту которого в 1987 году, было 2000 тонн токсичных отходов.

Сточные воды.

Сточные воды, помимо нефти, относятся к наиболее вредным отходам. Они в малых количествах способствуют росту рыб и растений и обогащают воду, а в больших – разрушают экосистемы.

Марсель (Франция) и Лос-Анджелес (США) – это два крупнейших в мире места сбросов стоков. Уже более двух десятилетий, специалисты там занимаются очисткой загрязненных вод.

Растекание сбрасываемых выпускными коллекторами стоков, четко видно на снимках со спутника. Подводные съемки свидетельствуют о вызванной ими гибели морских организмов (подводные пустыни, усеянные органическими остатками), но принятые в последние годы восстановительные меры позволили значительно улучшить ситуацию.

На снижение опасности канализационных стоков направлены усилия по их разжижению, при этом бактерии (подробнее о бактериях ) убивает солнечный свет.

В Калифорнии такие меры оказались эффективными. Там сбрасываются в океан бытовые стоки – результат жизнедеятельности почти 20-ти миллионов жителей.

Металлы и химикаты.

Содержание металлов, ПХД (полихлордифенилов), ДДТ (долго сохраняющийся в природе токсичный пестицид на основе хлор-органического соединения) в водах уменьшилось в последние годы, а вот количество мышьяка необъяснимо увеличилось.

ДДТ с 1984 года запрещен в Англии, но в некоторых африканских районах его по-прежнему используют.

Такие тяжелые металлы как никель, кадмий, свинец, хром, медь, цинк и мышьяк относятся к опасным химическим веществам, которые способны нарушить экологический баланс.

Согласно подсчетам, до 50 000 тонн этих металлов ежегодно сбрасывается только в Северное море. Пестициды эндрин, дильдрин и альдрин, которые накапливаются в животных тканях, вызывают еще большую тревогу.

Отдаленные последствия применения таких химикатов пока неизвестны. ТБТ (трибутилтин) также губителен для морских обитателей. Его применяют для покраски килей кораблей, что препятствует обрастанию их водорослями и ракушками.

Уже доказано, что ТБТ изменяет пол самцов-трубачей (вид ракообразных), и в результате этого вся популяция – женские особи, а это, естественно, исключает возможность размножения.

Существуют заменители, которые не оказывают пагубного воздействия на живую природу. Например, это может быть соединение на основе меди, которое в 1000 раз менее токсично для растений и животных.

Воздействие на экосистемы.

Все океаны страдают от загрязнения. Но загрязненность вод в открытом море меньше, чем в прибрежных водах, так как в этом районе больше источников загрязнителей: от интенсивного движения морских судов до береговых промышленных установок.

У восточных берегов Северной Америки и вокруг Европы устраивают, на мелководных континентальных шельфах, садки для разведения рыб, мидий и устриц, которые уязвимы для загрязнителей, для водорослей (подробнее о водорослях ) и для токсичных бактерий.

На шельфах, кроме этого, также ведутся нефтепоисковые работы, а это, естественно, увеличивает риск разлива нефти и загрязнения.

Средиземное море (частично внутреннее) соединяется с Атлантическим океаном, и раз в 70 лет оно им полностью обновляется.

До 90% сточных вод сюда поступало из 120 прибрежных городов, а другие загрязнители приходятся на долю 360 млн. человек, проводящих отпуск или живущих в 20 странах Средиземноморья.

Средиземное море превратилось в огромную загрязненную экосистему, в которую ежегодно поступает около 430 млрд. тонн отходов.

Морские побережья Италии, Франции и Испании самые загрязненные. Это можно объяснить работой предприятий тяжелой промышленности и наплывом туристов.

Из местных млекопитающих хуже всех пришлось средиземноморским тюленям-монахам. Из-за возросшего туристического потока, они стали редко встречаться.

А на острова, их отдаленные места обитания, теперь можно быстро добраться на катере, благодаря чему, эти места стали еще доступными и для аквалангистов. Кроме этого, большое количество тюленей погибает, запутавшись в рыболовных сетях.

Во всех океанах, где температура воды не опускается ниже 20°С, обитают зеленые морские черепахи. Но гнездовья этих животных, как в Средиземном море (в Греции), так и в океане, находятся под угрозой.

У пойманных черепах на острове Бали (Индонезия) отбирают яйца. Это делают для того, чтобы молодым черепашкам дать возможность подрасти, а потом их выпустить на волю, когда у них появится больше шансов выжить в загрязненных водах.

Цветение воды.

Цветение воды, которое происходит из-за массового развития водорослей или планктона, является другим распространенным видом загрязнения океанов.

Разрастанием водорослей Chlorochromulina holylepis было вызвано буйное цветение вод Северного моря у берегов Дании и Норвегии. В результате всего этого промысел лосося серьезно пострадал.

Такие явления уже некоторое время известны в водах умеренного пояса, но в тропиках и в субтропиках «красный прилив» впервые был замечен в 1971 году вблизи Гонконга. Такие случаи, впоследствии, часто повторялись.

Считают, что связанно это явление с промышленными выбросами большого количества металлических микроэлементов, которые действуют как биостимуляторы роста планктона.

Устрицы, как и другие двустворчатые моллюски, играют важную роль в фильтрации воды. Раньше, в относящейся к штату Мэриленд части Чесапикского залива, устрицы фильтровали воду за 8 дней. Сегодня, из-за загрязнения и цветения воды, они на это затрачивают 480 дней.

Водоросли, после цветения, умирают и разлагаются, чем способствуют размножению бактерий, которые поглощают жизненно важный кислород.

Все морские животные, которые добывают пищу путем фильтрации воды, очень чувствительны к загрязнителям, которые накапливаются в их тканях.

Загрязнения плохо переносят кораллы, которые состоят из гигантских колоний одноклеточных организмов. Сегодня нависла серьезная угроза над этими живыми сообществами – коралловыми рифами и атоллами.

Опасность для человека.

Содержащиеся в сточных водах вредные организмы плодятся в моллюсках и вызывают у человека многочисленные болезни. Бактерия Escherichia coli – самая распространенная бактерия, она же является индикатором заражения.

В морских организмах накапливаются ПХД. Эти промышленные загрязняющие вещества являются ядом для человека и для животных.

Они являются стойкими хлорсодержащими соединениями, как и другие загрязнители океанов, например, ГХГ (гексахлоциклогексан), применяемый в антисептиках для древесины и пестицидах. Эти химикаты выщелачиваются из почвы и попадают в море. Там они проникают в ткани живых организмов, и таким образом, проходят через пищевую цепь.

Люди могут съесть рыб с ГХГ или ПХД, также их могут съесть и другие рыбы, а их потом съедят тюлени, которые, в свою очередь, станут пищей для белых медведей или некоторых видов китов.

Концентрация химических веществ растет каждый раз, при их переходе из одного уровня животных на другой.

Белый медведь, который ничего не подозревает, ест тюленей, а вместе с ними поглощает и токсины, которые содержались в десятках тысяч зараженных рыб.

Считают, что загрязняющие вещества виновны и в повышении восприимчивости морских млекопитающих к чумке, которая поразила в 1987—1988 гг. Северное море. Тогда погибли не менее 11 тысяч длинномордых и обыкновенных тюленей.

Вероятно, металлические загрязнители в океане стали также причиной появления кожных язв и увеличения печени у рыб, включая камбалу, 20% популяции которой в Северном море поражены этими болезнями.

Токсичные вещества, попадающие в океан, могут быть вредными не для всех организмов. В таких условиях могут процветать некоторые низшие формы.

Многощетинковые черви (полихеты) живут в относительно загрязненных водах и часто служат экологическими индикаторами относительной загрязненности.

Для контроля санитарного состояния океанов продолжается изучение возможности использования морских нематод.

Законодательство.

Предпринимались попытки сделать океан чище законодательным путем, но эту ситуацию трудно контролировать. В 1983 году 27 стран подписали Картахенскую конвенцию о защите и развитии морской среды в Карибском регионе.

Были предприняты и другие попытки установить контроль над сбросом отходов в океан, включая Конвенцию ООН о континентальном шельфе (1958), Конвенцию ООН по морскому праву (1982) и Конвенцию о предотвращении загрязнения моря сбросами отходов и других материалов (1972).

Морские резерваты – хороший, но не оптимальный путь защиты ареалов и живой природы прибрежных вод.

Они были созданы в Новой Зеландии еще в 1960-е гг., а также у берегов Северной Америки и Европы.

Международный союз охраны природы и природных ресурсов (МСОП) объявил атолл Така-Боне-Роте (Индонезия) «районом бедствия». Он занимает площадь 2220 км 2 и включает обычные и барьерные коралловые рифы.

А в общем, флора и фауна океана по-прежнему из всех сил пытается выжить в условиях продолжающегося загрязнения среды человеком.

Вот мы с Вами и рассмотрели загрязнение океана 😉 До встречи в новых постах рубрики глобальные проблемы человечества! А если не хотите пропустить выход свежих статей, подписывайтесь на обновления блога по почте 🙂

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

1. Распространенные загрязнители Мирового океана

2. Пестициды

3. Тяжелые металлы

4. Синтетические поверхностно-активные вещества

5. Нефть и нефтепродукты

6. Цветение воды

7. Сточные воды

8. Сброс отходов в море с целю захоронения (дампинг)

9. Тепловое загрязнение

10. Соединения с канцерогенными свойствами

11. Причины загрязнения Мирового океана

12. Последствия загрязнения Мирового океана

Заключение

Список используемых ресурсов

Введение

Нашу планету вполне можно было бы назвать, Океанией, так как площадь, занимаемая водой, в 2,5 раза превышает территорию суши. Океанические воды покрывают почти 3/4 поверхности земного шара слоем толщиной около 4000 м, составляя 97 % гидросферы, тогда как воды суши содержат всего лишь 1 %, а в ледниках сковано только 2 %. Мировой океан, являясь совокупностью всех морей и океанов Земли, оказывает огромное влияние на жизнедеятельность планеты. Огромная масса вод океана формирует климат планеты, служит источником атмосферных осадков. Из него поступает более половины кислорода, и он же регулирует содержание углекислоты в атмосфере, так как способен поглощать ее избыток. На дне Мирового океана происходит накопление и преобразование огромной массы минеральных и органических веществ, поэтому геологические и геохимические процессы, протекающие в океанах и морях, оказывают очень сильное влияние на всю земную кору. Именно Океан стал колыбелью жизни на Земле; сейчас в нём обитает около четырёх пятых всех живых существ планеты.

Роль Мирового океана в функционировании биосферы как единой системы трудно переоценить. Водная поверхность океанов и морей покрывает большую часть планеты. При взаимодействии с атмосферой океанские течения в значительной мерс определяют формирование климата и погоды на Земле. Все океаны, включая замкнутые и полузамкнутые моря, имеют непреходящее значение в глобальном жизнеобеспечении населения земного шара продуктами питания.

Океану, особенно его прибрежной зоне, принадлежит ведущая роль в поддержании жизни на Земле, поскольку около 70% кислорода, поступающего в атмосферу планеты, вырабатывается в процессе фотосинтеза планктона.

Мировой океан покрывает 2/3 земной поверхности и дает 1/6 часть всех белков животного происхождения, потребляемых населением в пищу.

Океан и моря испытывают нарастающий экологический стресс из-за загрязнения, хищнического вылова рыбы и моллюсков, разрушения исторически сложившихся нерестилищ рыбы, ухудшения состояния берегов и коралловых рифов.

Особые опасения вызывает загрязнение Мирового океана вредными и токсичными веществами, в том числе нефтью и нефтепродуктами, радиоактивными веществами.

1. Распространенные загрязнители Мирового океа на

Экологи выделяют несколько видов загрязнения океана. Это: физическое; биологическое (загрязнение бактериями и различными микроорганизмами); химическое (загрязнение химикатами и тяжелыми металлами); нефтяное; тепловое (загрязнение подогретыми водами, сбрасываемыми ТЭС и АЭС); радиоактивное; транспортное (загрязнение морскими видами транспорта - танкерами и суднами, а также подводными лодками); бытовое. Также существуют разнообразные источники загрязнения Мирового океана, которые могут быть как природного (например, песок, глина или минеральные соли), так и антропогенного происхождения. Среди последних самыми опасными являются следующие: нефть и нефтепродукты; сточные воды; химикаты; тяжелые металлы; радиоактивные отходы; пластмассовые отходы; ртуть. Рассмотрим эти загрязнители более детально.

О масштабах загрязнения говорят следующие факты: ежегодно прибрежные воды пополняются 320 млн т железа, 6,5 млн т фосфора, 2,3 млн т свинца.

Например, только в водоемы Черного и Азовского морей в 1995 г. было сброшено 7,7 млрд м 3 загрязненных производственных и коммунальных сточных вод. Наиболее загрязнены воды Персидского и Аденского заливов. Воды Балтийского и Северного морей также таят в себе опасность. Так, в 1945-1947 гг. английским, американским и советским командованием в них было затоплено около 300 000 т трофейных и собственных боеприпасов с отравляющими веществами (ипритом, фосгеном). Операции по затоплению проводились в большой спешке и с нарушениями норм экологической безопасности. Корпуса химических боеприпасов к 2009 г. сильно разрушились, что чревато тяжелыми последствиями.

Наиболее распространенными веществами, загрязняющими океан, являются нефть и нефтепродукты. В Мировой океан ежегодно поступает в среднем 13-14 млн т нефтепродуктов. Нефтяное загрязнение опасно по двум причинам: во-первых, на поверхности воды образуется пленка, лишающая доступ кислорода к морской флоре и фауне; во-вторых, нефть сама по себе является токсичным соединением. При содержании нефти в воде 10-15 мг/кг гибнут планктон и мальки рыб.

Настоящими экологическими катастрофами являются крупные разливы нефти при разрыве трубопроводов и крушении супертанкеров. Только одна тонна нефти может покрыть пленкой в 12 км 2 поверхности моря.

Особенно опасным является радиоактивное загрязнение при захоронении радиоактивных отходов. Первоначально основным способом избавления от радиоактивных отходов было их захоронение в морях и океанах. Это были, как правило, низкорадиоактивные отходы, которые упаковывали в 200-литровые металлические контейнеры, заливали бетоном и сбрасывали в море. Первое такое захоронение произвели в США в 80 км от побережья Калифорнии.

Большую угрозу проникновения радиоактивности в воды Мирового океана представляют течи атомных реакторов и атомных боеголовок, затонувших вместе с атомными подводными лодками. Так, в результате подобных аварий к 2009 г. в океане оказалось шесть ядерных энергоустановок и несколько десятков ядерных боеголовок, ускоренно разъедаемых морской водой.

На некоторых базах ВМФ России радиоактивные материалы до настоящего времени нередко складируются прямо на открытых площадках. А из-за нехватки средств на утилизацию в некоторых случаях, радиоактивные отходы могли попасть непосредственно в морские воды.

Следовательно, несмотря на предпринимаемые меры, радиоактивное загрязнение Мирового океана вызывает большую тревогу.

2. Пестициды

Продолжая говорить о загрязнителях, нельзя не упомянуть о пестицидах. Поскольку они в свою очередь являются одним из важных загрязнителей. Пестициды составляют группу искусственно созданных веществ, используемых для борьбы с вредителями и болезнями растений. Пестициды делятся на следующие группы:

- инсектициды для борьбы с вредными насекомыми,

- фунгициды и бактерициды - для борьбы с бактериальными болезнями растений,

- гербициды против сорных растений.

Установлено, что пестициды уничтожая вредителей, наносят вред многим полезным организмам и подрывают здоровье биоценозов. В сельском хозяйстве давно уже стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологически чистым) методам борьбы с вредителями. В настоящее время более 5 млн. т. пестицидов поступает на мировой рынок. Около 1, 5 млн. т. этих веществ уже вошло в состав наземных и морских экосистем золовым и водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязняющих сточные воды. В водной среде чаще других встречаются представители инсектицидов, фунгицидов и гербицидов.Синтезированные инсектициды делятся на три основных группы: хлорорганические, фосфорорганические и карбонаты.

Хлорорганические инсектициды получают путем хлорирования ароматических и гетероциклических жидких углеводородов. К ним относятся ДДТ и его производные, в молекулах которых устойчивость алифатических и ароматических групп в совместном присутствии возрастает, всевозможные хлорированные производные хлородиена (элдрин). Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации . В водной среде часто встречаются полихлорбифенилы - производные ДДТ без алифатической части, насчитывающие 210 гомологов и изомеров. За последние 40 0лет использовано более 1, 2 млн. т. полихлорбифенилов в производстве пластмасс, красителей, трансформаторов , конденсаторов. Полихлорбифенилы (ПХБ) попадают в окружающую среду в результате сбросов промышленных сточных вод и сжигания твердых отходах на свалках. Последний источник поставляет ПБХ в атмосферу, откуда они с атмосферными осадками выпадают во все районах земного шара. Так в пробах снега, взятых в Антарктиде, содержание ПБХ составило 0, 03 - 1, 2 кг. /л.

3. Тяжелые металлы

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк,) относятся к числу распространенных и весьма токсичных загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому, несмотря на очистные мероприятия, содержание соединения тяжелых металлов в промышленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу.

Для морских биоценозов наиболее опасны ртуть, свинец и кадмий. Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород ежегодно выделяется 3, 5 тыс. т. ртути. В составе атмосферной пыли содержится около 121тыс. т. 0ртути, причем значительная часть - антропогенного происхождения. Около половины годового промышленного производства этого металла (910 тыс. т. /год) различными путями попадает в океан. В районах, загрязняемых промышленными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бактерии переводят хлориды в высокотоксичную метил-ртуть. Заражение морепродуктов неоднократно приводило к ртутному отравлению прибрежного населения. К 1977 году насчитывалось 2800 0жертв болезни Миномата, причиной которой послужили отходы предприятий по производству хлорвинила и ацетальдегида, на которых в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в залив Минамата. Свиний - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свиний активно рассеивается в окружающую среду в процессе хозяйственной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприятий, с выхлопными газами двигателей внутреннего сгорания. Миграционный поток свинца с континента в океан идет не только с речными стоками, но и через атмосферу.

С континентальной пылью океан получает (20-30)*10^3 т. свинца в год.

4. Синтетические поверхностно-активные вещества

Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в состав синтетических моющих средств (СМС), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ, попадают в материковые воды и морскую среду. СМС содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингредиентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты натрия. В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионактивные, катионактивные, амфотерные и неионогенные. Последние не образуют ионов в воде. Наиболее распространенными среди СПАВ являются анионактивные вещества. На их долю приходится более 50% всех производимых в мире СПАВ. Присутствие, СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химических технологий, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования. В сельском хозяйстве, СПАВ, применяется в составе пестицидов.

5. Нефть и нефтепродукты

Нефть представляет собой вязкую маслянистую жидкость, имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов. Основные компоненты нефти - углеводороды (до 98%) - подразделяются на 4 класса:

а).Парафины (алкены). (до 90% от общего состава) - устойчивые вещества, молекулы которых выражены прямой и разветвленной цепью атомов углерода. Легкие парафины обладают максимальной летучестью и растворимостью в воде. загрязнитель океан пестицид нефтепродукт

б). Циклопарафины. (30 - 60% от общего состава) насыщенные циклические соединения с 5-6 атомами углерода в кольце. Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические соединения этой группы. Эти соединения очень устойчивы и плохо поддаются биоразложению.

в).Ароматические углеводороды. (20 - 40% от общего состава) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем циклопарафины. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол) , затем бициклические (нафталин) , полициклические (пирон).

г). Олефины (алкены). (до 10% от общего состава) - ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

Нефть и нефтепродукты являются наиболее распространенными загрязняющими веществами в Мировом океане. К началу 80-ых годов в океан ежегодно поступало около 16 млн. т. нефти, что составляло 0, 23% мировой добычи. Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод, - все это обуславливает присутствие постоянных полей загрязнения на трассах морских путей. В период за 1962-79 годы в результате аварий в морскую среду поступило около 2 млн. т. нефти. За последние 30 лет, начиная с 1964 года, пробурено около 2000 скважин в Мировом океане, из них только в Северном море 1000 и 350 промышленных скважин оборудовано. Из-за незначительных утечек ежегодно теряется 0,1 млн. т. нефти. Большие массы нефти поступают в моря по рекам, с бытовыми и ливневыми стоками. Объем загрязнений из этого источника составляет 2,0 млн. т. /год. Со стоками промышленности ежегодно попадает 0, 5 млн. т. нефти. Попадая в морскую среду, нефть сначала растекается в виде пленки, образуя слои различной мощности.

Нефтяная пленка изменяет состав спектра и интенсивность проникновения в воду света. Пропускание света тонкими пленками сырой нефти составляет 11-10% (280 нм), 60-70% (400нм). Пленка толщиной 30-40 мкм 0полностью полностью поглощает инфракрасное излучение. Смешиваясь с водой, нефть образует эмульсию двух типов: прямую нефть в воде и обратную вода в нефти. Прямые эмульсии, составленные капельками нефти диаметром до 0,5 мкм, менее устойчивы и характерны для нефтей, содержащих поверхностно-активные вещества. При удалении летучих фракций, нефть образует вязкие обратные эмульсии, которые могут сохраняться на поверхности, переноситься течением, выбрасываться на берег и оседать на дно.

6. Цветение воды

Другой распространённый вид загрязнения океанов -- цветение воды из-за массового развития водорослей или планктона. Буйное цветение вод Северного моря у берегов Норвегии и Дании было вызвано разрастанием водорослей Chlorochromulina polylepis , в результате чего серьёзно пострадал промысел лосося. В водах умеренного пояса такие явления известны уже довольно давно, но в субтропиках и тропиках «красный прилив» был впервые замечен вблизи Гонконга в 1971 г. Впоследствии такие случаи часто повторялись. Считают, что это связано с промышленными выбросами большого количества микроэлементов, особенно смывом в водоёмы сельскохозяйственных удобрений, действующих как биостимуляторы роста фитопланктона. Со взрывным ростом биомассы фитопланктона консументы первого порядка не справляются, в результате чего большая часть в пищевых цепях не используется и просто отмирает, опускаясь на дно. Разлагая органическое вещество отмершего фитопланктона, донные бактерии нередко используют весь растворенный в воде кислород, что может привести к формированию зоны гипоксии (с недостаточным для аэробных организмов содержанием кислорода). Подобные зоны приводят к сокращению биоразнообразия и биомассы аэробных форм бентоса .

Устрицы, как и другие двустворчатые моллюски, играют важную роль в фильтрации воды. Раньше устрицы за восемь дней полностью фильтровали воду в части Чесапикского залива, относящейся к штату Мэриленд. Сегодня они затрачивают на это 480 дней из-за цветения и загрязнения воды. После цветения водоросли умирают и разлагаются, способствуя размножению бактерий, поглощающих жизненно важный кислород.

Все морские животные, добывающие пищу путём фильтрации воды, очень чувствительны к загрязнителям, которые накапливаются в их тканях. Плохо переносят загрязнение кораллы, и над коралловыми рифами и атоллами нависла серьёзная угроза.

7. Сточные воды

Помимо цветения воды к наиболее вредным отходам относятся сточные воды. В малых количествах они обогащают воду и способствуют росту растений и рыб, а в больших -- разрушают экосистемы. В двух крупнейших в мире местах сброса стоков -- в Лос-Анджелесе (США) и Марселе (Франция) -- специалисты занимаются очисткой загрязнённых вод уже более двух десятилетий. На снимках со спутника чётко видно растекание сбрасываемых выпускными коллекторами стоков. Подводные съёмки свидетельствуют о вызванной ими гибели морских организмов (подводные пустыни, усеянные органическими остатками), но принятые в последние годы восстановительные меры позволили значительно улучшить ситуацию.

Усилия по разжижению канализационных стоков направлены на снижение их опасности; при этом солнечный свет убивает некоторые бактерии. Такие меры оказались эффективными в Калифорнии, где в океан сбрасываются бытовые стоки -- результат жизнедеятельности почти 20 млн жителей этого штата.

8. Сброс отходов в море с целю захоронения (дампинг)

Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлака, отходов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов. Объем захоронений составил около 10% от всей массы загрязняющих веществ, поступающих в Мировой океан.

Основанием для дампинга в море служит возможность морской среды к переработке большого количества органических и неорганических веществ без особого ущерба воды. Однако эта способность не беспредельна. Поэтому дампинг рассматривается как вынужденная мера, временная дань общества несовершенству технологии.

В шлаках промышленных производств присутствуют разнообразные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40% органических веществ; 0,56% азота; 0,44% фосфора; 0,155% цинка; 0, 085% свинца; 0,001% ртути; 0, 001% кадмия.

Во время сброса прохождении материала сквозь столб воды, часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому расходованию кислорода в воде и не редко к его полному исчезновению, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количества органических веществ создает в грунтах устойчивую восстановительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов.

Воздействию сбрасываемых материалов в разной степени подвергаются организмы бентоса и др. В случае образования поверхностных пленок, содержащих нефтяные углеводороды и СПАВ, нарушается газообмен на границе воздух -- вода. Загрязняющие вещества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробиантов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышенная мутность придонной воды приводит к гибели от удушья малоподвижные формы бентоса. У выживших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко изменяется видовой состав данного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга, определение динамики загрязнения морской воды и донных отложений. Для выявления возможных объемов сброса в море необходимо проводить расчеты всех загрязняющих веществ в составе материального сброса.

9. Тепловое загрязнение

Тепловое загрязнение поверхности водоемов и прибрежных морских акваторий возникает в результате сброса нагретых сточных вод электростанциями и некоторыми промышленными производствами. Сброс нагретых вод во многих случаях обуславливает повышение температуры воды в водоемах на 6-8 градусов Цельсия. Площадь пятен нагретых вод в прибрежных районах может достигать 30 кв. км. Более устойчивая температурная стратификация препятствует водообмену поверхностным и донным слоем. Растворимость кислорода уменьшается, а потребление его возрастает, поскольку с ростом температуры усиливается активность аэробных бактерий, разлагающих органическое вещество. Усиливается видовое разнообразие фитопланктона и всей флоры водорослей.

На основании обобщения материала можно сделать вывод, что эффекты антропогенного воздействия на водную среду проявляются на индивидуальном и популяционно-биоценотическом уровнях, и длительное действие загрязняющих веществ приводит к упрощению экосистемы.

10. Соединения с канцерогенными свойствами

Канцерогенные вещества - это химически однородные соединения, проявляющие трансформирующую активность и способность вызывать канцерогенные, тератогенные (нарушение процессов эмбрионального развития) или мутагенные изменения в организмах. В зависимости от условий воздействия они могут приводить к ингибированию роста, ускорению старения, нарушению индивидуального развития и изменению генофонда организмов. К веществам, обладающим канцерогенными свойствами, относятся хлорированные алифатические углеводороды, винилхлорид, и особенно, полициклические ароматические углеводороды (ПАУ). Максимальное количество ПАУ в современных данных осадках Мирового океана (более 100 мкг/км массы сухого вещества) 0обнаружено в тектонически - активных зонах, подверженным глубинному термическому воздействию. Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различных материалов, древесины и топлива.

11. Причины загрязнения Мирового океана

Почему же загрязняется океан? В чем причины этих печальных процессов? Они кроются в первую очередь в нерациональном, а местами даже агрессивном, поведении человека в сфере природопользования. Люди не понимают (или же не желают осознавать) возможные последствия своих негативных действий на природу. На сегодняшний день известно, что загрязнение вод Мирового океана происходит тремя основными путями: через сток речных систем (при этом наиболее загрязнены зоны шельфа, а также участки около устьев крупных рек); через атмосферные осадки (так в Океан попадает, прежде всего, свинец и ртуть); вследствие неразумной хозяйственной деятельности человека непосредственно в Мировом океане. Ученые выяснили, что основным путём загрязнения выступает речной сток (до 65% загрязнителей поступает в океаны именно через реки). Около 25% приходится на атмосферные осадки, еще 10% - на сточные воды, менее 1% - на выбросы с морских судов. Именно по этим причинам и происходит загрязнение Мирового океана. Удивительно, но вода, без которой человек не проживет и дня, активно загрязняется именно им.

Основные причины загрязнения :

1. Растет малоконтролируемое загрязнение акваторий.

2. Имеет место опасное превышение допустимых объектов промысла видов ихтиофауны.

3. Назревает необходимость более интенсивного вовлечения в хозяйственный оборот минеральных энергетических ресурсов океана.

4. Происходит эскалация международных конфликтов из-за разногласий в сфре экваториального размежевания.

12. Последствия загрязнения Мирового океана

Мировой океан имеет исключительное значение в жизнеобеспечении Земли. Океан - это «легкие» Земли, источник питания населения земного шара и сосредоточие огромных богатств полезных ископаемых. Но научно-технический прогресс отрицательно сказался на жизнеспособности океана -- интенсивное судоходство, активизация добычи нефти и газа в водах континентального шельфа, сбрасывание в моря нефтяных и радиоактивных отходов привели к тяжелым последствиям: к загрязнению морских пространств, к нарушению экологического равновесия в Мировом океане. В настоящее время перед человечеством стоит глобальная задача -- срочно ликвидировать ущерб, нанесенный океану, восстановить нарушенное равновесие и создать гарантии сохранения его в будущем. Нежизнеспособный океан пагубно скажется на жизнеобеспечении всей Земли, на судьбе человечества.

Последствия, к которым ведёт расточительное, небрежное отношение человечества к Океану, ужасающи. Уничтожение планктона, рыб и других обитателей океанских вод - далеко не всё. Ущерб может быть гораздо большим. Ведь у Мирового океана имеются общепланетарные функции: он является мощным регулятором влагооборота и теплового режима Земли, а также циркуляции её атмосферы. Загрязнения способны вызвать весьма существенные изменения всех этих характеристик, жизненно важных для режима климата и погоды на всей планете. Симптомы таких изменений наблюдаются уже сегодня. Повторяются жестокие засухи и наводнения, появляются разрушительные ураганы, сильнейшие морозы приходят даже в тропики, где их отроду не бывало. Разумеется, пока нельзя даже приблизительно оценить зависимость подобного ущерба от степени загрязненности Мирового океана, однако, взаимосвязь, несомненно, существует. Как бы там ни было, охрана океана является одной из глобальных проблем человечества.

Заключение

Последствия, к которым ведёт расточительное, небрежное отношение человечества к Океану, ужасающи. Уничтожение планктона, рыб и других обитателей океанских вод - далеко не всё. Ущерб может быть гораздо большим. Ведь у Мирового океана имеются общепланетарные функции: он является мощным регулятором влагооборота и теплового режима Земли, а также циркуляции её атмосферы. Загрязнения способны вызвать весьма существенные изменения всех этих характеристик, жизненно важных для режима климата и погоды на всей планете. Симптомы таких изменений наблюдаются уже сегодня. Повторяются жестокие засухи и наводнения, появляются разрушительные ураганы, сильнейшие морозы приходят даже в тропики, где их отроду не бывало. Разумеется, пока нельзя даже приблизительно оценить зависимость подобного ущерба от степени загрязненности. Мирового океана, однако, взаимосвязь, несомненно, существует. Как бы там ни было, охрана океана является одной из глобальных проблем человечества. Мертвый океан - мертвая планета, а значит, и все человечество. Таким образом очевидно, что загрязнение Мирового океана является важнейшей экологической проблемой нашего века. И с ней надо бороться. На сегодняшний день существует множество опасных загрязнителей океана: это нефть, нефтепродукты, различные химикаты, пестициды, тяжелые металлы и радиоактивные отходы, сточные воды, пластмассы и тому подобное. Для решения этой острой проблемы потребуется консолидация всех сил мирового сообщества, а также четкое и неукоснительное выполнение принятых норм и существующих предписаний в сфере охраны окружающей среды.

Список используемых ресурсов

1. Интернет ресурс: wikipedia.org

2. Интернет ресурс: Syl.ru

3. Интернет ресурс: 1os.ru

4. Интернет ресурс: grandars.ru

5. Интернет ресурс: ecosystema.ru

Размещено на Allbest.ru

...

Подобные документы

    Загрязнение вод Мирового океана нефтью и нефтепродуктами, радиоактивными веществами. Влияние сточных вод на водный баланс. Содержание пестицидов и синтетических поверхностно-активных веществ в океане. Международное сотрудничество в области охраны вод.

    курсовая работа , добавлен 28.05.2015

    Понятие о Мировом океане. Богатства Мирового океана. Минеральные, энергетические и биологические виды ресурсов. Экологические проблемы Мирового океана. Загрязнения сточными водами промышленности. Нефтяные загрязнения морских вод. Методы очистки вод.

    презентация , добавлен 21.01.2015

    Физико-географическая характеристика Мирового океана. Химическое и нефтяное загрязнение океана. Истощение биологических ресурсов Мирового океана и уменьшение биоразнообразия океана. Захоронение опасных отходов – дампинг. Загрязнение тяжелыми металлами.

    реферат , добавлен 13.12.2010

    Основные виды загрязнения гидросферы. Загрязнение океанов и морей. Загрязнение рек и озер. Питьевая вода. Загрязнение подземных вод. Актуальность проблемы загрязнения водоемов. Спуск сточных вод в водоемы. Борьба с загрязнением вод Мирового океана.

    реферат , добавлен 11.12.2007

    Ознакомление с последствиями загрязнения гидросферы нефтью и нефтепродуктами, тяжелыми металлами и кислотными дождями. Рассмотрение законодательного регулирования вопроса охраны экологической среды Мирового океана. Описание методов очистки сточных вод.

    презентация , добавлен 09.05.2011

    Количество загрязняющих веществ в океане. Опасности нефтяного загрязнения для обитателей моря. Цикл воды в биосфере. Значение воды для жизнедеятельности человека и всего живого на планете. Основные пути загрязнения гидросферы. Охрана Мирового океана.

    презентация , добавлен 09.11.2011

    Гидросфера и ее охрана от загрязнения. Мероприятия по охране вод морей и Мирового океана. Охрана водных ресурсов от загрязнения и истощения. Особенности загрязнения Мирового океана и поверхности вод суши. Проблемы пресной воды, причины ее недостатка.

    контрольная работа , добавлен 06.09.2010

    Изучение теории о происхождения жизни на Земле. Проблема загрязнения Мирового океана нефтепродуктами. Сброс, захоронение (дампинг) в море различных материалов и веществ, отходов промышленности, строительного мусора, химических и радиоактивных веществ.

    презентация , добавлен 09.10.2014

    Гидросфера как водная среда, которая включает поверхностные и подземные воды. Характеристика источников загрязнения мирового океана: водный транспорт, захоронение на морском дне радиоактивных отходов. Анализ биологических факторов самоочищения водоема.

    презентация , добавлен 16.12.2013

    Значение Мирового океана для человека и всего живого. Важнейшая палеогеографическая роль Мирового океана. Деятельность человека, влияющая на состояние вод океанов. Нефть и пестициды как главное бедствие для Мирового океана. Охрана водных ресурсов.

1. Особенности поведения загрязняющих веществ в океане

2. Антропогенная экология океана - новое научное направление в океанологии

3. Концепция ассимиляционной емкости

4. Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря

1 Особенности поведения загрязняющих веществ в океане. Последние десятилетия знаменуются усилением антропогенных воздействий на морские экосистемы в результате загрязнения морей и океанов. Распространение многих загрязняющих веществ приобрело локальный, региональный и даже глобальный масштабы. Поэтому загрязнение морей, океанов и их биоты стало важнейшей международной проблемой, а необходимость охраны морской среды от загрязнений диктуется требованиями рационального использования природных ресурсов.

Под загрязнением моря понимается: «введение человеком прямо или косвенно веществ или энергии в морскую среду (включая эстуарии), влекущее такие вредные последствия, как ущерб живым ресурсам, опасность для здоровья людей, помехи в морской деятельности, включая рыболовство, ухудшение качества морской воды и умень­шение ее полезных свойств». Этот список включает вещества с токсическими свойствами, сбросы нагретых вод (тепловое загрязнение), патогенные микробы, твердые отходы, взвешенные вещества, биогенные вещества и некоторые другие формы антропогенных воздействий.

Наиболее актуальной в наше время стала проблема химиче­ского загрязнения океана.

К источникам загрязнения океана и морей можно отнести следующие:

Сброс промышленных и хозяйственных вод непосредственно в море или с речным стоком;

Поступление с суши различных веществ, применяемых в сельском и лесном хозяйстве;

Преднамеренное захоронение в море загрязняющих веществ; утечки различных веществ в процессе судовых операций;

Аварийные выбросы с судов или подводных трубопроводов;

Разработка полезных ископаемых на морском дне;

Перенос загрязняющих веществ через атмосферу.

Перечень получаемых океаном загрязняющих веществ чрезвычайно обширен. Все они различаются между собой по степени токсичности и масштабам распространения - от прибрежных (локальных) до глобальных.

В Мировом океане находят все новые загрязняющие вещества. Глобальное распространение приобретают наиболее опасные для организмов хлорорганические соединения, полиароматические углеводороды и некоторые другие. Они обладают высокой биоаккумулятивной способностью, резким токсическим и канцерогенным эффектом.

Неуклонное нарастание суммарного воздействия многих источников загрязнения приводит к прогрессирующей эвтрофикации прибрежных морских зон и микробиологическому загрязнению воды, что существенно затрудняет использование воды для раз­личных нужд человека.


Нефть и нефтепродукты. Нефть представляет собой вязкую маслянистую жидкость, обычно имеющую темно-коричневый цвет и обладающую слабой флуоресценцией. Нефть состоит преимущественно из насыщенных алифатических и гидроароматических углеводородов (от C 5 до С 70) и содержат 80-85 % С, 10-14 % Н, 0,01-7 % S, 0,01 % N и 0-7 % О 2 .

Основные компоненты нефти - углеводороды (до 98 %) - подразделяются на четыре класса.

1. Парафины (алканы) (до 90 % от общего состава нефти) -устойчивые насыщенные соединения C n H 2n-2 , молекулы которых выражены прямой или разветвленной (изоалканы) цепью атомов углерода. Парафины включают газы метан, этан, пропан и другие, соединения с 5-17 атомами углерода являются жидкостями, а с большим числом атомов углерода - твердыми веществами. Легкие парафины обладают максимальной летучестью и растворимостью в воде.

2. Циклопарафины. (нафтены)-насыщенные циклические соединения С n Н 2 n с 5-6 атомами углерода в кольце (30-60 % от общего состава нефти). Кроме циклопентана и циклогексана в нефти встречаются бициклические и полициклические нафтены. Эти соединения очень устойчивы и плохо поддаются биоразложению.

3. Ароматические углеводороды (20-40 % от общего состава нефти) - ненасыщенные циклические соединения ряда бензола, содержащие в кольце на 6 атомов углерода меньше, чем соответствующие нафтены. Атомы углерода в этих соединениях также могут замещаться алкильными группами. В нефти присутствуют летучие соединения с молекулой в виде одинарного кольца (бензол, толуол, ксилол), затем бициклические (нафталин), трициклические (антрацен, фенантрен) и полициклические (например, пирен с 4 кольцами) углеводороды.

4. Олефипы (алкены) (до 10 % от общего состава нефти) -ненасыщенные нециклические соединения с одним или двумя атомами водорода у каждого атома углерода в молекуле, имеющей прямую или разветвленную цепь.

В зависимости от месторождения, нефти существенно различа­ются по своему составу. Так, пенсильванская и кувейтская нефти квалифицируются как парафинистые, бакинская и калифорний­ская - преимущественно нафтеновые, остальные нефти - проме­жуточных типов.

В нефти присутствуют также серосодержащие соединения (до 7% серы), жирные кислоты (до 5% кислорода), азотные соединения (до 1 % азота) и некоторые металлоорганические производные (с ванадием, кобальтом и никелем).

Количественный анализ и идентификация нефтепродуктов в морской среде представляют значительные трудности не только из-за их многокомпонентности и различия форм существования, но и вследствие природного фона углеводородов естественного и биогенного происхождения. Например, около 90 % растворенных в поверхностных водах океана низкомолекулярных углеводородов типа этилена связано с метаболической активностью организмов и распадом их остатков. Однако в районах интенсивного загряз­нения уровень содержания подобных углеводородов повышается на 4-5 порядков.

Углеводороды биогенного и нефтяного происхождения, по данным экспериментальных исследований, имеют ряд различий.

1. Нефть представляет собой более сложную смесь углеводородов с большим диапазоном структур и относительной молекулярной массой.

2. Нефть содержит несколько гомологических серий, в которых соседние члены обычно имеют равные концентрации. Например, в ряду алканов С 12 -C 22 отношение четных и нечетных членов равно единице, тогда как биогенные углеводороды в том же ряду содержат преимущественно нечетные члены.

3. Нефть содержит более широкий диапазон циклоалканов и ароматических углеводородов. Многие соединения, такие, как моно-, ди-, три- и тетраметилбензолы не обнаружены в морских организмах.

4. Нефть содержит многочисленные нафтено-ароматические углеводороды, разнообразные гетеросоединения (имеющие в составе серу, азот, кислород, ионы металлов), тяжелые асфальтоподобные вещества - все они практически отсутствуют в организмах.

Нефть и нефтепродукты являются наиболее распространен­ными загрязняющими веществами в Мировом океане.

Пути поступления и формы существования нефтяных углеводо­родов многообразны (растворенная, эмульгированная, пленочная, твердообразная). М. П. Нестерова (1984) отмечает следующие пути поступления:

сбросы в портах и припортовых акваториях, вклюная потери при загрузке бункеров наливных судов (17 %~);

Сброс промышленных- отходов и сточных вод (10%);

Ливневые стоки (5 %);

Катастрофы судов и буровых установок в море (6 %);

Бурение на шельфах (1 %);

Атмосферные выпадения (10 %)",

Вынос речным стоком во всем многообразии форм (28%).

Сбросы в море промывочных, балластных и льяльных вод с судов (23%);

Наибольшие потери нефти связаны с ее транспортировкой из районов добычи. Аварийные ситуации, слив за борт танкерами промывочных и балластных вод,-все это обусловливает присут­ствие постоянных полей загрязнений на трассах морских путей.

Свойством нефтей является их флуоресценция при ультрафиолето­вом облучении. Максимальная интенсивность флуоресценции наб­людается в интервале волн 440-483 нм.

Различие оптических характеристик нефтяных пленок и мор­ской воды позволяет проводить дистанционное обнаружение и оценку нефтяных загрязнений на поверхности моря в ультрафиолетовой, видимой и инфракрасной частях спектра. Для этого при­меняются пассивные и активные методы. Большие массы нефти с суши поступают в моря по рекам, с бытовыми и ливневыми стоками.

Судьба разлитой в море нефти определяется суммой следую­щих процессов: испарение, эмульгирование, растворение, окисле­ние, образование нефтяных агрегатов, седиментация и биодеградация.

Попадая в морскую среду, нефть сначала растекается в виде поверхностной пленки, образуя слики различной мощности. По цвету пленки можно приблизительно оценить ее толщину. Нефтяная пленка изменяет интенсивность и спект­ральный состав проникающего в водную массу света. Пропуска­ние света тонкими пленками сырой нефти составляет 1 -10 % (280 нм), 60-70 % (400 нм). Пленка нефти толщиной 30-40 мкм полностью поглощает инфракрасное излучение.

В первое время существования нефтяных сликов большое зна­чение имеет процесс испарения углеводородов. По данным наблю­дений, за 12 ч улетучивается до 25 % легких фракций нефти, при температуре воды 15 °С все углеводороды до C 15 испаряются за 10 сут (Нестерова, Немировская, 1985).

Все углеводороды обладают слабой растворимостью в воде, уменьшающейся с увеличением числа атомов углерода в моле­куле. В 1 л дистиллированной воды растворяется около 10 мг соединений с С 6 , 1 мг - с С 8 и 0,01 мг соединений с С 12 . Например, при средней температуре морской воды растворимость бензола составляет 820 мкг/л, толуола - 470, пентана - 360, гексана - 138 и гептана - 52 мкг/л. Растворимые компоненты, содержание которых в сырой нефти не превышает 0,01 %, являются наиболее токсичными- для водных организмов. К ним же относятся и веще­ства типа бенз(а)пирена.

Смешиваясь с водой, нефть образует эмульсии двух типов: пря­мые «нефть в воде» и обратные «вода в нефти». Прямые эмуль­сии, составленные капельками нефти диаметром до 0,5 мкм, ме­нее устойчивы и особенно характерны для нефтей, содержащих поверхностно-активные вещества. После удаления летучих и растворимых фракций остаточная нефть чаще образует вязкие обратные эмульсии, которые стабилизируются высокомолекуляр­ными соединениями типа смол и асфальтенов и содержат 50- 80 % воды («шоколадный мусс»). Под влиянием абиотических процессов вязкость «мусса» повышается и начинается его слипа­ние в агрегаты - нефтяные комочки размерами от 1 мм до 10 см (чаще 1-20 мм). Агрегаты представляют собой смесь вы­сокомолекулярных углеводородов, смол и асфальтенов. Потери нефти на формирование агрегатов составляют 5-10%- Высоко­вязкие структурированные образования - «шоколадный мусс» и нефтяные комочки - могут длительное время сохраняться на поверхности моря, переноситься течениями, выбрасываться на берег и оседать на дно. Нефтяные комочки нередко заселяются перифитоном (сине-зеленые и диатомовые водоросли, усоногие рачки и другие беспозвоночные).

Пестициды составляют обширную группу искусственно создан­ных веществ, используемых для борьбы с вредителями и болез­нями растений. В зависимости от целевого назначения пестициды делятся на следующие группы: инсектициды – для борьбы с вред­ными насекомыми, фунгициды и бактерициды – для борьбы с грибными и бактериальными болезнями растений, гербициды – против сорных растений и т. д. Согласно расчетам экономистов, каждый рубль, затраченный на химическую защиту растений от вредителей и болезней, обеспечивает сохранение урожая и его качество при возделывании зерновых и овощных культур в сред­нем на 10 руб., технических и плодовых – до 30 руб. Вместе с тем экологическими исследованиями установлено, что пестициды, уничтожая вредителей урожаев, наносят огромный вред многим полезным организмам и подрывают здоровье природных биоцено­зов. В сельском хозяйстве уже давно стоит проблема перехода от химических (загрязняющих среду) к биологическим (экологи­чески чистым) методам борьбы с вредителями.

В настоящее время более 5 млн. т пестицидов ежегодно посту­пает на мировой рынок. Около 1,5 млн. т этих веществ уже вошло в состав наземных и морских экосистем эоловым или водным путем. Промышленное производство пестицидов сопровождается появлением большого количества побочных продуктов, загрязня­ющих сточные воды.

В водной среде чаще других встречаются представители инсек­тицидов, фунгицидов и гербицидов.

Синтезированные инсектициды делятся на три основные группы: хлорорганические, фосфорорганические и карбаматы.

Хлорорганические инсектициды получают путем хлорирования ароматических или гетероциклических жидких углеводородов. К ним относятся ДДТ (дихлордифенилтрихлорэтан) и его произ­водные, в молекулах которых устойчивость алифатических и аро­матических групп в совместном присутствии возрастает, всевоз­можные хлорированные производные циклодиена (элдрин, дил-дрин, гептахлор и др.), а также многочисленные изомеры гекса-хлорциклогексана (у-ГХЦГ), из которых наиболее опасен линдан. Эти вещества имеют период полураспада до нескольких десятков лет и очень устойчивы к биодеградации.

В водной среде часто встречаются полихлорбифенилы (ПХБ) – производные ДДТ без алифатической части, насчиты­вающие 210 теоретических гомологов и изомеров.

За последние 40 лет использовано более 1,2 млн. т ПХБ в производстве пластмасс, красителей, трансформаторов, конденсаторов и т. д. Полихлорбифенилы попадают в окружающую среду в результате сбросов промышленных сточных вод и сжига­ния твердых отходов на свалках. Последний источник поставляет ПХБ в атмосферу, откуда они с атмосферными осадками выпа­дают во всех районах земного шара. Так, в пробах снега, взятых в Антарктиде, содержание ПХБ составило 0,03 – 1,2 нг/л.

Фосфорорганические пестициды – это сложные эфиры различных спиртов ортофосфорной кислоты или одной из ее производ­ных, тиофосфорной. В эту группу входят современные инсекти­циды с характерной избирательностью действия по отношению к насекомым. Большинство органофосфатов подвержены довольно быстрому (в течение месяца) биохимическому распаду в почве и воде. Синтезировано более 50 тысяч активных веществ, из ко­торых особую известность получили паратион, малатион, фозалонг, дурсбан.

Карбаматы – это, как правило, сложные эфиры n-метакарба-миновой кислоты. Большинство из них также обладает избирательностью действия.

В качестве фунгицидов, применяемых для борьбы с грибными заболеваниями растений, ранее использовались соли меди и не­которые минеральные соединения серы. Затем широкое употреб­ление нашли ртутьорганические вещества типа хлорированной метилртути, которая из-за своей крайней токсичности для жи­вотных была заменена метоксиэтилами ртути и ацетатами фенил-ртути.

В группу гербицидов входят производные феноксиуксусной кислоты, обладающие сильным физиологическим действием. Триазины (например, симазин) и замещенные мочевины (монурон, диурон, пихлорам) составляют еще одну группу гербицидов, довольна хорошо растворимых в воде и устойчивых в почвах. Наиболее сильным из всех гербицидов является пихлорам. Для полного уничтожения некоторых видов растений требуется всего лишь 0,06 кг этого вещества на 1 га.

В морской среде постоянно обнаруживаются ДДТ и его метаболиты, ПХБ, ГХЦГ, делдрин, тетрахлорфенол и другие.

Синтетические поверхностно-активные вещества. Детергенты (СПАВ) относятся к обширной группе веществ, понижающих поверхностное натяжение воды. Они входят в со­став синтетических моющих средств (CMC), широко применяемых в быту и промышленности. Вместе со сточными водами СПАВ по­падают в материковые поверхностные воды и морскую среду. Синтетические моющие средства содержат полифосфаты натрия, в которых растворены детергенты, а также ряд добавочных ингре­диентов, токсичных для водных организмов: ароматизирующие вещества, отбеливающие реагенты (персульфаты, пербораты), кальцинированная сода, карбоксиметилцеллюлоза, силикаты нат­рия и другие.

Молекулы всех СПАВ состоят из гидрофильной и гидрофобной частей. Гидрофильной частью служат карбоксильная (СОО -), сульфатная (OSO 3 -) и сульфонатная (SO 3 -) группы, а также скоп­ления остатков с группами -СН 2 -СН 2 -О-СН 2 -СН 2 - или группы, содержащие азот и фосфор. Гидрофобная часть состоит обычно из прямой, включающей 10-18 атомов углерода, или раз­ветвленной парафиновой цепи, из бензольного или нафталинового кольца с алкильными радикалами.

В зависимости от природы и структуры гидрофильной части молекулы СПАВ делятся на анионоактивные (органический ион заряжен отрицательно), катионоактивные (органический ион за­ряжен положительно), амфотерные (проявляющие в кислом раст­воре катионактивные свойства, а в щелочном - анионоактивные) и неионогенные. Последние не образуют ионов в воде. Их раст­воримость обусловлена функциональными группами, имеющими -сильное сродство к воде, и образованием водородной связи между молекулами воды и атомами кислорода, входящими в полиэти-ленгликолевый радикал ПАВ.

Наиболее распространенными среди СПАВ являются анионоактивные вещества. На их долю приходится более 50 % всех производимых в мире СПАВ. Наибольшее рас­пространение получили алкиларилсульфонаты (сульфонолы) и алкилсульфаты. Молекулы сульфонолов содержат ароматическое кольцо, водородные атомы которого замещены одной или несколь­кими алкильными группами, а в качестве сольватирующей группы - остаток серной кислоты. Многочисленные алкилбензол-сульфонаты и алкилнафталинсульфонаты часто исполь­зуются при изготовлении различных бытовых и промышленных CMC.

Присутствие СПАВ в сточных водах промышленности связано с использованием их в таких процессах, как флотационное обогащение руд, разделение продуктов химической технологии, получение полимеров, улучшение условий бурения нефтяных и газовых скважин, борьба с коррозией оборудования.

В сельском хозяйстве применяются СПАВ в составе пестицидов. С помощью СПАВ эмульгируют нерастворимые в воде, но растворимые в органических растворителях жидкие и порошко­образные токсичные вещества, причем многие СПАВ сами обла­дают инсектицидными и гербицидными свойствами.

Канцерогенные вещества - это химически однородные соеди­нения, проявляющие трансформирующую активность и способ­ные вызывать канцерогенные, тератогенные (нарушение процес­сов эмбрионального развития) или мутагенные изменения в орга­низмах. В зависимости от условий воздействия они могут приво­дить к ингибированию роста, ускорению старения, токсикогенезу, нарушению индивидуального развития и изменению генофонда ор­ганизмов. К веществам, обладающим канцерогенными свойствами, отно­сятся хлорированные алифатические углеводороды с короткой щепочкой атомов углерода в молекуле, винилхлорид, пестицидные препараты и, особенно, полициклические ароматические углево­дороды (ПАУ). Последние представляют собой высокомолекуляр­ные органические соединения, в молекулах которых бензольное кольцо является основным элементом структуры. Многочисленные незамещенные ПАУ содержат в молекуле от 3 до 7 бензольных колец, разнообразно соединенных между собой. Существует также большое число полициклических структур, содержащих функциональную группу либо в бензольном кольце, либо в боко­вой цепи. Эта галоген-, амино-, сульфо-, нитропроизводные, а также спирты, альдегиды, эфиры, кетоны, кислоты, хиноны и другие соединения ароматического ряда.

Растворимость ПАУ в воде невелика и уменьшается с увеличением молекулярной массы: от 16 100 мкг/л (аценафтилен) до 0,11 мкг/л (3,4-бензпирен). Присутствие в воде солей практически не влияет на растворимость ПАУ. Однако в присутствии бензола, нефти, нефтепродуктов, детергентов и других органических ве­ществ растворимость ПАУ резко возрастает. Из группы незамещенных ПАУ в природных условиях наиболее известен и распространен 3,4-бензпирен (БП).

Источниками ПАУ в окружающей среде могут служить природные и антропогенные процессы. Концентрация БП в вулкани­ческом пепле составляет 0,3-0,9 мкг/кг. Это означает, что с пеп­лом в окружающую среду может поступать 1,2-24 т БП в год. Поэтому максимальное количество ПАУ в современных донных осадках Мирового океана (более 100 мкг/кг массы сухого веще­ства) обнаружено в тектонически активных зонах, подверженных глубинному термическому воздействию.

По имеющимся сведениям, некоторые морские растения и жи­вотные могут синтезировать ПАУ. В водорослях и морских тра­вах вблизи западного побережья Центральной Америки содержа­ние БП достигает 0,44 мкг/г, а в некоторых ракообразных в Арктике-0,23 мкг/г. Анаэробные бактерии вырабатывают до 8,0 мкг БП из 1 г липидных экстрактов планктона. С другой сто­роны, существуют специальные виды морских и почвенных бакте­рий, разлагающих углеводороды, включая ПАУ.

По оценкам Л. М. Шабада (1973) и А. П. Ильницкого (1975), фоновая концентрация БП, создаваемая в результате синтеза БП растительными организмами и вулканической дея­тельности, составляет: в почвах 5-10 мкг/кг (сухого вещества), в растениях 1-5 мкг/кг, в воде пресноводных водоемов 0,0001 мкг/л. Соответственно выводятся и градации степени за­грязненности объектов окружающей среды (табл. 1.5).

Основные антропогенные источники ПАУ в окружающей среде - это пиролиз органических веществ при сжигании различ­ных материалов, древесины и топлива. Пиролитическое образование ПАУ происходит при температуре 650-900 °С и недостатке кислорода в пламени. Образование БП наблюдалось в процессе пиролиза древесины с максимальным выходом при 300-350 °С (Дикун, 1970).

По оценке М. Зюсса (Г976 г.), глобальная эмиссия БП в 70-х годах составляла около 5000 т в год, причем 72 % приходится на промышленность и 27 % - на все виды открытого сжигания.

Тяжелые металлы (ртуть, свинец, кадмий, цинк, медь, мышьяк и другие) относятся к числу распространенных и весьма токсичных, загрязняющих веществ. Они широко применяются в различных промышленных производствах, поэтому несмотря на очистные ме­роприятия, содержание соединений тяжелых металлов в промыш­ленных сточных водах довольно высокое. Большие массы этих соединений поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, сви­нец и кадмий.

Ртуть переносится в океан с материковым стоком и через атмосферу. При выветривании осадочных и изверженных пород, ежегодно выделяется 3,5 тыс. т ртути. В составе атмосферной пыли содержится около 12 тыс. т ртути, причем значительная часть антропогенного происхождения. В результате извержения вулканов и с атмосферными осадками на поверхность океана ежегодно поступает 50 тыс. т ртути, а при дегазации литосферы - 25-150 тыс. т. Около половины годового промышленного произ­водства этого металла (9-10 тыс. т/год) различными путями по­падает в океан. Содержание ртути в каменном угле и нефти со­ставляет в среднем 1 мг/кг, поэтому при сжигании ископаемого топлива Мировой океан получает более 2 тыс. т/год. Годовая до­быча ртути превышает 0,1 % от ее общего содержания в Мировом океане, однако антропогенный приток уже превосходит естественный вынос реками, что характерно для многих металлов.

В районах, загрязняемых промышленными сточными водами, концентрация ртути в растворе и взвесях сильно повышается. При этом некоторые бентосные бактерии переводят хлориды в высокотоксичную (моно- и ди-) метилртуть CH 3 Hg. Заражение морепродуктов неоднократно приводило к ртутному отравлению, прибрежного населения. К 1977 г. в Японии насчитывалось 2800 жертв болезни Минамата. Причиной послужили отходы пред­приятий по производству хлорвинила и ацетальдегида, на которых, в качестве катализатора использовалась хлористая ртуть. Недостаточно очищенные сточные воды предприятий поступали в за­лив Минамата.

Свинец - типичный рассеянный элемент, содержащийся во всех компонентах окружающей среды: в горных породах, почвах, природных водах, атмосфере, живых организмах. Наконец, свинец, активно рассеивается в окружающую среду в процессе хозяйст­венной деятельности человека. Это выбросы с промышленными и бытовыми стоками, с дымом и пылью промышленных предприя­тий, с выхлопными газами двигателей внутреннего сгорания.

По оценкам В. В. Добровольского (1987), перераспределение масс свинца между сушей и Мировым океаном имеет следующий вид. С. речным стоком при средней концентрации свинца в воде 1 мкг/л в океан водорастворимого свинца выносится около 40 10 3 т/год, в твердой фазе речных взвесей примерно 2800-10 3 т/год, в тонком органическом детрите-10 10 3 т/год. Если учесть, что в узкой прибрежной полосе шельфа оседает более 90 % речных взвесей и значительная часть водорастворимых соединений металлов захватывается гелями оксидов железа, то в результате пелагиаль океана получает лишь около (200- 300) 10 3 т в составе тонких взвесей и (25-30) 10 3 т растворенных соединений.

Миграционный поток свинца с континентов в океан идет не только с речным стоком, но и через атмосферу. С континенталь­ной пылью океан получает (20-30)-10 3 т свинца в год. Поступле­ние его на поверхность океана с жидкими атмосферными осад­ками оценивается в (400-2500) 10 3 т/год при концентрации в дождевой воде 1-6 мкг/л. Источниками свинца, поступающего в атмосферу являются вулканические выбросы (15-30 т/год в составе пелитовых продуктов извержений и 4 10 3 т/год в суб­микронных частицах), летучие органические соединения от расти­тельности (250-300 т/год), продукты сгорания при пожарах ((6-7) 10 3 т/год) и современная промышленность. Производ­ство свинца возросло от 20-10 3 т/год в начале XIX в. до 3500 10 3 т/год к началу 80-х годов XX в. Современный выброс свинца в окружающую среду с индустриальными и бытовыми отходами оценивается в (100-400) 10 3 т/год.

Кадмий, мировое производство которого в 70-х годах достигло 15 10 3 т/год, также поступает в океан с речным стоком и через атмосферу. Объем атмосферного выноса кадмия, по разным оценкам, составляет (1,7-8,6) 10 3 т/год.

Сброс отходов в море с целью захоронения (дампинг). Многие страны, имеющие выход к морю, производят морское захоронение различных материалов и веществ, в частности грунта, вынутого при дноуглубительных работах, бурового шлама, отхо­дов промышленности, строительного мусора, твердых отходов, взрывчатых и химических веществ, радиоактивных отходов и т. п. Объем захоронений составляет около 10 % от всей массы загрязняющих веществ, поступающих в Мировой океан. Так, с 1976 по 1980 г. ежегодно с целью захоронения, чем и опреде­ляется понятие «дампинг», сбрасывалось более 150 млн. т разно­образных отходов.

Основанием для дампинга в море служит способность мор­ской среды к переработке большого количества органических и неорганических веществ без особого ущерба качеству воды. Од­нако эта способность не беспредельна. Поэтому дампинг рассмат­ривается как вынужденная мера, временная дань общества несо­вершенству технологии. Отсюда особую важность приобретают выработка и научное обоснование путей регулирования сбросов отходов в море.

В шламах промышленных производств присутствуют разнооб­разные органические вещества и соединения тяжелых металлов. Бытовой мусор в среднем содержит (на массу сухого вещества) 32-40 % органических веществ, 0,56 % азота, 0,44 % фосфора, 0,155 % цинка, 0,085 % свинца, 0,001 % кадмия, 0,001 ртути. Шламы очистных сооружений коммунальных стоков содержат (на массу сухого вещества) до. 12 % гуминовых веществ, до 3 % общего азота, до 3,8 % фосфатов, 9-13 % жиров, 7-10 % углеводов и загрязнены тяжелыми металлами. Аналогичный состав имеют и материалы дночерпания.

Во время сброса при прохождении материала через столб воды часть загрязняющих веществ переходит в раствор, изменяя качество воды, другая сорбируется частицами взвеси и переходит в донные отложения. Одновременно повышается мутность воды. Наличие органических веществ часто приводит к быстрому рас­ходованию кислорода в воде и нередко к его полному исчезнове­нию, растворению взвесей, накоплению металлов в растворенной форме, появлению сероводорода. Присутствие большого количе­ства органических веществ создает в грунтах устойчивую восста­новительную среду, в которой возникает особый тип иловых вод, содержащих сероводород, аммиак, ионы металлов в восстановлен­ной форме. При этом происходит восстановление сульфатов и нитратов, выделяются фосфаты.

Воздействию сбрасываемых материалов в разной степени под­вергаются организмы нейстона, пелагиали и бентоса. В случае образования поверхностных пленок, содержащих нефтяные угле­водороды и СПАВ, нарушается газообмен на границе воздух- вода. Это приводит к гибели личинок беспозвоночных, личинок и мальков рыб, вызывает увеличение численности нефтеокисляющих и патогенных микроорганизмов. Наличие в воде загрязня­ющей взвеси ухудшает условия питания, дыхания и обмена ве­ществ у гидробионтов, сокращает скорость роста, тормозит по­ловое созревание планктонных ракообразных. Загрязняющие ве­щества, поступающие в раствор, могут аккумулироваться в тканях и органах гидробионтов и оказывать токсическое воздействие на них. Сброс материалов дампинга на дно и длительная повышен­ная мутность придонной воды приводят к засыпке и гибели от удушья прикрепленных и малоподвижных форм бентоса. У вы­живших рыб, моллюсков и ракообразных сокращается скорость роста за счет ухудшения условий питания и дыхания. Нередко из­меняется видовой состав донного сообщества.

При организации системы контроля за сбросами отходов в море решающее значение имеет определение районов дампинга с учетом свойств материалов и характеристик морской среды. Необходимые критерии решения проблемы со­держит «Конвенция по предотвращению загрязнения моря сбро­сами отходов и других материалов» (Лондонская конвенция по дампингу, 1972 г.). Основные требования Конвенции сле­дующие.

1. Оценка количества, состояния и свойств (физических, хи­мических, биохимических, биологических) сбрасываемых мате­риалов, их токсичности, устойчивости, склонности к накоплению и биотрансформации в водной среде и морских организмах. Использование возможностей нейтрализации, обезвреживания и реутилизации отходов.

2. Выбор районов сброса с учетом требований максимального разбавления веществ, минимального распространения их за пределы сброса, благоприятного сочетания гидрологических и гидрофизических условий.

3. Обеспечение удаленности районов сброса от районов нагула рыб и нереста, от мест обитания редких и чувствительных видов гидробионтов, от зон отдыха и хозяйственного использования.

Техногенные радионуклиды. Океану свойственна естественная радиоактивность, обуслов­ленная присутствием в нем 40 К, 87 Rb, 3 H, 14 С, а также радионуклидов рядов урана и тория. Более 90 % естественной радиоак­тивности воды океана приходится на долю 40 К, что составляет 18,5-10 21 Бк. Единица активности в системе СИ - беккерель (Бк), равен активности изотопа, в котором за время 1 с происходит 1 акт распада. Ранее широко использовалась внесистемная единица радиоактивности кюри (Ки), соответствующая актив­ности изотопа, в котором за время 1 с происходит 3,7-10 10 актов распада.

Радиоактивные вещества техногенного происхождения, глав­ным образом продукты деления урана и плутония, стали в боль­ших количествах поступать в океан после 1945 г., т. е. с начала испытаний ядерного оружия и широкого развития промышлен­ного получения делящихся материалов и радиоактивных нукли­дов. Выявляются три группы источников: 1) испытания ядерного оружия, 2) сброс радиоактивных отходов, 3) аварии судов с атомными двигателями и аварии, связанные с использованием, транспортировкой и получением радионуклидов.

Многие радиоактивные изотопы с коротким периодом полураспада, хотя и обнаруживаются после взрыва в воде и морских организмах, в глобальных радиоактив­ных выпадениях почти не встречаются. Здесь в первую очередь присутствуют 90 Sr и 137 Cs с периодом полураспада около 30 лет. Наиболее опасным радионуклидом из непрореагировавших остатков ядерных зарядов является 239 Pu (T 1/2 =24,4-10 3 лет), очень ядовитый как химическое вещество. По мере распада продуктов деления 90 Sr и 137 Cs, он становится основным компонентом загрязнения. К моменту моратория атмосферных испытаний ядерного оружия (1963 г.) активность 239 Рu в окружающей среде со­ставила 2,5-10 16 Бк.

Отдельную группу радионуклидов образуют 3 Н, 24 Na, 65 Zn, 59 Fe, 14 C, 31 Si, 35 S, 45 Ca, 54 Mn, 57,60 Co и другие, возникающие при взаимодействии нейтронов с элементами конструкций и внешней среды. Основными продуктами ядерных реакций с нейтронами в морской среде являются радиоизотопы натрия, калия, фосфора, хлора, брома, кальция, марганца, серы, цинка, происходящие из растворенных в морской воде элементов. Это наведенная актив­ность.

Большая часть радионуклидов, попадающих в морскую среду, имеет постоянно присутствующие в воде аналоги, такие, как 239 Pu, 239 Np, 99 T C) трансплутониевые не характерны для состава морской воды, и живое вещество океана должно приспосабли­ваться к ним заново.

В результате переработки ядерного топлива появляется значительное количество радиоактивных отходов в жидкой, твердой и газообразной формах. Основную массу отходов составляют радиоактивные растворы. Учитывая высокую стоимость переработки и хранения концентратов в специальных хранилищах, некоторые страны предпочитают сливать отходы в океан с речным стоком или сбрасывать их в бетонных блоках на дно глубоководных впадин океанов. Для радиоактивных изотопов Ar, Xe, Em и Т еще не разработаны надежные методы концентрирования, поэтому они могут попадать "в океаны с дождевыми и сточными водами.

При эксплуатации атомных энергетических установок на над­водных и подводных судах, которых насчитывается уже несколько сотен, ежегодно в океан вносят около 3,7-10 16 Бк с ионообменными смолами, около 18,5-10 13 Бк с жидкими отходами и 12,6-10 13 Бк вследствие утечек. Аварийные ситуации также вно­сят значительный вклад в радиоактивность океана. К настоящему времени сумма радиоактивности, привнесенной в океан человеком, не превышает 5,5-10 19 Бк, что еще невелико по сравнению с естественным уровнем (18,5-10 21 Бк). Однако концентрированноcть и неравномерность выпадений радионукли­дов создает серьезную опасность радиоактивного заражения воды и гидробионтов в отдельных районах океана.

2 Антропогенная экология океана новое научное направление в океанологии. В результате антропогенного воздействия в океане возникают дополнительные экологические факторы, способствующие негативной эволюции морских экосистем. Обнаружение этих факторов стимулировало развертывание широких фундаментальных исследований в Мировом океане и зарождение новых научных направлений. К их числу относится антропогенная экология океана. Это новое направление призвано изучать механизмы реагирования организмов на антропогенные воз­действия на уровне клетки, организма, популяции, биоценоза, экосистемы, а также исследовать особенности взаимодействий между живыми организмами и средой обитания в изменившихся условиях.

Объект изучения антропогенной экологии океана - изменение экологических характеристик океана, причем в первую очередь тех изменений, которые имеют значение для экологической оценки состояния биосферы в целом. В основе этих изысканий лежит комплексный анализ состояния морских экосистем с учетом географической зональности и степени антропогенного воздействия.

Антропогенная экология океана применяет для своих целей сле­дующие методы анализа: генетический (оценка канцерогенной и мутагенной опасности), цитологический (изучение клеточного строения морских организмов в нормальном и патологическом состоянии), микробиологический (изучение адаптации микроорга­низмов к токсичным загрязняющим веществам), экологический (познание закономерностей образования и развития популяций и биоценозов в конкретных условиях обитания с целью прогноза их состояния в меняющихся условиях среды), эколого-токсикологический (исследование отклика морских организмов на воздействие загрязнений и определение критических концентраций за­грязняющих веществ), химический (изучение всего комплекса природных и антропогенных химических веществ в морской среде).

Основная задача антропогенной экологии океана состоит в раз­работке научных основ определения критических уровней загряз­няющих веществ в морских экосистемах, оценки ассимиляционной емкости морских экосистем, нормирования антропогенных воздействий на Мировой океан, а также в создании математических моделей экологических процессов для прогноза экологических ситуаций в океане.

Знания о важнейших экологических явлениях в океане (таких, как продукционно-деструкционные процессы, прохождение биогеохимических циклов загрязняющих веществ и т. д.) ограничены недостатком информации. Этим затрудняется прогнозирование экологической ситуации в океане и осуществление природоохран­ных мероприятий. В настоящее время особую значимость приобретает осуществление экологического мониторинга океана, стратегия которого ориентирована на долговременные наблюдения в определенных районах океана с целью создания банка данных, освещающих глобальные перестройки океанических экосистем.

3 Концепция ассимиляционной емкости. По определению Ю. А. Израэля и А. В. Цыбань (1983, 1985), ассимиляционная емкость морской экосистемы А i по данному загрязняющему веществу i (или суммы загрязняющих веществ) и для m-й экосистемы - это максимальная динамическая вмести­мость такого количества загрязняющих веществ (в пересчете на всю зону или единицу объема морской экосистемы), которое может быть за единицу времени накоплено, разрушено, трансформировано (биологическими или химическими превращениями) и вы­ведено за счет процессов седиментации, диффузии или любого другого переноса за пределы объема экосистемы без нарушения ее нормального функционирования.

Суммарное удаление (А i) загрязняющего вещества из морской экосистемы можно записать в виде

где K i - коэффициент запаса, отражающий экологические условия протекания процесса загрязнения в различных зонах морской экосистемы; τ i - время пребывания загрязняющего вещества в морской экосистеме.

Это условие соблюдается при , где С 0 i - критическая концентрация за­грязняющего вещества в морской воде. Отсюда ассимиляционная емкость может быть оценена по формуле (1) при ;.

Все величины, входящие в правую часть уравнения (1) можно непосредственно измерить по данным, полученным в процессе долгопериодных комплексных исследований состояния морской экосистемы. При этом последовательность определения ассимиляционной емкости морской экосистемы к конкретным загрязняющим веществам включает три основных этапа: 1) расчет балансов массы и времени жизни загрязняющих веществ в экосистеме, 2) анализ биотического баланса в экосистеме и 3) оценка критических концентраций воздействия загрязняющих веществ (или экологических ПДК) на функционирование биоты.

Для решения вопросов экологического нормирования антропо­генных воздействий на морские экосистемы расчет ассимиляци­онной емкости наиболее репрезентативен, поскольку он учитывает ассимиляционной емкости предельно допустимая экологическая нагрузка (ПДЭН) водоема ЗВ рассчитывается достаточно просто. Так, при стационарном режиме загрязнения водоема ПДЭН будет равна ассимиляционной емкости.

4 Выводы из оценки ассимиляционной емкости морской экосистемы загрязняющими веществами на примере Балтийского моря. На примере Балтийского моря были рассчитаны значения ассимиляционной емкости для ряда токсичных металлов (Zn, Сu, Pb, Cd, Hg) и органических веществ (ПХБ и БП) (Израэль, Цыбань, Вентцель, Шигаев, 1988).

Средние концентрации токсичных металлов в морской воде оказались на один-два порядка меньше их пороговых доз, а концентрации ПХБ и БП только на порядок меньше. Отсюда коэффициенты запаса для ПХБ и БП оказались меньше, чем для металлов. На первом этапе работы авторы расчета, используя материалы долгопериодных экологических исследований в Балтийском море и литературные источники, определили концентрации загрязняющих веществ в компонентах экосистемы, скорости биоседиментации, потоки веществ на границах экосистемы и активность микробного разрушения органических веществ. Все это позволило составить балансы и рассчитать время «жизни» рассматриваемых веществ в экосистеме. Время «жизни» металлов в экосистеме Балтики оказалось достаточно малым для свинца, кадмия и ртути, несколько большим для цинка и максимальным для меди. Время «жизни» ПХБ и бенз(а)пирена составляет 35 и 20 лет, что определяет необходимость введения системы генетического мониторинга Балтийского моря.

На втором этапе исследований было показано, что наиболее чувствительным к загрязняющим веществам и изменениям экологической обстановки элементом биоты являются планктонные микроводоросли, а следовательно, в качестве процесса - «мишени» следует выбрать процесс первичного продуцирования органического вещества. Поэтому здесь применяются пороговые дозы загрязняющих веществ, установленные для фитопланктона.

Оценки ассимиляционной емкости зон открытой части Балтий­ского моря показывают, что существующий сток цинка, кадмия и ртути соответственно в 2, 20 и 15 раз меньше минимальных значений ассимиляционной емкости экосистемы к этим металлам и не представляет прямой опасности первичному продуцированию. В то же время поступление меди и свинца уже превышает их ассимиляционную емкость, что требует введения специальных мер по ограничению стока. Современное поступление БП еще не достигло минимального значения ассимиляционной емкости, а ПХБ превышает ее. Последнее говорит о настоятельной необходимости дальнейшего снижения сбросов ПХБ в Балтийское море.

Ежегодно в Мировой океан попадает более 10 млн. т нефти и до 20% его площади уже покрыты нефтяной пленкой. В первую очередь это связано с тем, что добыча нефти и газа в Мировом океане стала важнейшим компонентом нефтегазового комплекса. В 1993 году в океане добыто 850 млн. т нефти (почти 30% мировой добычи). В мире пробурено около 2500 скважин, из них 800 в США, 540 – в Юго-Восточной Азии, 400 – в Северном море, 150 – в Персидском заливе. Эти скважины пробурены на глубинах до 900 м.

Загрязнение гидросферы водным транспортом происходит по двум каналам. Во-первых, морские и речные суда загрязняют ее отходами, получаемыми в результате эксплуатационной деятельности, и, во-вторых, выбросами в случае аварий токсичных грузов, большей частью нефти и нефтепродуктов. Энергетические установки судов (в основном дизельные двигатели) постоянно загрязняют атмосферу, откуда токсичные вещества частично или почти полностью попадают в воды рек, морей и океанов.

Нефть и нефтепродукты являются главными загрязнителями водного бассейна. На танкерах, перевозящих нефть и ее производные, перед каждой очередной загрузкой, как правило, промываются емкости (танки) для удаления остатков ранее перевезенного груза. Промывочная вода, а с ней и остатки груза обычно сбрасываются за борт. Кроме того, после доставки нефтегрузов в порты назначения танкеры чаще всего направляются к пункту новой погрузки порожними. В этом случае для обеспечения надлежащей осадки и безопасности плавания танки судна наполняются балластной водой. Эта вода загрязняется нефтяными остатками, а перед погрузкой нефти и нефтепродуктов выливается в море. Из общего грузооборота мирового морского флота в настоящее время 49% падает на нефть и ее производные. Ежегодно около 6000 танкеров международных флотилий транспортируют 3 млрд. т нефти. По мере роста перевозок нефтегрузов все большее количество нефти стало попадать в океан при авариях.

Огромный ущерб океану нанесло крушение американского супертанкера «Торри Каньон» у юго-западного побережья Англии в марте 1967 года: 120 тысяч т нефти вылилось на воду и было подожжено зажигательными бомбами с самолетов. Нефть горела несколько дней. Были загрязнены пляжи и побережья Англии и Франции.

За десятилетие после катастрофы танкера «Торри Канон» в морях и океанах погибло более 750 крупных танкеров. Большинство этих крушений сопровождалось массовыми выбросами нефти и нефтепродуктов в море. В 1978 году у французских берегов снова произошла катастрофа, еще более значительная по последствиям, чем в 1967 году. Здесь в шторм разбился американский супертанкер «Амоно Кодис». Из судна вылилось более 220 тыс т нефти, покрыв площадь 3,5 тыс. кв. км. Был нанесен огромный ущерб рыболовству, рыбоводству, устричным «плантациям», всем морским обитателям этого района. На протяжении 180 км побережье покрылось черным траурным «крепом».

В 1989 году авария танкера «Валдиз» вблизи побережья Аляски стала крупнейшей экологической катастрофой подобного рода в истории США. Огромный, с полкилометра длиной, танкер сел на мель примерно в 25 милях от берега. Тогда в море вылилось около 40 тыс. т нефти. Огромное нефтяное пятно растеклось в радиусе 50 миль от места аварии, покрыв плотной пленкой пространство 80 кв. км. Были отравлены самые чистые и богатые фауной прибрежные районы Северной Америки.

Для предотвращения подобных катастроф разрабатываются двухкорпусные танкеры. При аварии, если будет поврежден один корпус, второй предотвратит попадание нефти в море.

Происходит загрязнение океана и другими видами отходов промышленности. Во все моря мира сброшено примерно 20 млрд. т мусора (1988 год). Подсчитано, что на 1 кв. км океана приходится в среднем 17 т отбросов. Зафиксировано, что за один день в Северное море было сброшено 98 тыс. т отбросов (1987 год).

Известный путешественник Тур Хейердал рассказывал, что когда он и его друзья плыли на плоту «Кон-Тики» в 1954 году, они не уставали любоваться чистотой океана, а во время плавания на папирусном судне «Ра-2» в 1969 году он и его спутники, «проснувшись утром, увидели океан настолько загрязненным, что некуда было окунуть зубную щетку. Из голубого Атлантический океан стал серо-зеленым и мутным, и повсюду плавали комки мазута величиной от булавочной головки до ломтя хлеба. В этой каше болтались пластиковые бутылки, будто мы попали в грязную гавань. Ничего подобного я не видел, когда сто одни сутки сидел в океане на бревнах «Кон-Тики». Мы воочию убедились, что люди отравляют важнейший источник жизни, могучий фильтр земного шара – Мировой океан».

До 2 млн. морских птиц и 100 тыс. морских животных, в том числе до 30 тыс. тюленей, ежегодно погибают, проглотив какие-либо пластмассовые изделия или запутавшись в обрывках сетей и тросов.

ФРГ, Бельгия, Голландия, Англия сбрасывали в Северное море ядовитые кислоты, в основном 18-20%-ную серную кислоту, тяжелые металлы с грунтом и осадками сточных вод, содержащими мышьяк и ртуть, а также углеводороды, в том числе ядовитый диоксин (1987 год). К тяжелым металлам относится ряд элементов, широко применяемых в промышленности: цинк, свинец, хром, медь, никель, кобальт, молибден и др. При попадании в организм большинство металлов очень трудно выводятся, имеют свойство постоянно накапливаться в тканях разных органов, и при превышении определенной пороговой концентрации наступает резкое отравление организма.

Три реки, впадающие в Северное море, Рейн, Маас и Эльба, ежегодно приносили 28 млн. т цинка, почти 11000 т свинца, 5600 т меди, а также 950 т мышьяка, кадмий, ртуть и 150 тыс. т нефти, 100 тыс. т фосфатов и даже радиоактивные отходы в разных количествах (данные на 1996 год). С судов ежегодно сбрасывалось 145 млн. т обычного мусора. Англия сбрасывала 5 млн. т канализационных стоков в год.

В результате добычи нефти из трубопроводов, связывающих нефтяные платформы с материком, каждый год в море вытекало около 30000 т нефтепродуктов. Последствия этого загрязнения нетрудно видеть. Целый ряд видов, которые некогда обитали в Северном море, в том числе лосось, осетр, устрицы, скаты и пикша, просто-напросто исчезли. Гибнут тюлени, другие обитатели этого моря нередко страдают от инфекционных заболеваний кожи, имеют деформированный скелет и злокачественные опухоли. Гибнет птица, питающаяся рыбой или отравившаяся морской водой. Наблюдалось цветение ядовитых водорослей, которое привело к уменьшению рыбных запасов (1988 год).

В Балтийском море в течение 1989 года погибли 17 тыс. тюленей. Проведенные исследования показали, что ткани погибших животных буквально пропитаны ртутью, которая попадала в их организм из воды. Биологи считают, что загрязнение воды привело к резкому ослаблению иммунной системы обитателей моря и их гибели от вирусных заболеваний.

Крупные разливы нефтепродуктов (тысячи тонн) происходят в Восточной Балтике один раз в 3-5 лет, мелкие (десятки тонн) – ежемесячно. Крупный разлив поражает экосистемы на акватории в несколько тысяч гектаров, мелкий – в несколько десятков гектаров. Балтийскому морю, проливу Скагеррак, Ирландскому морю угрожают выбросы иприта – химического отравляющего вещества, созданного Германией в годы Второй мировой войны и затопленного Германией, Великобританией и СССР в 40-е годы. Свои химические боеприпасы СССР топил в северных морях и на Дальнем Востоке, Великобритания – в Ирландском море.

В 1983 году вошла в силу международная Конвенция по предотвращению загрязнения морской среды. В 1984 году государства Балтийского бассейна подписали в Хельсинки Конвенцию по защите морской среды Балтийского моря. Это было первое международное соглашение на региональном уровне. В результате проведенной работы содержание нефтепродуктов в открытых водах Балтийского моря снизилось в 20 раз по сравнению с 1975 г.

В 1992 году министрами 12 государств и представителем Европейского Сообщества была подписана новая Конвенция по охране среды бассейна Балтийского моря.

Происходит загрязнение Адриатического и Средиземного морей. Только через реку По в Адриатическое море с предприятий промышленности и сельскохозяйственных ферм ежегодно попадает 30 тыс. т фосфора, 80 тыс. т азота, 60 тыс. т углеводорода, тысячи тонн свинца и хрома, 3 тыс. т цинка, 250 т мышьяка (1988 год).

Средиземному морю грозит участь превратиться в мусорную свалку, сточную яму трех континентов. Ежегодно в море попадает 60 тыс. т моющих веществ, 24 тыс. т хрома, тысячи тонн нитратов, применяемых в сельском хозяйстве. К тому же 85% вод, сбрасываемых из 120 крупных приморских городов, не очищаются (1989 год), а самоочищение (полное обновление вод) Средиземного моря осуществляется через Гибралтарский пролив за 80 лет.

Из-за загрязнений Аральское море с 1984 года полностью потеряло рыбохозяйственное значение. Его уникальная экосистема погибла.

Владельцы химического комбината «Тиссо» в городке Минамата на острове Кюсю (Япония) долгие годы сбрасывали в океан сточные воды, насыщенные ртутью. Прибрежные воды и рыба оказались отравленными, и с 50-х годов 1200 человек умерли, а 100000 получили отравление различной тяжести, в том числе психопаралитические заболевания.

Серьезную экологическую угрозу для жизни в Мировом океане и, следовательно, для человека представляет захоронение на морском дне радиоактивных отходов (РАО) и сброс в море жидких радиоактивных отходов (ЖРО). Западные страны (США, Великобритания, Франция, Германия, Италия и др.) СССР с 1946 года начали активно использовать океанские глубины для того, чтобы избавляться от РАО.

В 1959 году ВМС США затопили в 120 милях от Атлантического побережья США неудачный ядерный реактор от атомной подводной лодки. По данным «Гринпис», наша страна сбросила в море около 17 тыс. бетонных контейнеров с РАО, а также более 30 корабельных атомных реакторов.

Наиболее тяжелая обстановка сложилась в Баренцевом и Карском морях вокруг ядерного полигона на Новой Земле. Там помимо бесчисленного количества контейнеров затоплено 17 реакторов, в том числе с ядерным топливом, несколько аварийных атомных подводных лодок, а также центральный отсек атомохода «Ленин» с тремя аварийными реакторами. Тихоокеанский флот СССР захоранивал ядерные отходы (в том числе 18 реакторов) в Японском и Охотском морях, в 10 местах недалеко от берегов Сахалина и Владивостока.

США и Япония сбрасывали отходы деятельности АЭС в Японское, Охотское море и Северный ледовитый океан.

Жидкие радиоактивные отходы СССР сливал в дальневосточных морях с 1966 года по 1991 год (в основном вблизи юго-восточной части Камчатки и в Японском море). Северный флот ежегодно сбрасывал в воду 10 тыс. куб. м ЖРО.

В 1972 году была подписана Лондонская конвенция, запрещающая сброс на дно морей и океанов радиоактивных и ядовитых химических отходов. К той конвенции присоединилась и наша страна. Военные корабли, в соответствии с международным правом, в разрешении на сброс не нуждаются. В 1993 году запрещен сброс ЖРО в море.

В 1982 году 3-я Конференция ООН по морскому праву приняла конвенцию по мирному использованию Мирового океана в интересах всех стран и народов, которая содержит около тысячи международно-правовых норм, регламентирующих все основные вопросы использования ресурсов океана.

Ежегодно в Мировой океан попадает более 10 млн т нефти и до 20 % Мирового океана уже покрыты нефтяной пленкой. В пер­вую очередь это связано с тем, что добыча нефти и газа в Миро­вом океане стала важнейшим компонентом нефтегазового комп­лекса. В 1993 г. в океане добыто 850 млн т нефти (почти 30 % миро­вой добычи). В мире пробурено около 2500 скважин.

Загрязнение гидросферы водным транспортом происходит по двум каналам: во-первых, морские и речные суда загрязняют ее отходами, получаемыми в результате эксплуатационной деятель­ности, и, во-вторых, выбросами в случае аварий, токсичных грузов, большей частью нефти и нефтепродуктов. Энергетические уста­новки судов (в основном дизельные двигатели) постоянно за­грязняют атмосферу, откуда токсичные вещества частично или почти полностью попадают в воды рек, морей и океанов.

1. Нефть и нефтепродукты являются главными загрязнителями водного бассейна. На танкерах, перевозящих нефть и ее производ­ные, перед каждой очередной загрузкой, как правило, промыва­ются емкости (танки) для удаления остатков ранее перевезенного груза. Промывочная вода, а с ней и остатки груза обычно сбрасы­ваются за борт. К числу наибо­лее распространенных и вредных загрязняющих веществ относят­ся нефть, ежегодное поступление которой в моря и океаны, по данным ООН, достигает 6...7 млн т.

Огромный ущерб Океану нанесло крушение американского су­пертанкера «Торри Каньон» у юго-западного побережья Англии в марте 1967 г.: 120 тыс. т нефти вылилось в воду и было подожжено зажигательными бомбами с самолетов. Нефть горела несколько дней. Были загрязнены пляжи и побережье Англии и Франции.

За десятилетие после катастрофы танкера «Торри Каньон» в морях и океанах погибло более 750 крупных танкеров. Большин­ство этих крушений сопровождалось массовыми выбросами неф­ти и нефтепродуктов в море.

Поля нефтяных загрязнений, формирующие локальные зоны, остаются устойчивыми во времени, поэтому в их распространении огромную роль играют океанические циркуляции. Именно они пе­реносят нефтяные загрязнения в наиболее чистые районы Миро­вого океана, в том числе и в Северный Ледовитый океан.

Поступившие в воду нефтепродукты деградируют в результате химического, фотохимического и бактериального разложения, а также деятельности некоторых морских организмов и высших растений. Однако «процесс» естественной нейтрализации нефте­продуктов достаточно длителен и может составлять от одного до нескольких месяцев.

Таким образом, нефтяные пленки являются тем техногенным фактором, который влияет на формирование и протекание гидро­логических и гидрохимических процессов в поверхностных слоях воды морей и океанов.


Нефтяные загрязнения воздействуют и на живые организмы, экранируя солнечное излучение и замедляя обновление кислоро­да в воде. В результате перестает размножаться планктон - ос­новной продукт питания морских обитателей. Толстые нефтяные пленки нередко становятся причиной гибели морских птиц.

Нефть отрицательно влияет на физиологические процессы, протекающие в живых организмах, вызывают патологические из­менения в тканях и органах, нарушает работу ферментативного аппарата, нервной системы. Нефть - своего рода наркотик для морских обитателей. Замечено, что некоторые рыбы, «хлебнув» однажды нефти, уже не стремятся покинуть отравленную зону. Кроме того, она отрицательно влияет на вкусовые качества мяса морских обитателей.

2. Происходит загрязнение Мирового океана и другими видами отходов промышленности . Во все моря мира сброшено примерно 20 млрд т мусора (1988 г.). Подсчитано, что на 1 км 2 океана прихо­дится в среднем 17 т отбросов. Зафиксировано, что в один день в Северное море было сброшено 98000 т отбросов (1987 г.).

До 2 млн морских птиц и 100 тыс. морских животных, в том числе до 30 тыс. тюленей, ежегодно погибают, проглотив какие-либо пласт­массовые изделия или запутавшись в обрывках сетей и тросов.

ФРГ, Бельгия, Голландия, Англия сбрасывают в Северное море ядовитые кислоты, в основном 18 - 20% серной кислоты, тяже­лые металлы в грунте и осадках сточных вод, содержащих мышьяк и ртуть, а также углеводороды, в том числе ядовитый диоксин (1987 г.).

С судов ежегодно сбрасывалось 145 млн т обычного мусора. Англия сбрасывала 5 млн т канализа­ционных стоков в год.

В результате добычи нефти из трубопроводов, связывающих не­фтяные платформы с материком, каждый год в море вытекало около 30 тыс. т нефтепродуктов. Последствия этого загрязнения нетрудно видеть. Целый ряд видов, которые некогда обитали в Северном море, в том числе лосось, осетр, устрицы, скаты и пикша, просто-напросто исчезли. Гибнут тюлени, другие обита­тели этого моря нередко страдают от инфекционных заболеваний кожи, имеют деформированный скелет и злокачественные опухо­ли. Гибнет птица, питающаяся рыбой или отравившаяся морской водой. Наблюдалось цветение ядовитых водорослей, которое при­вело к уменьшению рыбных запасов (1988 г.).

В Балтийском море в течение 1989 г. погибли 17 тыс. тюленей. Проведенные исследования показали, что ткани погибших жи­вотных буквально пропитаны ртутью, которая попадала в их орга­низм из воды.

В 1992 г. министрами 12 государств и представителем Европей­ского сообщества была подписана новая Конвенция по охране среды бассейна Балтийского моря.

Средиземному морю грозит участь превратиться в мусорную свалку, сточную яму трех континентов. Ежегодно в море попадает 60 тыс. т моющих веществ, 24 тыс. т хрома, тысячи тонн нитратов, применяемых в сельском хозяйстве. 85 % вод, сбрасываемых из 120 крупных приморских городов, не очищаются, а самоочищение (пол­ное обновление вод) Средиземного моря осуществляется через Гибралтарский пролив (1989 г.) за 80 лет.

Из-за загрязнений Аральское море с 1984 г. полностью потеряло рыбохозяйственное значение. Его уникальная экосистема погибла.

3. Тяжелые металлы . Большие массы этих соедине­ний поступают в океан через атмосферу. Для морских биоценозов наиболее опасны ртуть, свинец и кадмий, так как они сохраняют токсичность бесконечно долго. Например, ртутьсодержащие со­единения (особенно метилртуть) - сильнейшие яды, действую щие на нервную систему, представляют угрозу для жизни всего живого. В 50-60-е годы XX в. в районе бухты Миномата (Япония) было зарегистрировано массовое отравление, жертвами которого стали десятки тысяч человек, употреблявших в пищу зараженную рыбу. Причиной заражения было предприятие, сбрасывающее ртуть в воду залива.

Владельцы химического комбината «Тиссо» в городке Мина-мата на острове Кюсю (Япония) долгие годы сбрасывали в океан сточные воды, насыщенные ртутью. Прибрежные воды и рыба ока­зались отравленными, и с 50-х годов XX в. 1200 человек умерли, а 100 тыс. получили отравления различной тяжести, в том числе психопаралитические заболевания.

В Мировой океан в год поступает до 2 млн т свинца, до 20 тыс. т кадмия и до 10 тыс. т ртути. Попав в морскую воду, тяжелые ме­таллы концентрируются главным образом в поверхностной плен­ке, в придонном осадке и в биоте, тогда как в самой воде они ос­таются лишь в сравнительно небольших концентрациях. Здесь особо значима поверхностная пленка, которая обычно простира­ется на глубину 50...500 мкм. Именно в данной области проте­кают все равновесные процессы массообмена между водой и ат­мосферой.

Большие количества тяжелых металлов сосредоточиваются в донных осадках. Это подтверждается тем, что концентрация ме­таллов в осадке может быть на несколько порядков выше, чем в воде.

4. РАО . Серьезную экологическую угрозу для жизни в Мировом океа­не и, следовательно, для человека представляет захоронение на морском дне радиоактивных отходов (РАО) и сброс в море жид­ких радиоактивных отходов (ЖРО). Западные страны (США, Ве­ликобритания, Франция, Германия, Италия и др.) и СССР с 1946 г. начали активно использовать океанские глубины для того, чтобы избавиться от РАО.

В 1959 г. ВМС США затопили в 120 милях от Атлантического побережья США неудачный ядерный реактор от атомной подвод­ной лодки. По данным Гринпис, СССР сбросил в море около 17 тыс. бетонных контейнеров с РАО, а также более 30 корабель­ных атомных реакторов.

Наиболее тяжелая обстановка сложилась в Баренцевом и Кар­ском морях вокруг ядерного полигона на Новой Земле. Там поми­мо бесчисленного количества контейнеров затоплено 17 реакто­ров, в том числе с ядерным топливом, несколько аварийных атом­ных подводных лодок, а также центральный отсек атомохода «Ле­нин» с тремя аварийными реакторами. Тихоокеанский флот СССР захоранивал ядерные отходы в 10 местах в Японском и Охотском морях - недалеко от берегов Сахалина и от Владивостока, в том числе 18 реакторов.

США и Япония сбрасывали отходы деятельности АЭС в Япон­ское, Охотское моря и Северный Ледовитый океан.

Жидкие радиоактивные отходы СССР сливал в дальневосточ­ных морях с 1966 по 1991 г. (в основном вблизи юго-восточной части Камчатки и в Японское море). Северный флот ежегодно сбра­сывал в воду 10 тыс. м 3 таких отходов.

В 1972 г. была подписана Лондонская конвенция, запрещаю­щая сброс на дно морей и океанов радиоактивных и ядовитых химических отходов. К этой конвенции присоединилась и Россия.

 
Статьи по теме:
Тематическое занятие на тему:
Урок мужества «Давайте, люди, никогда об этом не забудем...» Оформление доски : плакаты с цитатами о Сталинграде; Сталинградской битве; рисунки детей, посвященные годовщине разгрома немецко-фашистских войск под Сталинградом. Подсчитайте, живые, Сколько ср
Конспект НОД по познавательно-исследовательской деятельности «Губка- губочка Эксперименты с губками
Евгения Куваева Конспект занятия по познавательно-исследовательской деятельности в младшей группе «Грибы» Конспект занятия по познавательно-исследовательской деятельности в младшей группе на тему «Грибы » . Цель : дать представление о грибах и ягодах ,
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение