Фенолы. Получение фенола. Строение, свойства и применение фенола Что можно получить из фенола

1. Фенолы - производные ароматических углеводородов, в молекулах которых гидроксильная группа (- ОН) непосредственно связана с атомами углерода в бензольном кольце.

2. Классификация фенолов

Различают одно-, двух-, трехатомные фенолы в зависимости от количества ОН-групп в молекуле:

В соответствии с количеством конденсированных ароматических циклов в молекуле различают сами фенолы (одно ароматическое ядро – производные бензола), нафтолы (2 конденсированных ядра – производные нафталина), антранолы (3 конденсированных ядра – производные антрацена) и фенантролы:

3. Изомерия и номенклатура фенолов

Возможны 2 типа изомерии:

  • изомерия положения заместителей в бензольном кольце
  • изомерия боковой цепи (строения алкильного радикала и числа радикалов)

Для фенолов широко используют тривиальные названия, сложившиеся исторически. В названиях замещенных моноядерных фенолов используются также приставки орто- , мета- и пара -, употребляемые в номенклатуре ароматических соединений. Для более сложных соединений нумеруют атомы, входящие в состав ароматических циклов и с помощью цифровых индексов указывают положение заместителей

4. Строение молекулы

Фенильная группа C 6 H 5 – и гидроксил –ОН взаимно влияют друг на друга


  • неподеленная электронная пара атома кислорода притягивается 6-ти электронным облаком бензольного кольца, из – за чего связь О–Н еще сильнее поляризуется. Фенол - более сильная кислота, чем вода и спирты.
  • В бензольном кольце нарушается симметричность электронного облака, электронная плотность повышается в положении 2, 4, 6. Это делает более реакционноспособными связи С-Н в положениях 2, 4, 6. и – связи бензольного кольца.

5. Физические свойства

Большинство одноатомных фенолов при нормальных условиях представляют собой бесцветные кристаллические вещества с невысокой температурой плавления и характерным запахом. Фенолы малорастворимы в воде, хорошо растворяются в органических растворителях, токсичны, при хранении на воздухе постепенно темнеют в результате окисления.

Фенол C 6 H 5 OH (карболовая кислота ) - бесцветное кристаллическое вещество на воздухе окисляется и становится розовым, при обычной температуре ограниченно растворим в воде, выше 66 °C смешивается с водой в любых соотношениях. Фенол - токсичное вещество, вызывает ожоги кожи, является антисептиком

6. Токсические свойства

Фенол ядовит. Вызывает нарушение функций нервной системы. Пыль, пары и раствор фенола раздражают слизистые оболочки глаз, дыхательных путей, кожу. Попадая в организм, Фенол очень быстро всасывается даже через неповрежденные участки кожи и уже через несколько минут начинает воздействовать на ткани головного мозга. Сначала возникает кратковременное возбуждение, а потом и паралич дыхательного центра. Даже при воздействии минимальных доз фенола наблюдается чихание, кашель, головная боль, головокружение, бледность, тошнота, упадок сил. Тяжелые случаи отравления характеризуются бессознательным состоянием, синюхой, затруднением дыхания, нечувствительностью роговицы, скорым, едва ощутимым пульсом, холодным потом, нередко судорогами. Зачастую фенол является причиной онкозаболеваний.

7. Применение фенолов

1. Производство синтетических смол, пластмасс, полиамидов

2. Лекарственных препаратов

3. Красителей

4. Поверхностно-активных веществ

5. Антиоксидантов

6. Антисептиков

7. Взрывчатых веществ

8. Получение фенола в промышленности

1). Кумольный способ получения фенола (СССР, Сергеев П.Г., Удрис Р.Ю., Кружалов Б.Д., 1949 г.). Преимущества метода: безотходная технология (выход полезных продуктов > 99%) и экономичность. В настоящее время кумольный способ используется как основной в мировом производстве фенола.

2). Из каменноугольной смолы (как побочный продукт – выход мал):

C 6 H 5 ONa+ H 2 SO 4 (разб) → С 6 H 5 – OH + NaHSO 4

фенолят натрия

(продукт обра ботки смолы едким натром)

3). Из галогенбензолов :

С 6 H 5 -Cl + NaOH t , p → С 6 H 5 – OH + NaCl

4). Сплавлением солей ароматических сульфокислот с твёрдыми щелочами :

C 6 H 5 -SO 3 Na+ NaOH t → Na 2 SO 3 + С 6 H 5 – OH

натриевая соль

бензолсульфокислоты

9. Химические свойства фенола (карболовой кислоты)

I . Свойства гидроксильной группы

Кислотные свойства – выражены ярче, чем у предельных спиртов (окраску индикаторов не меняют):

  • С активными металлами -

2C 6 H 5 -OH + 2Na → 2C 6 H 5 -ONa + H 2

фенолят натрия

  • Со щелочами -

C 6 H 5 -OH + NaOH (водн. р-р) ↔ C 6 H 5 -ONa + H 2 O

! Феноляты – соли слабой карболовой кислоты, разлагаются угольной кислотой –

C 6 H 5 -ONa + H 2 O + С O 2 → C 6 H 5 -OH + NaHCO 3

По кислотным свойствам фенол превосходит этанол в 10 6 раз. При этом во столько же раз уступает уксусной кислоте. В отличие от карбоновых кислот, фенол не может вытеснить угольную кислоту из её солей

C 6 H 5 - OH + NaHCO 3 = реакция не идёт – прекрасно растворяясь в водных растворах щелочей, он фактически не растворяется в водном растворе гидрокарбоната натрия.

Кислотные свойства фенола усиливаются под влиянием связанных с бензольным кольцом электроноакцепторных групп ( NO 2 - , Br - )

2,4,6-тринитрофенол или пикриновая кислота сильнее угольной

II . Свойства бензольного кольца

1). Взаимное влияние атомов в молекуле фенола проявляется не только в особенностях поведения гидроксигруппы (см. выше), но и в большей реакционной способности бензольного ядра. Гидроксильная группа повышает электронную плотность в бензольном кольце, особенно, в орто- и пара- положениях (+М -эффект ОН-группы):

Поэтому фенол значительно активнее бензола вступает в реакции электрофильного замещения в ароматическом кольце.

  • Нитрование . Под действием 20% азотной кислоты HNO 3 фенол легко превращается в смесь орто- и пара- нитрофенолов:

При использовании концентрированной HNO 3 образуется 2,4,6-тринитрофенол (пикриновая кислота ):

  • Галогенирование . Фенол легко при комнатной температуре взаимодействует с бромной водой с образованием белого осадка 2,4,6-трибромфенола (качественная реакция на фенол):
  • Конденсация с альдегидами . Например:

2). Гидрирование фенола

C 6 H 5 -OH + 3H 2 Ni , 170º C → C 6 H 11 – OH циклогексиловый спирт (циклогексанол)

Основная цель этого процесса состоит в производстве металлургического кокса. Побочно образуются жидкие продукты коксования и газ. Перегонкой жидких продуктов коксования наряду с бензолом, толуолом и нафталином получают фенол, тиофен, пиридин и их гомологи, а также более сложные аналоги с конденсированными ядрами. Доля каменноугольного фенола,по сравнению с получаемым кумольным методом, незначительна.

2. Замещение галогена в ароматических соединениях

Замещение галогена на гидроксильную группу протекает в жестких условиях и известно как «Дау»-процесс (1928 г.)

Раньше этим способом получали фенол (из хлорбензола), но теперь его значение снизилось в связи с разработкой более экономичных способов, не связанных с затратами хлора и щелочи и образованием большого количества сточных вод.

В активированных галогенаренах (содержащих наряду с галогеном нитрогруппу в о- и п- положениях) замещение галогена протекает в более мягких условиях:

Это можно объяснить электроноакцепторным влиянием нитрогруппы, которая оттягивает на себя электронную плотность бензольного кольца и таким образом участвует в стабилизации σ-комплекса:

3. Способ Рашига

Это видоизмененный хлорный метод: бензол подвергается окислительному хлорированию действием хлористого водорода и воздуха, и затем, не выделяя образовавшийся хлорбензол, гидролизуют его водяным паром в присутствии солей меди. В результате хлор вообще не расходуется, а суммарный процесс сводится к окислению бензола в фенол:

4.Сульфонатный способ

Фенолы можно получить с хорошим выходом при сплавлении ароматических сульфокислот Ar-SO 3 H со смесью гидроксидов натрия и калия (реакция щелочного плавления ) при 300С с последующей нейтрализацией образующегося алкоголята путем добавления кислоты:

Метод эксплуатируется в промышленности до сих пор (для получения фенола) и используется в лабораторной практике.

5. Кумольный метод

Первое крупное производство фенола кумольным методом было осуществлено в 1949 г. в Советском Союзе. В настоящее время это основной метод получения фенола и ацетона.

Метод включает две стадии: окисление изопропилбензола (кумола) кислородом воздуха до гидропероксида и его кислотное разложение:

Преимуществом данного метода является отсутствие побочных продуктов и высокая потребность конечных продуктов – фенола и ацетона. Метод был разработан в нашей стране Р.Ю. Удрисом, Б.Д. Круталовым и др. в 1949 г.

6. Из солей диазония

Метод заключается в нагревании солей диазония в разбавленной серной кислоте, что приводит к гидролизу – замене диазогруппы на гидроксигруппу. Синтез весьма удобен для получения гидроксиаренов в лабораторных условиях:

  1. Строение фенолов

Строение и распределение электронной плотности в молекуле фенола можно изобразить следующей схемой:

Дипольный момент фенола составляет 1.55 Д и направлен в сторону бензольного кольца. Гидроксильная группа по отношению к бензольному кольцу проявляет –I эффект и +М эффект. Так как мезомерный эффект гидроксигруппы преобладает над индукционным, сопряжение неподеленных электронных пар атома кислорода с -орбиталями бензольного кольца оказывает электронодонорное влияние на ароматическую систему, что повышает ее реакционную способность в реакциях электрофильного замещения.

Образованные на основе бензола. При нормальных условиях представляют собой твердые ядовитые вещества, обладающие специфическим ароматом. В современной промышленности эти химические соединения играют далеко не последнюю роль. По объемам использования фенол и его производные входят в двадцатку наиболее востребованных химических соединений в мире. Они широко применяются в химической и легкой промышленности, фармацевтике и энергетике. Поэтому получение фенола в промышленных масштабах - одна из основных задач химической промышленности.

Обозначения фенола

Первоначальное название фенола - карболовая кислота. Позднее данное соединение поучило название «фенол». Формула этого вещества представлена на рисунке:

Нумерация атомов фенола ведется от того атома углерода, который соединен с гидроксогруппой ОН. Последовательность продолжается в таком порядке, чтобы другие замещенные атомы получили наименьшие номера. Производные фенола существуют в виде трех элементов, характеристики которых объясняются различием их структурных изомеров. Различные орто-, мета-, паракрезолы являются лишь видоизменением основной структуры соединения бензольного кольца и гидроксильной группы, базовая комбинация которой и представляет собой фенол. Формула этого вещества в химической записи выглядит как C 6 H 5 OH.

Физические свойства фенола

Визуально фенол представляет собой твердые бесцветные кристаллы. На открытом воздухе они окисляются, придавая веществу характерный розовый оттенок. При нормальных условиях фенол довольно плохо растворяется в воде, но с повышением температуры до 70 о этот показатель резко возрастает. В щелочных растворах это вещество растворимо в любых количествах и при любых температурах.

Эти свойства сохраняются и в других соединениях, основным компонентом которых являются фенолы.

Химические свойства

Уникальные свойства фенола объясняются его внутренней структурой. В молекуле этого химического вещества р-орбиталь кислорода образует единую п-систему с бензольным кольцом. Такое плотное взаимодействие повышает электронную плотность ароматического кольца и понижает этот показатель у атома кислорода. При этом полярность связей гидроксогруппы значительно увеличивается, и водород, входящий в ее состав, легко замещается любым щелочным металлом. Так образуются различные феноляты. Эти соединения не разлагаются водой, как алкоголяты, но их растворы очень похожи на соли сильных оснований и слабых кислот, поэтому они имеют достаточно выраженную щелочную реакцию. Феноляты взаимодействуют с различными кислотами, в результате реакции восстанавливаются фенолы. Химические свойства этого соединения позволяют ему взаимодействовать с кислотами, образуя при этом сложные эфиры. Например, взаимодействие фенола и уксусной кислоты приводит к образованию финилового эфира (фениацетата).

Широко известна реакция нитрирования, в которой под воздействием 20% азотной кислоты фенол образует смесь пара- и ортонитрофенолов. Если воздействовать на фенол концентрированной азотной кислотой, то получается 2,4,6-тринитрофенол, который иногда называют пикриновой кислотой.

Фенол в природе

Как самостоятельное вещество фенол в природе содержится в каменноугольной смоле и в отдельных сортах нефти. Но для промышленных нужд это количество не играет никакой роли. Поэтому получение фенола искусственным способом стало приоритетной задачей для многих поколений ученых. К счастью, эту проблему удалось разрешить и получить в итоге искусственный фенол.

Свойства, получение

Применение различных галогенов позволяет получать феноляты, из которых при дальнейшей обработке образуется бензол. Например, нагревание гидроксида натрия и хлорбензола позволяет получить натрия фенолят, который при воздействии кислоты распадается на соль, воду и фенол. Формула такой реакции приведена здесь:

С 6 Н 5 -CI + 2NaOH -> С 6 Н 5 -ONa + NaCl + Н 2 O

Ароматические сульфокислоты также являются источником для получения бензола. Химическая реакция проводится при одновременном плавлении щелочи и сульфокислоты. Как видно из реакции, сначала образуются феноксиды. При обработке сильными кислотами они восстанавливаются до многоатомных фенолов.

Фенол в промышленности

В теории, получение фенола самым простым и многообещающим способом выглядит таким образом: при помощи катализатора бензол окисляют кислородом. Но до сих пор катализатор для этой реакции так и не был подобран. Поэтому в настоящее время в промышленности используются другие методы.

Непрерывный промышленный способ получения фенола состоит во взаимодействии хлорбензола и 7% раствора едкого натра. Полученную смесь пропускают через полуторакилометровую систему труб, нагретых до температуры в 300 С. Под воздействием температуры и поддерживаемого высокого давления исходные вещества вступают в реакцию, в результате которой получат 2,4-динитрофенол и другие продукты.

Не так давно был разработан промышленный способ получения фенолсодержащих веществ кумольным методом. Этот процесс состоит из двух этапов. Сначала из бензола получают изопропилбензол (кумол). Для этого бензол алкируют с помощью пропилена. Реакция выглядит следующим образом:

После этого кумол окисляют кислородом. На выходе второй реакции получают фенол и другой важный продукт — ацетон.

Получение фенола в промышленных масштабах возможно из толуола. Для этого толуол окисляется на кислороде, содержащемся в воздухе. Реакция протекает в присутствии катализатора.

Примеры фенолов

Ближайшие гомологи фенолов называются крезолами.

Существуют три разновидности крезолов. Мета-крезол при нормальных условиях представляет собой жидкость, пара-крезол и орто-крезол - твердые вещества. Все крезолы плохо растворяются в воде, а по своим химическим свойствами они почти аналогичны фенолу. В естественном виде крезолы содержатся в каменноугольной смоле, в промышленности их применяют при производстве красителей, некоторых видов пластмасс.

Примерами двухатомных фенолов могут служить пара-, орто- и мета-гидробензолы. Все они представляют собой твердые вещества, легко растворимые в воде.

Единственный представитель трехатомного фенола - пирогаллол (1,2,3-тригидроксибензол). Его формула представлена ниже.

Пирогаллол является довольно сильным восстановителем. Он легко окисляется, поэтому его используют для получения очищенных от кислорода газов. Это вещество хорошо известно фотографам, его используют как проявитель.

Гидроксибензол

Химические свойства

Что такое Фенол? Гидроксибензол, что это такое? Согласно Википедии – это один из простейших представителей своего класса ароматических соединений. Фенолы – это органические ароматические соединения, в молекулах которых к гидроксильной группе присоединены атомы углерода из ароматического кольца. Общая формула Фенолов: С6Н6n(ОН)n . Согласно стандартной номенклатуре, органические вещества этого ряда различают по числу ароматических ядер и ОН- групп. Различают одноатомные аренолы и гомологи, двухатомные арендиолы, терхатомные арентриолы и многоатомные формулы. Также Фенолам свойственно иметь ряд пространственных изомеров. Например, 1,2-дигидроксибензол (пирокатехин ), 1,4-дигидроксибензол (гидрохинон ) являются изомерами.

Спирты и Фенолы отличаются друг от друга наличием ароматического кольца. Этанол является гомологом метанола. В отличие от Фенола, метанол взаимодействует с альдегидами и вступает в реакции этерификации. Утверждение, что гомологами являются метанол и Фенол неверно.

Его подробно рассмотреть структурную формулу Фенола, то можно отметить, что молекула представляет собой диполь. При этом бензольное кольцо – отрицательный конец, а группа ОН – положительный. Наличие гидроксильной группы обуславливает повышение электронной плотности в кольце. Неподеленная пара электронов кислорода вступает в сопряжение с пи-системой кольца, а для атома кислорода характерна sp2 гибридизация. Атомы и атомные группы в молекуле обладают сильным взаимным влиянием друг на друга, и это отражается на физических и химических свойствах веществ.

Физические свойства. Химическое соединение имеет вид бесцветных игольчатых кристаллов, которые розовеют на воздухе, так как подвержены окислению. У вещества специфический химический запах, оно умеренно растворимо в воде, спиртах, щелочи, ацетоне и бензоле. Молярная масса = 94,1 грамм на моль. Плотность = 1,07 г на литр. Кристаллы плавятся при 40-41 градусах Цельсия.

С чем взаимодействует Фенол? Химические свойства Фенола. В связи с тем, что молекула соединения содержится, как ароматическое кольцо, так и гидроксильную группу, то оно проявляет некоторые свойства спиртов и ароматических углеводородов.

С чем реагирует группа ОН ? Вещество не проявляет сильных кислотных свойств. Но является более активным окислителем, чем спирты, в отличие от этанола взаимодействует с щелочами образуя соли-феноляты. Реакция с гидроксидом натрия : С6Н5ОН + NaOH → C6H5ONa + H2O . Вещество вступает в реакцию с натрием (металлическим): 2C6H5OH + 2Na → 2C6H5ONa + H2 .

Фенол не реагирует с карбоновыми кислотами. Эфиры получают при взаимодействии солей фенолятов с галогенангидридами или ангидридами кислот. Для химического соединения не характерны реакции образования простых эфиров. Эфиры образуют феноляты при действии на них галогеналканов или галогенпроизводных аренов. Гидроксибензол реагирует с цинковой пылью, при этом происходит замещение гидроксильной группы на Н , уравнение реакции выглядит следующим образом: C6H5OH + Zn → C6H6 + ZnO .

Химическое взаимодействие по ароматическому кольцу. Для вещества характерны реакции электрофильного замещения, алкилирования, галогенирования, ацилирования, нитрования и сульфирования. Особое значение имеет реакций синтеза салициловой кислоты: C6H5OH + CO2 → C6H4OH(COONa) , протекает в присутствии катализатора гидроксида натрия . Затем при воздействии образуется .

Реакция взаимодействия с бромной водой является качественной реакцией на Фенол. C6H5OH + 3Br2 → C6H2Br2OH + 3HBr . При бромировании образуется твердое белое вещество — 2,4,6-трибромфенол . Еще одна качественная реакция – с хлоридом железа 3 . Уравнение реакции выглядит следующим образом: 6C6H5OH + FeCl3 → (Fe(C6H5OH)6)Cl3 .

Реакция нитрования Фенола: C6H5OH + 3HNO3 → C6H2(NO2)3OH + 3 H2O . Для вещества также характерна реакция присоединения (гидрирования) в присутствии металлических катализаторов, платины, оксида алюминия, хрома и так далее. В результате образуются циклогексанол и циклогексанон .

Химическое соединение подвергается окислению. Устойчивость вещества значительно ниже, чем у бензола. В зависимости от условий реакции и природы окислителя образуются разные продукты реакции. Под действием перекиси водорода в присутствии железа образуется двухатомный Фенол; при действии диоксида марганца , хромовой смеси в подкисленной среде – пара-хинон.

Фенол реагирует с кислородом, реакция горения: С6Н5ОН +7О2 → 6СО2 + 3Н2О . Также особое значение для промышленности имеет реакция поликонденсации с формальдегидом (например, метаналем ). Вещество вступает в реакцию поликонденсации до тех пор, пока не израсходуется полностью один из реагентов и не образуются огромные макромолекулы. В результате образуются твердые полимеры, фенолформальдегидные или формальдегидные смолы . Фенол не взаимодействует с метаном.

Получение. На данный момент существуют и активно применяются несколько методов синтеза гидроксибензола. Кумольный способ получения Фенола является наиболее распространенным из них. Таким способом синтезируют порядка 95% всего объема производства вещества. При этом некаталитическому окислению воздухом подвергается кумол и образуется гидропероксид кумола . Полученное соединение разлагается под действием серной кислоты на ацетон и Фенол. Дополнительным побочным продуктом реакции является альфа-метилстирол .

Также соединение можно получить при окислении толуола , промежуточным продуктом реакции будет являться бензойная кислота . Таким образом, синтезируют около 5% вещества. Все остальное сырье для различных нужд выделяют из каменноугольной смолы.

Как получить из бензола? Фенол можно получить с помощью реакции прямого окисления бензола NO2 () с дальнейшим кислотным разложением гидропероксида втор-бутилбензола . Как из хлорбензола получить Фенол? Существует два варианта получения из хлорбензола данного химического соединения. Первый – реакция взаимодействия со щелочью, например, с гидроксидом натрия . В результате образуется Фенол и поваренная соль. Второй – реакция с водяным паром. Уравнение реакции выглядит следующим образом: C6H5-Cl + H2O → C6H5-OH + HCl .

Получение бензола из Фенола. Для этого сначала требуется обработать бензол хлором (в присутствии катализатора), а затем прибавить к полученному соединению щелочь (например, NaOH ). В итоге образуется Фенол и .

Превращение метан — ацетилен — бензол — хлорбензол можно осуществить следующим образом. Сначала проводится реакция разложения метана при высокой температуре 1500 градусов Цельсия до ацетилена (С2Н2 ) и водорода. Затем ацетилен при особых условиях и высокой температуре переводят в бензол . К бензолу прибавляют хлор в присутствии катализатора FeCl3 , получают хлорбензол и соляную кислоту: C6H6 + Cl2 → C6H5Cl + HCl .

Одним из структурных производных Фенола является аминокислота , которая имеет важное биологическое значение. Данную аминокислоту можно рассмотреть в виде пара-замещенного Фенола или альфа-замещенного пара-крезола . Крезолы – достаточно распространены в природе на ряду с полифенолами. Также свободную форму вещества можно обнаружить в некоторых микроорганизмах в равновесном состоянии с тирозином .

Гидроксибензол применяется:

  • при производстве бисфенола А , эпоксидной смолы и поликарбоната ;
  • для синтеза фенолформальдегидных смол, капрона, нейлона;
  • в нефтеперерабатывающей промышленности, при селективной очистке масел от ароматических соединений серы и смол;
  • при производстве антиоксидантов, поверхностно-активных веществ, крезолов , лек. препаратов, пестицидов и антисептических препаратов;
  • в медицине в качестве антисептического и обезболивающего средства для местного использования;
  • в качестве консерванта при изготовлении вакцин и копченых продуктов питания, в косметологии при проведении глубокого пилинга;
  • для дезинфекции животных в скотоводстве.

Класс опасности. Фенол – крайне токсичное, ядовитое, едкое вещество. При вдыхании летучего соединения нарушается работа центральной нервной системы, пары раздражают слизистую глаз, кожу, дыхательные пути и вызывают сильные химические ожоги. При попадании на кожу вещество быстро всасывается в кровоток и достигает тканей мозга, вызывая паралич дыхательного центра. Смертельная доза при приеме внутрь для взрослого составляет от 1 до 10 грамм.

Фармакологическое действие

Антисептическое, прижигающее.

Фармакодинамика и фармакокинетика

Средство проявляет бактерицидную активность по отношению в аэробным бактериям, их вегетативным формам и грибам. Практически не оказывает влияния на споры грибов. Вещество вступает во взаимодействие с белковыми молекулами микробов и приводит к их денатурации. Таким образом, нарушается коллоидное состояние клетки, значительно повышается ее проницаемость, нарушаются окислительно-восстановительные реакции.

В водном растворе является отличным дезинфицирующим средством. При использовании 1,25% раствора практически микроорганизмы погибают в течение 5-10 минут. Фенол, в определенной концентрации оказывает прижигающее и раздражающее действие на слизистую оболочку. Бактерицидный эффект от применения средства усиливается с ростом температуры и кислотности.

При попадании на поверхность кожи, даже если она не повреждена, лекарство быстро всасывается, проникает в системный кровоток. При системной абсорбции вещества наблюдается его токсическое действие, преимущественно на центральную нервную систему и дыхательный центр в головном мозге. Порядка 20% от принятой дозы подвергается окислению, вещество и продукты его метаболизма выводятся с помощью почек.

Показания к применению

Применение Фенола:

  • для дезинфекции инструментов и белья и дезинсекции;
  • в качестве консерванта в некоторых лек. средствах, вакцинах, свечах и сыворотках;
  • при поверхностных , фликтене , остиофолликулите , сикозе , стрептококковом импетиго ;
  • для лечения воспалительных заболеваний среднего уха, ротовой полости и глотки, пародонтита , генитальных остроконечных кондилом .

Противопоказания

Вещество не используют:

  • при распространенных поражениях слизистой оболочки или кожи;
  • для лечения детей;
  • во время кормления грудью и ;
  • при на Фенол.

Побочные действия

Иногда лекарственное средство может спровоцировать развитие аллергических реакций, зуд, раздражение в месте нанесения и чувство жжения.

Инструкция по применению (Способ и дозировка)

Консервацию лекарственных препаратов, сывороток и вакцин проводят с помощью 0,5% растворов Фенола.

Для наружного применения лекарство используют в виде мази. Препарат наносят тонким слоем на пораженные участки кожи несколько раз в сутки.

При лечении вещество используют в форме 5% раствора в . Препарат подогревают и закапывают по 10 капель в пораженное ухо на 10 минут. Затем необходимо удалить остатки лекарства с помощью ваты. Процедуру повторяют 2 раза в день в течение 4 суток.

Препараты Фенола для лечения ЛОР-заболеваний используют в соответствии с рекомендациями в инструкции. Продолжительность терапии – не более 5 дней.

Для ликвидации остроконечных кондилом их обрабатывают 60% раствором Фенола или 40% раствором трикрезола . Процедуру проводят один раз в 7 дней.

При дезинфекции белья применяют 1-2% растворы на основе мыла. С помощью мыльно-фенольного раствора обрабатывают помещение. При дезинсекции используются фенольно-скипидарные и керосиновые смеси.

Передозировка

При попадании вещества на кожу возникают жжение, покраснение кожи, анестезия пораженного участка. Поверхность обрабатывают растительным маслом или шока .

Взаимодействие

Лекарственное взаимодействие не происходит.

Особые указания

Фенол обладает способностью адсорбироваться пищевыми продуктами.

Средством нельзя обрабатывать обширные участки кожи.

Перед использованием вещества для дезинфекции предметов быта, их необходимо механически очистить, так как средство абсорбируется органическими соединениями. После обработки вещи могут еще длительное время сохранять специфический запах.

Химическое соединение нельзя использовать для обработки помещений для хранения и готовки пищевой продукции. Оно не влияет на окраску и структуру ткани. Повреждает поверхности, покрытые лаком.

Детям

Средство нельзя использовать в педиатрической практике.

При беременности и лактации

Фенол не назначают во время кормления грудью и при беременности .

Препараты, в которых содержится (Аналоги)

Совпадения по коду АТХ 4-го уровня:

Фенол входит в состав следующих препаратов: , Фенола раствор в глицерине , Фармасептик . В качестве консерванта содержится в препаратах: Экстракт Белладонны , Набор для кожной диагностики медикаментозной аллергии , и так далее.

Реферат на тему:

«Фенолы»

Преподаватель: Петришек

Ирина Александровна

Выполнил:

студент 2 курса 9 группы

фармацевтического факультета

Владлен Ардисламов

Общая характеристика фенолов

Фенолами называются производные аренов, в которых один или несколько атомов водорода замещены на гидроксильные группы

ОН-группы фенолов называют фенольными гидроксильными группами.

Многие фенолы и их производные представлен в растительном мире (пигменты, дубильные вещества, лигниновые компоненты древесины). Фенолы используются в медицине (является мощным противогрибковым и противобактериальным антисептиком; при попадании в организм человека в достаточном количестве вызывает отравление с поражением большинства органов и систем), в фармацевтической промышленности, в производстве полимеров, красителей, душистых веществ, средств защиты растений. Фенолы и их производные используются в нефтяной промышленности (в качестве антиполяримезаторов). Гидрохинон применяется в качестве косметического средства для устранения дефектов кожи, в качестве ингибитора реакции свободнорадикальной полимеризации метилметакрилата входит в состав стоматологических композиционных материалов химического отверждения. Пирокатехин применяют в фотографии как проявитель, в производстве красителей, лекарственных веществ (например, адреналина).

По числу гидроксильных групп в ароматическом кольце различают одно и многоатомные фенолы. Для большинства фенолов и некоторых их гомологов используются тривиальные названия, принятые номенклатурой ИЮПАК.

Представители:

О-Крезол м-Крезол п-Крезол

а-нафтол b-нафтол

Пирокатехин Резорцин Гидрохинон

Пирогаллол

Физические свойства фенолов

Фенол и его низшие гомологи представляют собой бесцветные низкоплавкие кристаллические вещества или жидкости с довольно сильным характерным запахом. Запах фенола в воздухе при низких концентрациях (4мг/м3). Двух- и трехатомные фенолы- твердые вещества, без запаха, с достаточно высокими температурами плавления. Фенолы менее летучи чем спирты с близкой молекулярной массой, так как образуют более прочные межмолекулярные водородные связи.

Фенол умеренно растворим в воде (8.2% при 15С*). Другие одноатомные фенолы в воде малорастворимы, но легко растворяются в эфире, бензоле, спирте и хлороформе. Увеличение числа гидроксильных групп обуславливает повышение растворимости многоатомных фенолов в воде. В полярных многоатомных растворителяхмногоатомные фенолы так же ххорошо растворимы.

Фенолы и особенно нафтолы относятся к высокотоксичным веществам. Их выброс в водоемы причиняет непоправимый вред природе.

Получение фенолов

Кумольный метод (Сергеева)

Большую часть фенола в настоящее время производят из изопропилбензола – кумола. Окислением кумола воздухом получают гидроперекись кумола, разлагающуюся под действием водных растворов минеральных кислот на фенол и ацетон. Кумол синтезируют из бензола и пропилена.

Гидроперекись кумола

Механизм:

(М 3)

Аналогично ведет себя гидроперекись втор-бутила.

Гидролиз арилгалогенидов

Хлор в хлорбензоле малоподвижен и поэтому гидролиз ведут 8%-ным раствором NaOH в автоклаве при 250оС в присутствии солей меди:

Феноксид натрия

По методу Рашига хлорбензол получают окислением бензола в присутствии хлороводорода:

Гидролиз хлорбензола осуществляют перегретым паром в присутствии медного катализатора. Образующийся при этом хлороводород возвращают на первую стадию процесса:

Гидролиз в присутствии щелочи проходит при более низкой температуре, но при этом теряется ценная соляная кислота, сохраняющаяся в методе Рашига.

Сплавление арилсульфонатов со щелочью

При сплавлении со щелочью арилсульфонаты претерпевают реакцию замещения:

Бензолсульфокислота Бензолсульфонат натрия

Превращение фенолята натрия в фенол осуществляется с помощью диоксида серы, который образуется на второй стадии:

Фенол получают в виде водного раствора, из которого его выделяют дистилляцией. Этот метод синтеза фенола является самым старым (1890 г.). Метод используется для получения и других фенолов, например:

Разложение солей диазония

Прямое окисление бензола

С6Н6+О2 (боксит, 300-750С*) С6Н5ОН

Сложность данного превращения заключалась в том, что бензол окисляется легче, чем фенол. Известно как каталиитическое окисление кислородом воздуха (на схеме реакции), так и с применением различных комбинаций окислителей (пероксиды) и катализаторов (соли меди, железа, титана и т.д.).

Выделение из природного сырья

Фенолы выделяют из каменноугольной смолы при перегонке и химической обработке, получая смесь фенолов; из отходов переработки нефти.

 
Статьи по теме:
Презентация по теме безопасность опасные предметы
Причины возникновения пожара Неосторожное обращение с огнем: разведение костров и небрежное обращение с ними, разогревание горючих веществ на газовых или электрических плитах и т. п. Нарушение правил эксплуатации бытовых электроприборов: телевизор перегре
Основные идеи философии эпикура
15. Эпикур и эпикурейцыВыдающимися представителями эпикуреизма являются Эпикур (341–270 до н. э.) и Лукреций Кар (ок. 99–55 до н. э.). Это философское направление относится к рубежу старой и новой эры. Эпикурейцев интересовали вопросы устроения, комфорта
Распространение тюркских языков Сильная ветвь алтайского дерева
Расселены на огромной территории нашей планеты, начиная от бассейна холодной Колымы до юго-западного побережья Средиземного моря. Тюрки не принадлежат к какому-то определенному расовому типу, даже среди одного народа встречаются как европеоиды, так и монг
Куда ехать за исполнением желаний в Курской области
Отец Вениамин служит в одном из храмов Коренной пустыни. Несколько раз в неделю священник проводит молебны, на которые съезжается множество людей. Летом службы часто проходят на улице, так как все желающие не умещаются в крохотной церквушке. Прихожане уве