Физиологическая адаптация к холоду. Методическая разработка. Тема: «Физиологически основы адаптации организма спортсмена к новым климатическим условиям

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство спорта и туризма Республики Беларусь

Учреждение образования

"Белорусский государственный университет физической культуры"

Институт туризма

Кафедра технологий в туристической индустрии

Кон трольная работа

по дисциплине "Физиология"

на тем у " Адаптация к действию низкой температуры "

Выполнила: студентка 2 курса 421 группы

заочной формы получения образования

факультета туризма и гостеприимства

Цинявская Анастасия Викторовна

Проверил: Бобр Владимир Матвеевич

  • Введение
  • 1. Адаптация к воздействию низкой температуры
  • 1.1 Физиологические реакции на выполнение упражнений в условиях низкой температуры окружающей среды
  • 1.2 Метаболические реакции
  • Заключение
  • Список использованной литературы

Введение

На организм человека влияет такой климатический фактор, как температура. Температура - один из важных абиотических факторов, влияющих на физиологические функции всех живых организмов. Температура зависит от географической широты, высоты над уровнем моря, и времени года.

Когда температурные факторы изменяются, то человеческий организм производит относительно каждого фактора специфические реакции приспособления. То есть адаптируется.

Адаптация - это процесс приспособления, который формируется в течение жизни человека. Благодаря адаптационным процессам человек приспосабливается к непривычным условиям или нового уровня активности, т.е. повышается устойчивость его организма против действия различных факторов. Организм человека может адаптироваться к высокой и низкой температуре, к низкому атмосферному давлению или даже некоторым патогенным факторам.

Люди, живущие в северных или южных широтах, в горах или на равнине, во влажных тропиках или в пустыне по многим показателям гомеостаза отличаются друг от друга. Поэтому ряд показателей нормы для отдельных регионов земного шара может отличаться.

1. Адаптация к воздействию низкой температуры

Приспособление к холоду - наиболее трудно - достижимый и быстро утрачиваемый без специальных тренировок вид климатической адаптации человека. Объясняется это тем, что, согласно современным научным представлениям, наши предки жили в условиях теплого климата и были гораздо больше приспособлены к защите от перегревания. Наступившее похолодание было относительно быстрым и человек, как вид, "не успел" приспособиться к этому изменению климата большей части планеты. Кроме того, к условиям низких температур люди стали приспосабливаться, в основном, за счет социальных и техногенных факторов - жилища, очага, одежды. Однако, в экстремальных условиях человеческой деятельности (в том числе в альпинистской практике) физиологические механизмы терморегуляции - "химическая" и "физическая" ее стороны становятся жизненно важными.

Первой реакцией организма на воздействие холода является снижение кожных и респираторных (дыхательных) потерь тепла за счет сужения сосудов кожи и легочных альвеол, а также за счет уменьшения легочной вентиляции (снижение глубины и частоты дыхания). За счет изменения просвета сосудов кожи кровоток в ней может варьировать в очень широких пределах - от 20 мл до 3 литров в минуту во всей массе кожи.

Сужение сосудов приводит к снижению температуры кожи, но когда эта температура достигает 6єС и возникает угроза холодовой травмы, развивается обратный механизм - реактивная гиперемия кожи. При сильном охлаждении может возникнуть стойкое сужение сосудов в виде их спазма. В этом случае появляется сигнал неблагополучия - боль.

Снижение температуры кожи кистей рук до 27 єС связано с ощущением "холодно", при температуре, меньшей 20єС - "очень холодно", при температуре меньше 15 єС - "невыносимо холодно".

При воздействии холода вазоконструкторные (сосудосуживающие) реакции возникают не только на охлажденных участках кожи, но и в отдаленных областях организма, в том числе во внутренних органах ("отраженная реакция"). Особенно выражены отраженные реакции при охлаждении стоп - реакции слизистой носа, органов дыхания, внутренних половых органов. Сужение сосудов при этом вызывает снижение температуры соответствующих областей тела и внутренних органов с активизацией микробной флоры. Именно этот механизм лежит в основе так называемых "простудных" заболеваний с развитием воспаления в органах дыхания (пневмонии, бронхиты), мочевыделения (пиелиты, нефриты), половой сферы (аднекситы, простатиты) и т.д.

Механизмы физической терморегуляции первыми включаются в защиту постоянства внутренней среды при нарушении равновесия теплопродукции и теплоотдачи. Если этих реакций недостаточно для поддержания гомеостаза, подключаются "химические" механизмы - повышается мышечный тонус, появляется мышечная дрожь, что приводит к усилению потребления кислорода и увеличению теплопродукции. Одновременно возрастает работа сердца, повышается кровяное давление, скорость кровотока в мышцах. Подсчитано, что для поддержания теплобаланса обнаженного человека при неподвижном холодном воздухе необходимо увеличение теплопродукции в 2 раза на каждые 10є снижения температуры воздуха, а при значительном ветре теплопродукция должна удваиваться на каждые 5є понижения температуры воздуха. У тепло одетого человека удвоение величины обмена будет компенсировать понижение внешней температуры на 25є.

При многократных контактах с холодом, локальных и общих, у человека вырабатываются защитные механизмы, направленные на предотвращение неблагоприятных последствий холодовых воздействий. В процессе акклиматизации к холоду повышается устойчивость к возникновению отморожений (частота отморожений у акклиматизированных к холоду лиц в 6-7 раз ниже, чем у неакклиматизированных). При этом, в первую очередь, происходит совершенствование сосудодвигательных механизмов ("физическая" терморегуляция). У лиц, длительно подвергающихся действию холода, определяется повышенная активность процессов "химической" терморегуляции - основной обмен; у них повышен на 10 - 15%. У коренных жителей Севера (например, эскимосов) это превышение достигает 15 - 30% и закреплено генетически.

Как правило, в связи с совершенствованием механизмов терморегуляции в процессе акклиматизации к холоду уменьшается доля участия скелетной мускулатуры в поддержании теплобаланса - становится менее выраженной интенсивность и продолжительность циклов мышечной дрожи. Расчеты показали, что за счет физиологических механизмов приспособления к холоду обнаженный человек способен переносить длительное время температуру воздуха не ниже 2°С. По-видимому, эта температура воздуха является пределом компенсаторных возможностей организма поддерживать теплобаланс на стабильном уровне.

Условия, при которых организм человека адаптируется к холоду, могут быть различными (например, работа в неотапливаемых помещениях, холодильных установках, на улице зимой). При этом действие холода не постоянное, а чередующееся с нормальным для организма человека температурным режимом. Адаптация в таких условиях выражена нечетко. В первые дни, реагируя на низкую температуру, теплообразование возрастает неэкономно, теплоотдача еще недостаточно ограничена. После адаптации процессы теплообразования становятся более интенсивными, а теплоотдача снижается.

Иначе происходит адаптация к условиям жизни в северных широтах, где на человека влияют не только низкие температуры, но и свойственные этим широтам режим освещения и уровень солнечной радиации.

Что же происходит в организме человека при охлаждении?

Вследствие раздражения холодовых рецепторов изменяются рефлекторные реакции, регулирующие сохранение тепла: сужаются кровеносные сосуды кожи, что на треть уменьшает теплоотдачу организма. Важно, чтобы процессы теплообразования и теплоотдачи были сбалансированными. Преобладание теплоотдачи над теплообразованием приводит к понижению температуры тела и нарушению функций организма. При температуре тела 35 єС наблюдается нарушение психики. Дальнейшее понижение температуры замедляет кровообращение, обмен веществ, а при температуре ниже 25 єС останавливается дыхание.

Одним из факторов интенсификации энергетических процессов является липидный обмен. Например, полярные исследователи, у которых в условиях низкой температуры воздуха замедляется обмен веществ, учитывают необходимость компенсировать энергетические затраты. Их рационы отличаются высокой энергетической ценностью (калорийностью).

У жителей северных районов более интенсивный обмен веществ. Основную массу их рациона составляют белки и жиры. Поэтому в их крови содержание жирных кислот повышено, а уровень сахара несколько понижен.

У людей, приспосабливающихся к влажному, холодному климату и кислородной недостаточности Севера, также повышенный газообмен, высокое содержание холестерина в сыворотке крови и минерализация костей скелета, более утолщенный слой подкожного жира (выполняющего функцию теплоизолятора).

Однако не все люди в одинаковой степени способны к адаптации. В частности, у некоторых людей в условиях Севера защитные механизмы и адаптивная перестройка организма могут вызвать дезадаптацию - целый ряд патологических изменений, называемых "полярной болезнью".

Одним из наиболее важных факторов, обеспечивающих адаптацию человека к условиям Крайнего Севера, является потребность организма в аскорбиновой кислоте (витамин С), повышающей устойчивость организма к различного рода инфекциям.

Теплоизоляционная оболочка нашего тела включает поверхность кожи с подкожным жиром, а так же расположенные под ним мышцы. Когда кожная температура понижается ниже обычного уровня, сужение кровеносных сосудов кожи и сокращение скелетных мышц повышают изоляционные свойства оболочки. Установлено, что сужение сосудов пассивной мышцы обеспечивает до 85% общей изоляционной способности организма в условиях экстремально низких температур. Эта величина противодействия теплопотерям в 3-4 раза превышает изоляционные способности жира и кожи.

1.1 Физиологические реакции на выполнение упражнений в условиях низкой температуры окружающей среды

метаболический температура адаптация

При охлаждении мышца становится более слабой. Нервная система реагирует на охлаждение мышц изменением структуры вовлечения в работу мышечных волокон. По мнению некоторых специалистов, это изменение в выборе волокон приводит к снижению эффективности мышечных сокращений. При пониженной температуре уменьшается и скорость и сила сокращения мышц. Попытка выполнить работу при температуре мышцы 25°С с такой же скоростью и производительностью, с каким она выполнялась, когда температура мышцы была 35°С, приведёт к быстрому утомлению. Поэтому приходится либо расходовать больше энергии, либо выполнять физическую нагрузку с меньшей скоростью.

Если одежда и метаболизм, обусловленный физической нагрузкой, достаточны, чтобы поддержать температуру тела в условиях пониженной температуры окружающей среды, уровень мышечной деятельности не понизится. Вместе с тем по мере появления утомления и замедления мышечной деятельности образование тепла постепенно уменьшится.

1.2 Метаболические реакции

Продолжительные физические нагрузки ведут к повышенному использованию и окислению свободных жирных кислот. Повышенный метаболизм липидов обусловлен, главным образом, выделением катехоламинов (адреналина и норадреналина) в сосудистую систему. В условиях пониженной температуры окружающей среды секреция этих катехоламинов заметно увеличивается, тогда как уровни свободных жирных кислот повышаются значительно меньше по сравнению с таковыми при выполнении продолжительной физической нагрузки в условиях более высокой температуры окружающей среды. Низкая температура окружающей среды вызывает сужение кровеносных сосудов кожи и подкожных тканей. Как известно, подкожная ткань - основное место хранения липидов (жировая ткань), поэтому сужение сосудов приводит к ограниченному кровоснабжению участков. Из которых мобилизуются свободные жирные кислоты, вследствие чего уровни свободных жирных кислот повышаются не столь значительно.

Глюкоза крови играет важную роль в развитии толерантности к условиям низкой температуры, а также поддержании уровня выносливости при выполнении физ. нагрузки. Гипогликемия (пониженное содержание глюкозы в крови), например, подавляет дрожь, и ведёт к значительному понижению ректальной температуры.

Многих интересует, не повреждаются ли дыхательные пути при быстром глубоком вдыхании холодного воздуха. Холодный воздух, проходя через рот и трахею, быстро согревается, даже если его температура ниже -25°С. Даже при такой температуре воздух, пройдя около 5см по носовому ходу, согревается до 15°С. Очень холодный воздух, попадая в нос, достаточно согревается, приближаясь к выходу из носового хода; таким образом, отсутствует опасность травмирования горла, трахеи или лёгких.

Заключение

Условия, при которых организм должен адаптироваться к холоду, могут быть различными. Одним из возможных вариантов таких условий - работа в холодных цехах. При этом холод действует прерывисто. В связи с усиленными темпами освоения Крайнего Севера в настоящее время актуальным становится вопрос адаптации организма человека к жизни в северных широтах, где он подвергается не только воздействию низкой температуры, но также изменению режима освещенности и уровня радиации.

Адаптационные механизмы позволяют компенсировать изменения фактора среды лишь в определенных пределах и определенное время. В результате воздействия на организм факторов, превышающих возможности адаптационных механизмов, развивается дезадаптация. Она приводит к дисфункции систем организма. Следовательно, происходит переход адаптационной реакции в патологическую - болезнь. Примером болезней дезадаптации являются сердечно-сосудистые заболевания у не коренных жителей Севера.

Список использованной литературы

1. Ажаев А.Н., Берзин И.А., Деева С.А., "Физиолого-гигиенические аспекты низких температур на организм человека", 2008г

2. http://bibliofond.ru/view.aspx?id=459098#1

3. http://fiziologija.vse-zabolevaniya.ru/fiziologija-processov-adaptacii/ponjatie-adaptacii.html

4. http://human-physiology.ru/adaptaciya-ee-vidy-i-periody

Размещено на Allbest.ru

Подобные документы

    Строение и функции кожи. Основные механизмы терморегуляции. Реакция кожи на температуру окружающей среды. Всегда ли организм способен компенсировать длительное воздействие низкой или высокой температуры. Первая помощь при тепловом и солнечном ударе.

    презентация , добавлен 02.12.2013

    Основные причины, вызывающие гибель растений от холода. Мгновенное и необратимое повреждение клеток при образовании внутриклеточного льда как указание на физическую природу процесса. Подверженность мембран воздействию гипотермии, пути его предотвращения.

    реферат , добавлен 11.08.2009

    Адаптация как одно из ключевых понятий в экологии человека. Основные механизмы адаптации человека. Физиологические и биохимические основы адаптации. Адаптация организма к физическим нагрузкам. Снижение возбудимости при развитии запредельного торможения.

    реферат , добавлен 25.06.2011

    Характеристика процессов адаптации человека к условиям окружающей среды. Исследование основных механизмов адаптации. Изучение общих мер повышения устойчивости организма. Законы и закономерности гигиены. Описания принципов гигиенического нормирования.

    презентация , добавлен 11.03.2014

    Изучение понятия физической и химической теплорегуляции. Изотермия - постоянство температуры тела. Факторы, влияющие на температуру тела. Причины и признаки гипотермии и гипертермии. Места измерения температуры. Виды лихорадок. Закаливание организма.

    презентация , добавлен 21.10.2013

    Особенности среды обитания земноводных (лягушек, жаб, тритонов и саламандр). Зависимость температуры тела земноводных от температуры окружающей среды. Польза земноводных для сельского хозяйства. Отряды земноводных: безногие, бесхвостые и хвостатые.

    презентация , добавлен 28.02.2011

    Перекрестная адаптация организма к одному фактору среды, ее способствование приспособлению к другим факторам. Молекулярные основы адаптации человека и ее практическое значение. Приспосабливаемость живого организма к повреждающим факторам внешней среды.

    реферат , добавлен 20.09.2009

    Адаптация организма к условиям среды в общебиологическом плане, ее необходимость для сохранения как индивидуума, так и вида. Способы защиты от неблагоприятных условий окружающей среды. Анабиоз, оцепенение, зимняя спячка, миграция, активация ферментов.

    реферат , добавлен 20.09.2009

    Адаптация как приспособление организма к среде обитания, к условиям его существования. Особенности условий жизни спортсмена. Биохимические и физиологические механизмы адаптации к физическим нагрузкам. Биологические принципы спортивной тренировки.

    реферат , добавлен 06.09.2009

    Влияние температуры на особенности прорастания и всхожести семян эфемеров в лабораторных и полевых условиях. Определение минимальной, оптимальной и максимальной температуры прорастания семян эфемерных растений Донбасса, их таксономический анализ.

Способность адаптации к холоду обусловлена величиной энергетических и пластических ресурсов организма, при их отсутствии адаптация к холоду невозможна. Ответная реакция на холод развивается стадийно и практически во всех системах организма. Ранняя стадия адаптации к холоду может сформироваться при температуре 3С о в течении 2мин, а при 10С о за 7мин.

Со стороны сердечно-сосудистой системы можно выделить 3 фазы адаптационных реакций. 2 первые являются оптимальными (желательными) при воздействии холодом с целью закаливания. Они проявляются в включении, посредством нервной и эндокринной системы, механизмов несократительного термогенеза, на фоне сужения сосудистого русла в коже, результатом чего является теплопродукция и повышение температуры «ядра», что приводит к рефлекторному увеличению кровотока в коже и повышенной теплоотдаче, в том числе посредством включения резервных капилляров. Внешне это выглядит равномерной гиперемией кожи, приятным ощущением тепла и бодрости.

Третья фаза развивается при перегрузке холодовым агентом по интенсивности или длительности. Активная гиперемия сменяется на пассивную (застойную), ток крови замедляется, кожа приобретает синюшный оттенок (венозная застойная гиперемия), появляется тремор мышц, «гусиная кожа». Эта фаза ответной реакции не желательна. Она свидетельствует об истощении компенсаторных возможностей организма, их недостаточности для восполнения теплопотери и переходе на сократительный термогенез.

Реакции сердечно-сосудистой системы складываются не только из перераспределения кровотока в кожном депо. Сердечная деятельность уряжается, фракция выброса становится больше. Происходит некоторое снижение показателей вязкости крови и повышение артериального давления. При передозировке фактором (третья фаза) происходит повышение вязкости крови с компенсаторным перемещением межтканевой жидкости в сосуды, что приводит к дегидратации тканей.

Регуляция дыхания
В обычных условиях дыхание регулируется по отклонению парциального давления О 2 иСО 2 и величины рН в артериальной крови. Умеренная гипотермия возбуждающе действует на дыхательные центры и угнетающе на рН чувствительные хеморецепторы. При длительном холоде присоединяется спазм бронхиальной мускулатуры, что увеличивает сопротивление дыханию и газообмену, а также снижается хемочувствительность рецепторов. Происходящие процессы лежат в основе холодовой гипоксии, а при срыве адаптации к так называемой «полярной» одышке. На лечебные холодовые процедуры органы дыхания реагируют задержкой в первый момент с последующим учащением на короткое время. В дальнейшем дыхание замедляется и становится глубоким. Происходит усиление газообмена, окислительных процессов, основного обмена.

Метаболические реакции
Реакции метаболизма охватывают все стороны обмена. Основным направлением, естественно, является увеличение теплопродукции. В первую очередь происходит активация несократительного термогенеза путём мобилизации метаболизма липидов (концентрация в крови свободных жирных кислот под действием холода возрастает на 300%) и углеводов. Так же активируется потребление тканями кислорода, витаминов, макро- и микроэлементов. В дальнейшем, при некомпенсированных тепловых потерях, происходит включение дрожательного термогенеза. Термогенная активность дрожи выше таковой при производстве произвольных сократительных движений, т.к. не совершается работа, а вся энергия превращается в тепло. В эту реакцию включаются все мышцы, даже дыхательная мускулатура грудной клетки.

Водно-солевой обмен
При остром действии холода первоначально активируется симпатико-адреналовая система и увеличивается секреция щитовидной железы. Повышается выработка антидиуретического гормона, который уменьшает реабсорбцую натрия в почечных канальцах и увеличивает экскрецию жидкости. Это приводит к развитию дегидратации, гемоконцентрации и повышению осмолярности плазмы. По-видимому, выведение воды служит защитным действием в отношении тканей, которые могут повреждаться на фоне её кристаллизации под действием холода.

Основные стадии адаптации к холоду
Долговременная адаптация к холоду сказывается неоднозначно на структурно-функциональных перестройках организма. Наряду с гипертрофией симпатико-адреналовой системы, щитовидной железы, системы митохондрий в мышцах и всех звеньев транспорта кислорода, наблюдается жировая гипотрофия печени и снижение ей дезинтоксикационных функций, дистрофические явления со стороны ряда систем со снижением их функционального потенциала.

Выделяют 4 адаптационных стадии к холоду
(Н.А. Барбараш, Г.Я. Двуреченская)

Первая - аварийная - неустойчивой адаптации к холоду
Характеризуется резкой реакцией ограничения теплоотдачи в виде спазма периферических сосудов. Увеличение теплопродукции происходит за счет распада запасов АТФ и сократительного термогенеза. Развивается дефицит богатых энергией фосфатов. Возможно развитие повреждений (отморожения, ферментемия, некротизация тканей).

Вторая - переходная - стадия срочной адаптации
Отмечается уменьшение стресс-реакции при сохранении гиперфункции симпатико-адреналовой системы и щитовидной железы. Активизируются процессы синтеза нуклеиновых кислот и белков, ресинтез АТФ. Уменьшается вазоконстрикция периферических тканей, а, следовательно, риск развития повреждения.

Третья - устойчивости - стадия долгосрочной адаптации
Долговременная адаптация формируется при периодическом действии холода. При его непрерывном воздействии она менее вероятна. Она характеризуется гипертрофией симпатико-адреналовой системы, щитовидной железы, усилением окислительно-восстановительных реакций, что приводит как к прямой адаптации к холоду (стационарное увеличение теплопродукции для сохранения гомеостаза), так и положительной перекрестной - атеросклерозу, солевой гипертонии, гипоксии. Более устойчивы к стрессу становятся регуляторные системы, включая высшие.

Четвертая стадия - истощения
Развивается при непрерывном длительном или интенсивном периодическом воздействии холода. Она характеризуется явлениями негативной перекрестной адаптацией, с развитием хронических заболеваний и дистрофических процессов со снижением функции в ряде внутренних органов.

Диссертация

Скурятина, Юлия Владимировна

Ученая cтепень:

Кандидат биологических наук

Место защиты диссертации:

Код cпециальности ВАК:

Специальность:

Экология

Количество cтраниц:

ГЛАВА 1. СОВРЕМЕННЫЕ ПРЕДСТАВЛЕНИЯ О МЕХАНИЗМЕ АДАПТАЦИИ ОРГАНИЗМА К ХОЛОДУ И ДЕФИЦИТУ ТОКОФЕРОЛА .

1.1 Новые представления о биологических функциях активных форм кислорода при адаптивных преобразованиях метаболизма.

1.2 Механизмы адаптации организма к холоду и роль оксидативного стресса в этом процессе.

1.3 Механизмы адаптации организма к дефициту токоферола и роль оксидативного стресса в этом процессе.

ГЛАВА 2. МАТЕРИАЛ И МЕТОДЫ ИССЛЕДОВАНИЯ.

2.1 Организация исследования.

2.1.1 Организация экспериментов по влиянию холода .

2.1.2 Организация экспериментов по влиянию дефицита токоферола.

2.2 Методы исследования

2.2.1 Гематологические показатели

2.2.2 Исследование энергетического метаболизма.

2.2.3 Исследование оксидативного метаболизма.

2.3 Статистическая обработка результатов.

ГЛАВА 3. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ВОЗДЕЙСТВИИ ХОЛОДА.

ГЛАВА 4. ИССЛЕДОВАНИЕ ОКСИДАТИВНОГО ГОМЕОСТАЗА, ОСНОВНЫХ МОРФОФУНКЦИОНАЛЬНЫХ ПАРАМЕТРОВ ОРГАНИЗМА КРЫС И ЭРИТРОЦИТОВ ПРИ ДЛИТЕЛЬНОМ ДЕФИЦИТЕ ТОКОФЕРОЛА.

Введение диссертации (часть автореферата) На тему "Экспериментальное исследование ферментных антиоксидантных систем при адаптации к длительному воздействию холода и дефицита токоферола"

Актуальность темы. Исследованиями последних лет показано, что в механизмах приспособления организма к факторам внешней среды важную роль играют так называемые активные формы кислорода - супероксидный и гидро-ксильный радикалы, перекись водорода и другие (Finkel, 1998; Kausalya, Nath, 1998). Установлено, что эти свободно-радикальные метаболиты кислорода, которые до недавнего времени рассматривались лишь как повреждающие агенты, являются сигнальными молекулами и регулируют адаптивные преобразования нервной системы, артериальной гемодинамики и морфогенез . (Luscher, Noll, Vanhoute, 1996; ; Groves, 1999; Wilder, 1998; Drexler, Homig, 1999). Главным источником активных форм кислорода является ряд ферментных систем эпителия и эндотелия (НАДФ-оксидаза, циклооксигеназа, липооксигеназа, ксанти-ноксидаза), которые активируются при раздражении хемо-и механорецепторов, расположенных на люминальной мембране клеток этих тканей.

В то же время известно, что при усилении продукции и накоплении в организме активных форм кислорода, то есть при так называемом оксидативном стрессе, их физиологическая функция может трансформироваться в патологическую с развитием перекисного окисления биополимеров и повреждением вследствие этого клеток и тканей. (Kausalua, Nath, 1998; Smith, Guilbelrt, Yui et al. 1999). Очевидно, что возможность такой трансформации определяется прежде всего скоростью инактивации АФК антиоксидантными системами. В связи с этим, особый интерес представляет исследование изменений инактиваторов активных форм кислорода - ферментных антиоксидантных систем организма, при длительном воздействии на организм таких экстремальных факторов, как холод и дефицит витаминного антиоксиданта - токоферола, которые рассматриваются в настоящее время как эндо- и экзогенные индукторы оксидативного стресса.

Цель и задачи исследования. Целью работы явилось исследование изменений основных ферментных антиоксидантных систем при адаптации крыс к длительному воздействию холода и дефицита токоферола.

Задачи исследования:

1. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при длительном воздействии холода.

2. Сопоставить изменения показателей оксидативного гомеостаза с изменениями основных морфофункциональных параметров организма крыс и эритроцитов при дефиците токоферола.

3. Провести сравнительный анализ изменений оксидативного метаболизма и характера адаптивной реакции организма крыс при длительном воздействии холода и дефицита токоферола.

Научная новизна. Впервые установлено, что длительное интермитти-рующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс ряд морфофункциональных изменений адаптивной направленности: ускорение прироста массы тела, увеличение содержания спек-трина и актина в мембранах эритроцитов, повышение активности ключевых энзимов гликолиза , концентрации АТФ и АДФ, а также активности АТФ-аз.

Впервые показано, что в механизме развития адаптации к холоду важную роль играет оксидативный стресс, особенностью которого является возрастание активности компонентов системы антиоксидантной системы - энзимов НАДФН-генерирующего пентозофосфатного пути распада глюкозы, суперок-сиддисмутазы, каталазы и глутатионпироксидазы.

Впервые показано, что развитие патологических морфо-функциональных изменений при дефиците токоферола связано с выраженным оксидативным стрессом, протекающим на фоне сниженной активности основных антиокси-дантных ферментов и ферментов пентозофосфатного пути распада глюкозы.

Впервые установлено, что результат преобразований обмена веществ при воздействии на организм факторов внешней среды зависит от адаптивного возрастания активности антиоксидантных ферментов и связанной с этим выраженности оксидативного стресса.

Научно-практическая значимость работы. Полученные в работе новые факты расширяют представления о механизмах приспособления организма к факторам внешней среды. Выявлена зависимость результата адаптивных преобразований метаболизма от степени активации основных ферментных антиок-сидантов, что указывает на необходимость направленного развития адаптивного потенциала этой неспецифической системы стресс-резистентности организма при изменении экологических условий.

Основные положения, выносимые на защиту:

1. Длительное воздействие холода вызывает в организме крыс комплекс изменений адаптивной направленности: возрастание устойчивости к действию холода, которое выражалось в ослаблении гипотермии ; ускорение прироста массы тела; повышение содержания спектрина и актина в мембранах эритроцитов; увеличение скорости гликолиза, повышение концентрации АТФ и АДФ; возрастание активности АТФ-аз. Механизм этих изменений связан с развитием оксидативного стресса в сочетании с адаптивным увеличением активности компонентов системы антиоксидантной защиты - ферментов пентозо-фосфатного шунта, а также основных внутриклеточных антиоксидантных ферментов, прежде всего супероксиддисмутазы.

2. Длительный дефицит в организме крыс токоферола вызывает стойкий гипотрофический эффект, повреждение мембран эритроцитов, угнетение гликолиза, снижение концентрации АТФ и АДФ , активности клеточных АТФ-аз. В механизме развития этих изменений существенное значение имеет недостаточная активация антиоксидантных систем - НАДФН-генерирующего пентозо-фосфатного пути и антиоксидантных ферментов, создающая условия для повреждающего действия активных форм кислорода.

Апробация работы. Результаты исследований доложены на совместном заседании кафедры биохимии и кафедры нормальной физиологии Алтайского государственного медицинского института (Барнаул, 1998, 2000), на научной конференции, посвященной 40-летию кафедры фармакологии Алтайского государственного медицинского университета (Барнаул, 1997),на научно-практической конференции"Современные проблемы курортологии и терапии", посвященной 55-летию санатория "Барнаульский" (Барнаул,2000), на II международной конференции молодых ученых России (Москва,2001).

Заключение диссертации по теме "Экология", Скурятина, Юлия Владимировна

1. Длительное интермиттирующее воздействие холода (+5°С по 8 часов в сутки на протяжении 6 месяцев) вызывает в организме крыс комплекс адаптивных изменений: диссипацию гипотермической реакции на холод, ускорение прироста массы тела, повышение содержания спектрина и актина в мембранах эритроцитов, усиление гликолиза , возрастание суммарной концентрации АТФ и АДФ и активности АТФ-аз.

2. Состоянию адаптированности крыс к длительному интермиттирующе-му воздействию холода соответствует оксидативный стресс, для которого характерны повышенная активность компонентов ферментных антиоксидантных систем - глюкозо-6-фосфатдегидрогеназы, супероксиддисмутазы, каталазы и глутатионпероксидазы.

3. Длительный (6 месяцев) алиментарный дефицит токоферола вызывает в организме крыс стойкий гипотрофический эффект, анемию, повреждение мембран эритроцитов, угнетение в эритроцитах гликолиза, снижение суммарной концентрации АТФ и АДФ, а также активности Na+,K+- АТФ-азы.

4. Дизадаптивные изменения в организме крыс при дефиците токоферола связаны с развитием выраженного оксидативного стресса, для которого характерны снижение активности каталазы и глутатионпероксидазы в сочетании с умеренным возрастанием активности глюкозо-6-фосфатдегидрогеназы и супероксиддисмутазы.

5. Результат адаптационных преобразований метаболизма в ответ на длительное воздействие холода и алиментарного дефицита токоферола зависит от выраженности оксидативного стресса, которая во многом определяется возрастанием активности антиоксидантных ферментов .

ЗАКЛЮЧЕНИЕ

К настоящему времени сложилось достаточно четкое представление о том, что адаптация организма человека и животных определяется взаимодействием генотипа с внешними факторами (Меерсон, Малышев, 1981; Панин, 1983; Голдстейн, Браун, 1993; Адо, Бочков, 1994). При этом следует учитывать, что генетически детерминированная неадекватность включения адаптивных механизмов при воздействии экстремальных факторов может приводить к трансформации состояния напряжения в острый или хронический патологический процесс (Казначеев, 1980).

В основе процесса приспособления организма к новым условиям внутренней и внешней среды лежат механизмы срочной и долговременной адаптации (Меерсон, Малышев, 1981). При этом процесс срочной адаптации, рассматриваемый как временная мера, к которой организм прибегает в критических ситуациях, исследован достаточно подробно (Davis, 1960, 1963; Исаакян, 1972; Ткаченко, 1975; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Marmonier, Duchamp, Cohen-Adad et al., 1997). В этот период повышенная продукция различных сигнальных факторов, включая гормональные, индуцирует существенную локальную и системную перестройку метаболизма в различных органах и тканях, чем в итоге определяется истинная, долговременная адаптация (Хочачка , Сомеро, 1988). Активация процессов биосинтеза на уровне репликации и транскрипции обусловливает развивающиеся при этом структурные изменения, которые проявляются гипертрофией и гиперплазией клеток и органов (Меерсон, 1986). Поэтому изучение биохимических основ адаптации к длительному воздействию возмущающих факторов имеет не только научный, но и большой практический интерес, особенно с точки зрения распространенности дизадаптивных болезней (Lopez-Torres et al., 1993; Pipkin, 1995; Wallace, Bell, 1995; Sun et al., 1996).

Несомненно, что развитие долговременной адаптации организма является весьма сложным процессом, реализующимся с участием всего комплекса иерархически организованной системы регуляции метаболизма, причем многие стороны механизма этой регуляции остаются неизвестными. Согласно последним литературным данным, адаптация организма к длительно действующим возмущающим факторам начинается с локальной и системной активации филогенетически наиболее древнего процесса свободно-радикального окисления, ведущего к образованию физиологически важных сигнальных молекул в виде активных форм кислорода и азота - оксид азота, супероксидный и гидроксиль-ный радикал, пероксид водорода и др. Этим метаболитам принадлежит ведущая медиаторная роль в адаптивной локальной и системной регуляции метаболизма аутокринным и паракринным механизмами (Sundaresan, Yu, Ferrans et. al., 1995; Finkel, 1998; Givertz, Colucci, 1998).

В связи с этим, при исследовании физиологических и патофизиологических аспектов адаптивных и дизадаптивных реакций занимают вопросы регуляции свободно-радикальными метаболитами, причем особую актуальность составляют вопросы биохимических механизмов адаптации при длительном воздействии на организм индукторов оксидативного стресса (Cowan, Langille, 1996; Kemeny, Peakman, 1998; Farrace, Cenni, Tuozzi et al., 1999).

Несомненно, что наибольшую информацию в этом отношении можно получить в экспериментальных исследованиях на соответствующих "моделях" распространенных видов оксидативного стресса. В качестве таковых наиболее известны модели экзогенного оксидативного стресса, вызываемого холодовой экспозицией, и эндогенного оксидативного стресса, возникающего при дефиците витамина Е - одного из важнейших мембранных антиоксидантов. Эти модели и были использованы в работе для выяснения биохимических основ адаптации организма к длительному оксидативному стрессу.

В соответствии с многочисленными литературными данными (Спиричев, Матусис, Бронштейн, 1979; Aloia, Raison, 1989; Glofcheski, Borrelli, Stafford, Kruuv, 1993; Beattie, Black, Wood, Trayhurn, 1996), нами установлено, что ежедневная 8-часовая холодовая экспозициям на протяжении 24-недель приводила к выраженному повышению концентрации малонилдиальдегида в эритроцитах. Это свидетельствует о развитии под влиянием холода хронического оксидативного стресса. Аналогичные изменения имели место в организме крыс, содержавшихся в течение такого же периода на диете, лишенной витамина Е. Этот факт также соответствует наблюдениям других исследователей (Masugi,

Nakamura, 1976; Tamai., Miki, Mino, 1986; Архипенко, Коновалова, Джапаридзе и др., 1988; Matsuo, Gomi, Dooley, 1992; Cai, Chen, Zhu et al., 1994). Однако причины оксидативного стресса при длительном интермиттирующем воздействии холода и оксидативного стресса при длительном дефиците токоферола различны. Если в первом случае причиной стрессового состояния является воздействие внешнего фактора - холода, вызывающего повышение продукции ок-сирадикалов вследствие индукции синтеза разобщающего протеина в митохондриях (Nohl, 1994; Bhaumik, Srivastava, Selvamurthy et al., 1995; Rohlfs, Daniel, Premont et al., 1995; Beattie, Black, Wood et. al., 1996; Femandez-Checa, Kaplowitz, Garcia-Ruiz et al., 1997; Marmonier, Duchamp, Cohen-Adad et al., 1997; Rauen, de Groot, 1998), то при дефиците мембранного антиоксиданта токоферола причиной оксидативного стресса было снижение скорости нейтрализации оксирадикальных медиаторов (Lawler, Cline, Ни, Coast, 1997; Richter, 1997; Polyak, Xia, Zweier et. al., 1997; Sen, Atalay, Agren et al., 1997; Higashi, Sasaki, Sasaki et al., 1999). Учитывая тот факт, что длительное холодовое воздействие и авитаминоз Е вызывают накопление активных форм кислорода, можно было ожидать трансформацию физиологической регуляторной роли последних в патологическую, с повреждением клеток вследствие перекисного окисления биополимеров. В связи с общепринятым до недавнего времени представлением о повреждающем действии активных форм кислорода, холод и дефицит токоферола рассматриваются как факторы, провоцирующие развитие многих хронических заболеваний (Cadenas, Rojas, Perez-Campo et al., 1995; de Gritz, 1995; Jain, Wise, 1995; Luoma, Nayha, Sikkila, Hassi., 1995; Barja, Cadenas, Rojas et al., 1996; Dutta-Roy, 1996; Jacob, Burri, 1996; Snircova, Kucharska, Herichova et al., 1996; Va-Squezvivar, Santos, Junqueira, 1996; Cooke, Dzau, 1997; Lauren, Chaudhuri, 1997; Davidge, Ojimba, Mc Laughlin, 1998; Kemeny, Peakman, 1998; Peng, Kimura, Fregly, Phillips, 1998; Nath, Grande, Croatt et al., 1998; Newaz, Nawal, 1998; Taylor, 1998). Очевидно, что в свете концепции о медиа-торной роли активных форм кислорода, реализация возможности трансформации физиологического оксидативного стресса в патологический в значительной степени зависит от адаптивного возрастания активности антиоксидантных ферментов. В соответствии с представлением о ферментном антиоксидантном комплексе как функционально динамичной системе находится недавно выявленный феномен субстратной индукции экспрессии генов всех трех основных антиоксидантных энзимов - супероксиддисмутазы, каталазы и глутатионперок-сидазы (Пескин, 1997; Tate, Miceli, Newsome, 1995; Pinkus, Weiner, Daniel, 1996; Watson, Palmer., Jauniaux et al., 1997; Sugino, Hirosawa-Takamori, Zhong, 1998). Важно отметить, что эффект такой индукции имеет достаточно длительный лаг-период, измеряемый десятками часов и даже днями (Beattie, Black, Wood, Trayhurn, 1996; Battersby, Moyes, 1998; Lin, Coughlin, Pilch, 1998). Поэтому данный феномен способен привести к ускорению инактивации активных форм кислорода лишь при длительных воздействиях стресс-факторов.

Проведенные в работе исследования показали, что длительное интермит-тирующее воздействие холодом вызывало гармоничную активацию всех исследованных антиоксидантных энзимов. Это согласуется с мнением Bhaumik G. et al (1995) о протективной роли этих ферментов в ограничении осложнений при длительном холодовом стрессе.

В то же время в эритроцитах крыс с дефицитом витамина Е в конце 24-х недельного периода наблюдений регистрировалась активация лишь суперок-сиддисмутазы. Следует отметить, что в проводимых ранее подобных исследованиях такого эффекта не наблюдалось (Xu, Diplock, 1983; Chow, 1992; Matsuo, Gomi, Dooley, 1992; Walsh, Kennedy, Goodall, Kennedy, 1993; Cai, Chen, Zhu et al., 1994; Tiidus, Houston, 1994; Ashour, Salem, El Gadban et al., 1999). Следует, однако,отметить что возрастание активности супероксиддисмутазы, не сопровождалось адекватным повышением активности каталазы ж глутатионперокси-дазы и не предотвращало развитие повреждающего действия активных форм кислорода. О последнем свидетельствовало значительное накопление в эритроцитах продукта перекисного окисления липидов - малонидиальдегида. Необходимо отметить, что перекисное окисление биополимеров рассматривается в настоящее время как главная причина патологических изменений при авитаминозе Е (Chow, Ibrahim, Wei и Chan, 1999).

Об эффективности антиоксидантной защиты в экспериментах по исследованию холодового воздействия свидетельствовало отсутствие выраженных изменений в гематологических показателях и сохранение устойчивости эритроцитов к действию различных гемолитиков . О сходных результатах ранее сообщалось и другими исследователями (Марачев , 1979; Рапопорт, 1979; Sun, Cade, Katovich, Fregly, 1999). Напротив, у животных с Е-авитаминозом наблюдался комплекс изменений, указывающих на повреждающее действие активных форм кислорода: анемия с явлениями внутрисосудистого гемолиза, появление эритроцитов со сниженной резистентностью к гемолитикам . Последнее считается весьма характерным проявлением оксидативного стресса при Е-авитами нозе (Brin, Horn, Barker, 1974; Gross, Landaw, Oski, 1977; Machlin, Filipski, Nelson et al., 1977; Siddons, Mills, 1981; Wang, Huang, Chow, 1996). Выше изложенное убеждает в значительных возможностях организма по нейтрализации последствий оксидативного стресса внешнего генеза, в частности вызываемого холодом, и неполноценности адаптации к эндогенному оксида-тивному стрессу в случае Е-авитаминоза.

К группе антиоксидантных факторов в эритроцитах относится и система генерации НАДФН , который является кофактором гемоксигеназы, глутатион-редуктазы и тиоредоксинредуктазы , восстанавливающих железо, глутатион и другие тиосоединения. В наших экспериментах наблюдалось весьма значительное увеличение активности глюкозо-6-фосфатдегидрогеназы в эритроцитах крыс как при действии холода, так и при дефиците токоферола, что ранее наблюдали и другие исследователи (Казначеев, 1977; Уласевич, Грозина, 1978;

Gonpern, 1979; Куликов, Ляхович, 1980; Ландышев, 1980; Fudge, Stevens, Ballantyne, 1997). Это указывает на активацию у экспериментальных животных пентозофосфатного шунта, в котором синтезируется НАДФН.

Механизм развития наблюдаемого эффекта во многом становится понятнее при анализе изменений показателей углеводного метаболизма. Наблюдалось усиление поглощения глюкозы эритроцитами животных как на фоне оксидативного стресса, вызванного холодом, так и при оксидативном стрессе, индуцированном дефицитом токоферола. Это сопровождалось существенной активацией мембранной гексокиназы - первого энзима внутриклеточной утилизации углеводов, что хорошо согласуется с данными других исследователей (Лях, 1974, 1975; Панин, 1978; Уласевич, Грозина, 1978; Nakamura, Moriya, Murakoshi. et al., 1997; Rodnick, Sidell, 1997). Однако, дальнейшие превращения интенсивно образующегося в указанных случаях глюкозо-6-фосфата существенно различались. При адаптации к холоду метаболизм этого интермедиата усиливался как в гликолизе (о чем свидетельствовало возрастание активности гексофосфатизомеразы и альдолазы ), так и в пентозофосфатном пути. Последнее подтверждалось увеличением активности глюкозо-6-фосфатдегидрогеназы. В то же время у Е-авитаминозных животных перестройка углеводного метаболизма была связана с увеличением активности лишь глюкозо-6-фосфатдегидрогеназы, тогда как активность ключевых ферментов гликолиза не изменялась или даже снижалась. Следовательно, в любом случае оксидативный стресс вызывает повышение скорости метаболизма глюкозы в пентозофосфат-ном шунте, обеспечивающем синтез НАДФН. Это представляется весьма целесообразным в условиях повышения потребности клеток в редокс-эквивалентах, в частности НАДФН. Можно предположить, что у Е-авитаминозных животных данный феномен развивается в ущерб гликолитическим энергопродуцирую-щим процессам.

Отмеченное различие влияний экзогенного и эндогенного оксидативного стресса на гликолитическую энергопродукцию сказывалось и на энергетическом статусе клеток, а также на системах энергопотребления. При холодовом воздействии наблюдалось значимое увеличение концентрации АТФ+АДФ со снижением концентрации неорганического фосфата, увеличение активности общей АТФ-азы, Mg^-АТФ-азы и Ыа+,К+-АТФ-азы. И напротив, в эритроцитах крыс с Е-авитаминозом наблюдалось снижение содержания макроэргов и активности АТФаз . При этом вычисленный индекс АТФ+АДФ/Фн подтвердил имеющиеся сведения о том, что для холодового, но не для Е-авитаминозного оксидативного стресса характерно превалирование энергопродукции над энергопотреблением (Марачев, Сороковой, Корчев с сотр., 1983; Rodnick, Sidell, 1997; Hardewig, Van Dijk, Portner, 1998).

Таким образом, при длительном интермиттирующем воздействии холода перестройка процессов энергопродукции и энергопотребления в организме животных имела явный анаболический характер. В этом убеждает наблюдавшееся ускорение прироста массы тела животных. Исчезновение у крыс гипотермиче-ской реакции на холод к 8-ой неделе эксперимента свидетельствует об устойчивой адаптированности их организма к холоду и, следовательно, об адекватности адаптивных преобразований метаболизма. В то же время судя по основным морфофункциональным, гематологическим и биохимическим показателям, изменения энергетического метаболизма у Е-авитаминозных крыс не приводили к адаптивно-целесообразному результату. Представляется, что основной причиной такого ответа организма на дефицит токоферола является отток глюкозы от энергопродуцирующих процессов в процессы образования эндогенного антиоксиданта НАДФН. Вероятно, выраженность адаптивного оксидативного стресса является своеобразным регулятором метаболизма глюкозы в организме: данный фактор способен включать и усиливать продукцию антиок-сидантов в ходе метаболизма глюкозы, что является более значимым для выживания организма в условиях мощного повреждающего эффекта активных форм кислорода, чем продукция макроэргов.

Следует отметить, что согласно современным данным, кислородные радикалы являются индукторами синтеза отдельных факторов репликации и транскрипции, стимулирующих адаптивную пролиферацию и дифференциров-ку клеток различных органов и тканей (Agani, Semenza, 1998). При этом одной из важнейших мишеней для свободно-радикальных медиаторов являются факторы транскрипции типа NFkB, индуцирующих экспрессию генов антиоксидантных энзимов и других адаптивных белков (Sundaresan, Yu, Ferrans et. al, 1995; Finkel, 1998; Givertz, Colucci, 1998). Таким образом, можно думать, что именно этот механизм срабатывает при холод-индуцированном оксидативном стрессе и обеспечивает возрастание активности не только специфических энзимов антиоксидантной защиты (супероксиддисмутазы, каталазы и глутатион-пероксидазы), но и повышение активности ферментов пентозофосфатного пути. При более выраженном оксидативном стрессе, вызванном дефицитом мембранного антиоксиданта - токоферола, адаптивная субстратная индуцибель-ность указанных компонентов антиоксидантной защиты реализуется лишь частично и, скорее всего, недостаточно эффективна. Следует отметить, что низкая эффективность этой системы в конечном итоге приводила к трансформации физиологического оксидативного стресса в патологический.

Полученные в работе данные позволяют сделать вывод о том, что результат адаптивных преобразований метаболизма в ответ на возмущающие факторы внешней среды, в развитии которых задействованы активные формы кислорода, во многом определяется адекватностью сопряженного возрастания активности основных антиоксидантных ферментов, а также ферментов НАДФН-генерирующего пентозофосфатного пути распада глюкозы. В связи с этим, при изменении условий существования макроорганизма,особенно при так называемых экологических катастрофах, выраженность оксидативного стресса и активность ферментных антиоксидантов должны стать не только объектом наблюдения, но и одним из критериев эффективности адаптации организма.

Список литературы диссертационного исследования кандидат биологических наук Скурятина, Юлия Владимировна, 2001 год

1. Абраров А.А. Влияние жира и жирорастворимых витаминов А, Д, Е на биологические свойства эритроцитов: Дисс. докт. мед. наук. М.,1971.- С. 379.

2. Адо А. Д., Адо Н. А., Бочков Г. В. Патологическая физиология.- Томск: Изд-во ТГУ , 1994.- С. 19.

3. Асатиани В. С. Ферментные методы анализа. М.: Наука, 1969. - 740 с.

4. Бенисович В. И., Идельсон Л. И. Образование перекисей и состав жирных кислот в липидах эритроцитов больных при болезни Маркиафава Микели // Пробл. гематол. и перелив, крови. - 1973. - №11. - С. 3-11.

5. Бобырев В. Н., Воскресенский О. Н. Изменения в активности антиоксидант-ных ферментов при синдроме пероксидации липидов у кроликов // Вопр. мед. химии. 1982. - т. 28(2). - С. 75-78.

6. Виру А. А. Гормональные механизмы адаптации и тренировки. М.: Наука, 1981.-С. 155.

7. Голдстейн Д. Л., Браун М. С. Генетические аспекты болезней // Внутренние болезни / Под. ред. Е. Браунвальда, К. Д. Иссельбахера, Р. Г. Петерсдорфа и др.- М.: Медицина, 1993.- Т. 2.- С.135.

8. Даценко 3. М., Донченко Г. В., Шахман О. В., Губченко К. М., Хмель Т. О. Роль фосфолипидов в функционировании различных клеточных мембран в условиях нарушения антиоксидантной системы // Укр. биохим. ж.- 1996.- т. 68(1).- С. 49-54.

9. Ю.Дегтярев В. М., Григорьев Г. П. Автоматическая запись кислотных эритро-грамм на денситометре ЭФА-1 //Лаб. дело.- 1965.- №9.- С. 530-533.

10. П.Дервиз Г. В., Бялко Н. К. Уточнение метода определения гемоглобина, растворенного в плазме крови // Лаб. дело.- 1966.- №8.- С. 461-464.

11. Деряпа Н. Р., Рябинин И. Ф. Адаптация человека в полярных районах Земли.- Л.: Медицина, 1977.- С. 296.

12. Джуманиязова К. Р. Влияние витаминов A, D, Е на эритроциты периферической крови: Дисс. канд. мед. наук.- Ташкент, 1970.- С. 134.

13. Донченко Г. В., Метальникова Н. П., Паливода О. М. и др. Регуляция а-токоферолом и актиномицином D биосинтеза убихинона и белка в печени крыс при Е-гиповитаминозе // Укр. биохим. ж.- 1981.- Т. 53(5).- С. 69-72.

14. Дубинина Е. Е., Сальникова Л. А., Ефимова Л. Ф. Активность и изофер-ментный спектр супероксиддисмутазы эритроцитов и плазмы крови // Лаб. дело.- 1983.-№10.-С. 30-33.

15. Исаакян JI. А. Метаболическая структура температурных адаптаций Д.: Наука, 1972.-С. 136.

16. Казначеев В. П. Биосистема и адаптация // Доклад на II сессии Научного совета АН СССР по проблеме прикладной физиологии человека.- Новосибирск, 1973.-С. 74.

17. Казначеев В. П. Проблемы адаптации человека (итоги и перспективы) // 2 Всесоюз. конф. по адаптации человека к различ. географич., климатич., и производст. условиям: Тез. докл.- Новосибирск, 1977.- т. 1.-С. 3-11.

18. Казначеев В. П. Современные аспекты адаптации.- Новосибирск: Наука, 1980.-С. 191.

19. Калашников Ю. К., Гейслер Б. В. К методике определения гемоглобина крови с помощью ацетонциангидрина// Лаб. дело.- 1975.- №6.- СГ373-374.

20. Кандрор И. С. Очерки по физиологии и гигиене человека на Крайнем Севере.- М.: Медицина, 1968.- С. 288.

21. Кашевник Л. Д. Обмен веществ при авитаминозе С.- Томск., 1955.- С. 76.

22. Коровкин Б. Ф. Ферменты в диагностике инфаркта миокарда.- Л: Наука, 1965.- С. 33.

23. Куликов В. Ю., Ляхович В. В. Реакции свободнорадикального окисления липидов и некоторые показатели кислородного обмена // Механизмы адаптации человека в условиях высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 60-86.

24. Ландышев С. С. Адаптация метаболизма эритроцитов к действию низких температур и дыхательной недостаточности // Адаптация человека и животных в различных климатических зонах / Под ред. М. 3. Жиц.- Чита, 1980.- С. 51-53.

25. Ланкин В. 3., Гуревич С. М., Кошелевцева Н. П. Роль перекисей липидов в патогенезе атеросклероза. Детоксикация липоперекисей глютатионперокси-дазной системой в аорте // Вопр. мед. химии.- 1976.- №3,- С. 392-395.

26. Лях Л. А. О стадиях формирования адаптации к холоду // Теоретические и практические проблемы действия низких температур на организм: Тез. IV Всесоюз. конф.- 1975.- С. 117-118.

27. Марачев А. Г., Сороковой В. И., Корчев А. В. и др. Биоэнергетика эритроцитов у жителей Севера // Физиология человека.- 1983.- №3.- С. 407-415.

28. Марачев А.Г. Структура и функция эритрона человека в условиях Севера // Биологические проблемы Севера. VII симпозиум. Адаптация человека к условиям Севера/Под ред. В.Ф. Бурханова , Н.Р. Деряпы.- Кировск,1979.- С. 7173.

29. Матусис И. И. Функциональные взаимоотношения витаминов Е и К в метаболизме организма животных // Витамины.- Киев: Наукова думка, 1975.- т. 8.-С. 71-79.

30. Меерсон Ф. 3., Малышев Ю. И. Феномен адаптации и стабилизации структур и защиты сердца.- М: Медицина, 1981.- С. 158.

31. Меерсон Ф. 3. Основные закономерности индивидуальной адаптации // Физиология адаптационных процессов. М.: Наука, 1986.- С. 10-76.

32. Панин JI. Е. Некоторые биохимические проблемы адаптации // Медико -биологические аспекты процессов адаптации / Под ред. JI. П. Непомнящих.-Новосибирск.: Наука.-1975а.-С. 34-45.

33. Панин Л. Е. Роль гормонов гипофизо адреналовой системы и поджелудочной железы в нарушении холестеринового обмена при некоторых экстремальных состояниях: Дисс. докт. мед. наук.- М., 19756.- С. 368.

34. Панин Л. Е. Энергетические аспекты адаптации.- Л.: Медицина, 1978.- 192 с.43 .Панин Л. Е. Особенности энергетического обмена // Механизмы адаптациичеловека к условиям высоких широт / Под ред. В. П. Казначеева.- Л.: Медицина, 1980.- С. 98-108.

35. Пескин А. В. Взаимодействие активного кислорода с ДНК (Обзор) // Биохимия.- 1997.- Т. 62.- №12.- С. 1571-1578.

36. Поберезкина Н. Б., Хмелевский Ю. В. Нарушение структуры и функции мембран эритроцитов Е авитаминозных крыс и его коррекция антиоксидан-тами // Укр. биохим. ж.- 1990.- т. 62(6).- С. 105-108.

37. Покровский А. А., Орлова Т. А., Поздняков A. JL Влияние токоферольной недостаточности на активность некоторых ферментов и их изоферментов в семенниках крыс // Витамины и реактивность организма: Труды МОИП .- М., 1978.-Т. 54.- С. 102-111.

38. Рапопорт Ж. Ж. Адаптация ребенка на Севере.- Л.: Медицина, 1979.- С. 191.

39. Россомахин Ю. И. Особенности терморегуляции и устойчивости организма к контрастным воздействиям тепла и холода при различных режимах температурных адаптаций: Автореф. дисс. канд. биол . наук.- Донецк, 1974.- С. 28.

40. Сейц И. Ф. О количественном определении аденозинтри- и аденозиндифос-фатов // Бюлл. эксп. биол. и мед.- 1957.- №2.- С. 119-122.

41. Сень И. П. Развитие Е-витаминной недостаточности у белых крыс при питании качественно различными жирами: Дисс. канд. мед. наук.- М.,1966.- С. 244.

42. Слоним А. Д. О физиологических механизмах природных адаптаций животных и человека // Докл. на ежегод. засед. ученого совета посвящ. памяти акад. К. М. Быкова.- JL, 1964.

43. Слоним А. Д. Физиологические адаптации и периферическая структура рефлекторных ответов организма // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- JL: Наука, 1969.- С. 5-19.

44. Спиричев В. Б., Матусис И. И., Бронштейн JL М. Витамин Е. // В кн.: Экспериментальная витаминология / Под ред. Ю. М. Островского.- Минск: Наука и техника, 1979.- С. 18-57.

45. Стабровский Е. М. Энергетический обмен углеводов и его эндокринная регуляция в условиях действия низкой температуры среды на организм: Авто-реф. дисс. докт. биол. наук.- JL, 1975.- С. 44.

46. Теплый Д. JL, Ибрагимов Ф. X. Изменение проницаемости оболочек эритроцитов у грызунов под действием рыбьего жира, витамина Е и жирных кислот // Ж. эволюцион. биохимии и физиологии.- 1975.- т. 11(1).- С. 58-64.

47. Терсков И. А., Гительзон И. И. Эритрограммы как метод клинического исследования крови.- Красноярск, 1959.- С. 247.

48. Терсков И. А., Гительзон И. И. Значение дисперсионных методов анализа эритроцитов в норме и патологии // Вопросы биофизики , биохимии и патологии эритроцитов.- М.: Наука, 1967.- С. 41-48.

49. Ткаченко Е. Я. О соотношении сократительного и несократительного термо-генеза в организме при адаптации к холоду // Физиологические адаптации к холоду, условиям гор и субарктики / Под ред. К. П. Иванова , А. Д. Слоним.-Новосибирск: Наука, 1975.- С. 6-9.

50. Узбеков Г. А., Узбеков М. Г. Высокочувствительный микрометод фотометрического определения фосфора // Лаб. дело.- 1964.- №6.- С. 349-352.

51. Хочачка П., Сомеро Дж. Биохимическая адаптация: пер. с англ. М.: Мир, 1988.-576 с.

52. Щеглова А. И. Адаптивные изменения газообмена у грызунов с разной экологической специализацией // Физиологические адаптации к теплу и холоду / Под ред. А. Д. Слоним.- Л.: Наука, 1969.- С. 57-69.

53. Якушева И. Я., Орлова Л. И. Метод определения аденозинтрифосфатаз в ге-молизатах эритроцитов крови // Лаб. дело.- 1970.- № 8.- С. 497-501.

54. Agani F., Semenza G. L. Mersalyl is a novel inducer of vascular endothelial growth factor gene expression and hypoxia-inducible factor 1 activity // Mol. Pharmacol.- 1998.- Vol. 54(5).- P. 749-754.

55. Ahuja В. S., Nath R. A kinetik study of superoxide dismutase in normal human erytrocytes and its possible role in anemia and radiation damage // Simpos. on control mechanisms in cell, processes.- Bombey, 1973.- P. 531-544.

56. Aloia R. C., Raison J. K. Membrane function in mammalian hibernation // Bio-chim. Biophys. Acta.- 1989.- Vol. 988.- P. 123-146.

57. Asfour R. Y., Firzli S. Hematologic stadies in undernowrished children with low serum vitamin E levels // Amer. J. Clin. Nutr.- 1965.- Vol. 17(3).- P. 158-163.

58. Ashour M. N., Salem S. I., El Gadban H. M., Elwan N. M., Basu Т. K. Antioxidant status in children with protein-energy malnutrition (РЕМ) living in Cairo, Egypt //Eur. J. Clin. Nutr.- 1999.- Vol. 53(8).- P. 669-673.

59. Bang H. O., Dierberg J., Nielsen A. B. Plasma lipid and lipoprotein pattern in Greenlandic west coast Eskimos // Lancet.- 1971.- Vol. 7710(1).- P. 1143-1145.

60. Barja G., Cadenas S., Rojas C., et al. Effect of dietary vitamin E levels on fatty acid profiles and nonenzymatic lipid peroxidation in the guinea pig liver // Lipids.-1996.- Vol. 31(9).- P. 963-970.

61. Barker M. О., Brin М. Mechanisms of lipid peroxidation in erithrocytes of vitamin E deficients rats and in phospholipid model sistems // Arch. Biochem. and Biophys.- 1975.- Vol. 166(1).- P. 32-40.

62. Battersby B. J., Moyes C. D. Influence of acclimation temperature on mitochondrial dna, rna and enzymes in skeletal muscle // APStracts.- 1998.- Vol. 5.- P. 195.

63. Beattie J. H., Black D. J., Wood A. M., Trayhurn P. Cold-induced expression of the metallothionein-1 gene in brown adipose tissue of rats // Am. J. Physiol.-1996.- Vol. 270(5).- Pt 2.- P. 971-977.

64. Bhaumik G., Srivastava К. K., Selvamurthy W., Purkayastha S. S. The role of free radicals in cold injuries // Int. J. Biometeorol.- 1995.- Vol. 38(4).- P. 171-175.

65. Brin M., Horn L. R., Barker M. O. Relationship between fatty acid composition oferithrocytes and susceptibility to vitamin E deficiency // Amer. J. Clin. Nutr.-%1974.- Vol. 27(9).- P. 945-950.

66. Caasi P. I., Hauswirt J. W., Nair P. P. Biosynthesis of heme in vitamin E deficiency // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 93-100.

67. Cadenas S., Rojas C., Perez-Campo R., Lopez-Torres M., Barja G. Vitamin E protects guinea pig liver from lipid peroxidation without depressing levels of antioxidants//Int. J. Biochem. Cell. Biol.- 1995.-Vol. 27(11).-P. 1175-1181.

68. Cai Q. Y., Chen X. S., Zhu L. Z., et al. Biochemical and morphological changes in the lenses of selenium and/or vitamin E deficient rats // Biomed. Environ. Sci.-1994.-Vol. 7(2).-P. 109-115.

69. Cannon R. O. Role of nitric oxide in cardiovascular disease: focus on the endothelium // Clin. Chem.- 1998.- Vol. 44.- P. 1809-1819.

70. Chaudiere J., Clement M., Gerard D., Bourre J. M. Brain alterations induced by vitamin E deficiency and intoxication with methyl ethyl ketone peroxide // Neuro-toxicology.- 1988.- Vol. 9 (2).- P. 173-179.

71. Chow С. K. Distribution of tocopherols in human plasma and red blood cells // Amer. J. Clin. Nutr.- 1975.- Vol. 28(7).- P. 756-760.

72. Chow С. K. Oxidative damage in the red cells of vitamin E-deficient rats // Free. Radic. Res. Commun.- 1992 vol. 16(4).- P. 247-258.

73. Chow С. K., Ibrahim W., Wei Z., Chan A. C. Vitamin E regulates mitochondrial hydrogen peroxide generation // Free Radic. Biol. Med.- 1999.- Vol. 27 (5-6).- P. 580-587.

74. Combs G. F. Influences of dietary vitamin E and selenium on the oxidant defense system of the chick//Poult. Sci.- 1981.- Vol. 60(9).- P. 2098-2105.

75. Cooke J. P., Dzau V. J. Nitric oxide synthase: Role in the Genesis of Vascular Disease // Ann. Rev. Med.- 1997.- Vol. 48.- P. 489-509.

76. Cowan D. В., Langille B. L. Cellular and molecular biology of vascular remodeling // Current Opinion in Lipidology.- 1996.- Vol. 7.- P. 94-100.

77. Das К. С., Lewis-Molock Y., White С. W. Elevation of manganese superoxide dismutase gene expression by thioredoxin // Am. J. Respir. Cell Mol. Biol.- 1997.-Vol. 17 (6).-P. 12713-12726.

78. Davidge S. Т., Ojimba J., McLaughlin M. K. Vascular Function in the Vitamin E Deprived Rat. An Interaction Between Nitric Oxide and Superoxide Anions // Hypertension.- 1998.- Vol. 31.- P. 830-835.

79. Davis T. R. A. Shivering and nonshivering heat production in animals and man // Cold Injury: Ed. S. H. Horvath.- N. Y., I960.- P. 223-269.

80. Davis T. R. A. Nonshivering thermogenesis // Feder. Proc.- 1963.- Vol. 22(3).- P. 777-782.

81. Depocas F. Calorigenesis from various organ systems in the whole animal // Feder. Proc.- I960.-Vol. 19(2).-P. 19-24.

82. Desaultes M., Zaror-Behrens G., Hims-Hagen J. Increased purine nucleotide binding, altered polipeptide composition and thermogenesis in brown adipose tissue mitochondria of cold-acclimated rats // Can. J. Biochem.- 1978.- Vol. 78(6).- P. 378-383.

83. Drexler H., Hornig B. Endothelial dysfunction in human disease // J. Mol. Cell. Cardiol.- 1999.- Vol. 31(1).- P. 51-60.

84. Dutta-Roy A. K. Therapy and clinical trials // Current Opinion in Lipidology.-1996.-Vol. 7.-P. 34-37.

85. Elmadfa I., Both-Bedenbender N., Sierakowski В., Steinhagen-Thiessen E. Significance of vitamin E in aging // Z. Gerontol.- 1986.- Vol. 19(3).- P. 206-214.

86. Farrace S., Cenni P., Tuozzi G., et al. Endocrine and psychophysiological aspects of human adaptation to the extreme //Physiol.Behav.- 1999.- Vol.66(4).- P.613-620.

87. Fernandez-Checa, J. C., Kaplowitz N., Garcia-Ruiz C., et al. Importance and characteristics of glutahione transport in mitochondria: defense against TNF-induced oxidative stress and defect induced by alcohol // APStracts.- 1997.-Vol.4.- P. 0073G.

88. Finkel T. Oxygen radicals and signaling // Current Opinion in Cell Biology.-1998.- Vol. 10.-P. 248-253.

89. Photobiol.- 1993.- Vol. 58(2).-P. 304-312.

90. Fudge D. S., Stevens E. D., Ballantyne J. S. Enzyme adaptation along a hetero-thermic tissue the visceral retia mirabilia of the bluefin tuna // APStracts.- 1997.-Vol. 4,- P. 0059R.

91. Givertz M. M., Colucci W. S. New targets for heart-failure therapy: endothelin, inflammatory cytokines, and oxidative stress // Lancet.- 1998.- Vol.352- Suppl 1.-P. 34-38.

92. Glofcheski D. J., Borrelli M. J., Stafford D. M., Kruuv J. Induction of tolerance to hypothermia and hyperthermia by a common mechanism in mammalian cells // J. Cell. Physiol.- 1993.- Vol. 156.- P. 104-111.

93. Chemical Biology.- 1999.- Vol. 3.- P. 226-235.1 ll.Guarnieri C., Flamigni F., Caldarera R. C:, Ferrari R. Myocardial mitochondrial functions in alpha-tocopherol-deficient and -refed rabbits // Adv. Myocardiol.-1982.- Vol.3.- P. 621-627.

94. Hardewig I., Van Dijk P. L. M., Portner H. O. High energy turnover at low temperatures: recovery from exhaustive exercise in antarctic and temperate eelpouts (zoarcidae) // APStracts.- 1998.- Vol. 5.- P. 0083R.

95. Hassan H., Hashins A., van Italie Т. В., Sebrell W. H. Syndrom in premature infants anemia associated with low plasma vitamin E level and high poliunsaturated fatty acid diet // Amer. J. Clin. Nutr.-1966.- Vol. 19(3).- P. 147-153.

96. Hauswirth G. W., Nair P. P. Some aspects of vitamine E in expression of biological information // Ann. N. Y. Acad. Sci.- 1972.- Vol. 203.- P. 111-122.

97. Henle E. S., Linn S. Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide // J. Biol, chem.- 1997.- Vol. 272(31).- P. 19095-19098.

98. Higashi Y., Sasaki S., Sasaki N., et al. Daily aerobic exercise improves reactive hyperemia in patients with essential hypertension // Hypertension.- 1999.- Vol. 33(1).-Pt 2.-P. 591-597.

99. Howarth P. H Pathogenic mechanisms: a rational basis for treatment // В. M. J.-1998.-Vol. 316.-P. 758-761.

100. Hubbell R. В., Mendel L. В., Wakeman A. J. A new salt mixture for use in experimental diets // J. Nutr.- 1937.- Vol. 14.- P. 273-285.

101. Jacob R. A., Burri B. J. Oxidative damage and defense // Am. J. Clin. Nutr.-1996.- Vol. 63.- P. 985S-990S.

102. Jain S. K., Wise R. Relationship between elevated lipid peroxides, vitamin E deficiency and hypertension in preeclampsia // Mol. Cell. Biochem.- 1995.- Vol. 151(1).-P. 33-38.

103. Karel P., Palkovits M., Yadid G., et al. Heterogeneous neurochemical responses to different stressors: a test of selye"s doctrine of nonspecificity // APStracts.-1998.-Vol. 5.-P. 0221R.

104. Kausalya S., Nath J. Interactive role of nitric oxide and superoxide anion in neu-trophil-mediated endothelial cell in injury // J. Leukoc. Biol.- 1998.- Vol. 64(2).-P. 185-191.

105. Kemeny M., Peakman M. Immunology // В. M. J.- 1998.- Vol. 316.- P. 600-603.

106. Kozyreva Т. V., Tkachenko E. Y., Kozaruk V. P., Latysheva Т. V., Gilinsky M. A. The effects of slow and rapid cooling on catecholamine concentration in arterial plasma and the skin // APStracts.- 1999.- Vol. 6.- P. 0081R.

107. Lauren N., Chaudhuri G. Estrogens and atherosclerosis // Ann. Rev. Pharmacol. Toxicol.- 1997.- Vol. 37.- P. 477-515.

108. Lawler J. M., Cline С. C., Hu Z., Coast J. R. Effect of oxidative stress and acidosis on diaphragm contractile function // Am. J. Physiol.- 1997.- Vol. 273(2).- Pt 2.-P. 630-636.

109. Lin В., Coughlin S., Pilch P. F. Bi-directional regulation of uncoupling protein-3 and glut4 mrna in skeletal muscle by cold // APStracts.- 1998.- Vol. 5.- P. 0115E.

110. Lindquist J. M., Rehnmark S. Ambient temperature regulation of apoptosis in brown adipose tissue // J. Biol. Chem.- 1998.- Vol. 273(46).-P. 30147-30156.

111. Lowry О. H., Rosenbrough N. G., Farr A. L., Randell R. I. Protein measurement with the Folin phenol reagent // J. Biol. Chem.-195L- Vol. 193.- P. 265-275.

112. Luoma P. V., Nayha S., Sikkila K., Hassi J. High serum alpha-tocopherol, albumin, selenium and cholesterol, and low mortality from coronary heart disease in northern Finland//J.Intern. Med.- 1995.-Vol. 237(1).-P. 49-54.

113. Luscher T. F., Noll G., Vanhoutte P. M. Endothelial dysfunction in hypertension //J.Hypertens.- 1996.- Vol. 14(5).- P. 383-393.

114. Machlin L. J., Filipski R., Nelson J., Horn L. R., Brin M. Effect of prolonged vitamin E deficiency in the rat // J. Nutr.- 1977.- Vol. 107(7).- P. 1200-1208.

115. Marmonier F., Duchamp C., Cohen-Adad F., Eldershaw T. P. D., Barra H. Hormonal control of thermogenesis in perfused muscle of muscovy ducklings // AP-Stracts.-1997.- Vol. 4.- P. 0286R.

116. Marvin H. N. Erithrocyte survival of rat deficient in vitamin E or vitamin B6 // J. Nutr.- 1963.-Vol. 80(2).-P. 185-190.

117. Masugi F., Nakamura T. Effect of vitamin E deficiency on the level of superoxide dismutase, glutathione peroxidase, catalase and lipid peroxide in rat liver // Int. J. Vitam. Nutr. Res.- 1976.- Vol. 46 (2).- P. 187-191.

118. Matsuo M., Gomi F., Dooley M. M. Age-related alterations in antioxidant capacity and lipid peroxidation in brain, liver, and lung homogenates of normal and vitamin E-deficient rats // Mech. Ageing Dev.- 1992.- Vol. 64(3).- P. 273-292.

119. Mazor D., Brill G., Shorer Z., Moses S., Meyerstein N. Oxidative damage in red blood cells of vitamin E deficient patients // Clin. Chim. Acta.- 1997.- Vol. 265 (l).-P. 131-137.

120. Mircevova L. The role of Mg++-ATPase (actomyosine-like protein) in maintaining the biconcave shape of erythrocytes // Blut.- 1977.- vol 35(4).- P. 323-327.

121. Mircevova L., Victora L., Kodicek M., Rehackova H., Simonova A. The role of spectrin dependent ATPase in erytrocyte shape maintenance // Biomed. Biochim. Acta.- 1983.- Vol. 42(11/12).- P. 67-71.

122. Nair P. P. Vitamine E and metabolic regulation // Ann. N. Y. Acad. Sci.- 1972a.-Vol. 203.- P. 53-61.

123. Nair P. P. Vitamine E regulation of the biosintesis of porphirins and heme // J. Agr. and Food Chem.- 1972b.- Vol. 20(3).- P. 476-480.

124. Nakamura Т., Moriya M., Murakoshi N., Shimizu Y., Nishimura M. Effects of phenylalanine and tyrosine on cold acclimation in mice // Nippon Yakurigaku Zasshi.- 1997.-Vol. 110(1).-P. 177-182.

125. Nath K. A., Grande J., Croatt A., et al. Redox regulation of renal DNA synthesis, transforming growth factor-betal and collagen gene expression // Kidney Int.-1998.- Vol. 53(2).- P. 367-381.

126. Nathan C. Perspectives Series: Nitric Oxide and Nitric Oxide Synthases Inducible Nitric Oxide Synthase: What Difference Does It Make? // J. Clin. Invest.1997.- Vol. 100(10).- P. 2417-2423.

127. Newaz M. A., Nawal N. N. Effect of alpha-tocopherol on lipid peroxidation and total antioxidant status in spontaneously hypertensive rats // Am J Hypertens.1998.-Vol. 11(12).-P. 1480-1485.

128. Nishiyama H., Itoh K., Kaneko Y., et al. Glycine-rich RNA-binding Protein Mediating Cold-inducible Suppression of Mammalian Cell Growth // J. Cell. Biol.- 1997.- Vol. 137(4).- P. 899-908.

129. Nohl H. Generation of superoxide radicals as byproduct of cellular respiration // Ann. Biol. Clin. (Paris).- 1994.- Vol. 52(3).- P. 199-204.

130. Pendergast D. R., Krasney J. A., De Roberts D. Effects of immersio in cool water on lung-exhaled nitric oxide at rest and during exercise // Respir. Physiol.-1999.-Vol. 115(1).-P. 73-81.

131. Peng J. F., Kimura В., Fregly M., Phillips M. I. Reduction of cold-induced hypertension by antisense oligodeoxynucleotides to angiotensinogen mRNA and ATi receptor mRNA in brain and blood // Hypertension.- 1998.- Vol. 31.- P. 13171323.

132. Pinkus R., Weiner L. M., Daniel V. Role of oxidants and antioxidants in the induction of AP-1, NF-kappa В and glutathione S~transferase gene expression // J. Biol. Client.- 1996.- Vol. 271(23).- P. 13422-13429.

133. Pipkin F. B. Fortnightly Review: The hypertensive disorders of pregnancy // BMJ.- 1995.-Vol. 311.-P. 609-613.

134. Reis S. E., Blumenthal R. S., Gloth S. Т., Gerstenblith R. G., Brinken J. A. Estrogen acutely abolishes cold-induced coronary vasoconstriction in postmenopausal women // Circulation.- 1994.- Vol. 90.- P. 457.

135. Salminen A., Kainulainen H., Arstila A. U., Vihko V. Vitamin E deficiency and the susceptibility to lipid peroxidation of mouse cardiac and skeletal muscles // Acta Physiol. Scand.- 1984.- Vol. 122(4).- P. 565-570.

136. Sampson G. M. A., Muller D. P. Studies on the neurobiology of vitamin E (al-pha-tocopherol) and some other antioxidant systems in the rat // Neuropathol. Appl. Neurobiol.- 1987.- Vol. 13(4).- P. 289-296.

137. Sen С. К., Atalay М., Agren J., Laaksonen D. E., Roy S., Hanninen O. Fish oil and vitamin E supplementation in oxidative stress at rest and after physical exercise // APStracts.- 1997.- Vol. 4.- P. 0101 A.

138. Shapiro S. S., Mott D. D., Machlin L. J. Altered binding of glyceraldehyde 3 -phosphate dehidrogenase to its binding site in vitamine E - deficient red blood cells //Nutr. Rept. Int.- 1982.- Vol. 25(3).- P. 507-517.

139. Sharmanov А. Т., Aidarkhanov В. В., Kurmangalinov S. M. Effect of vitamin E deficiency on oxidative metabolism and antioxidant enzyme activity of macrophages // Ann. Nutr. Metab.- 1990.- Vol. 34(3).- P. 143-146.

140. Siddons R. C., Mills C. F. Glutatione peroxidase activity and erythrocyte stability in calves differing in selenium and vitamin E status // Brit. J. Nutr.-1981.- Vol. 46(2).-P. 345-355.

141. Simonoff M., Sergeant C., Gamier N., et al. Antioxidant status (selenium, vitamins A and E) and aging // EXS.- 1992.- Vol. 62.- P. 368-397.

142. Sklan D., Rabinowitch H. D., Donaghue S. Superoxide dismutase: effect of vitamins A and E // Nutr. Rept. Int.- 1981.- Vol. 24(3).- P. 551-555.

143. Smith S. C., Guilbert L. J., Yui J., Baker P. N., Davidge S. T. The role of reactive nitrogen/oxygen intermediates in cytokine-induced trophoblast apoptosis // Placenta.- 1999.- Vol. 20(4).- P. 309-315.

144. Snircova M., Kucharska J., Herichova I., Bada V., Gvozdjakova A. The effect of an alpha-tocopherol analog, MDL 73404, on myocardial bioenergetics // Bratisl Lek Listy.- 1996.- Vol. 97. P. 355-359.

145. Soliman M. K. Uber die Blutveranderungen bei Ratten nach verfuttem einer Tocopherol und Ubichinon Mangeldiat. 1. Zytologische und biochemische Ve-randerungen im Blut von vitamin E Mangelratten // Zbl. Veterinarmed.- 1973.-Vol. 20(8).- P. 624-630.

146. Stampfer M. J., Hennekens С. H., Manson J. E., et al. Vitamin E consumption and the risk of coronary disease in women // N. Engl. J. Med.- 1993.- Vol. 328.- P. 1444-1449.

147. Sun J. Z., Tang X. L., Park S. W., et al. Evidence for an Essential Role of Reactive Oxygen Species in the Genesis of Late Preconditioning Against Myocardial Stunning in Conscious Pigs // J. Clin. Invest. 1996,- Vol. 97 (2).- P. 562-576.

148. Sun Z., Cade J. R., Fregly M. J. Cold-induced hypertension. A model of miner-alocorticoid-induced hypertension// Ann.N.Y.Acad.Sci.- 1997.- Vol.813.- P.682-688.

149. Sun Z., Cade R, Katovich M. J., Fregly M. J. Body fluid distribution in rats with cold-induced hypertension // Physiol. Behav.- 1999.- Vol. 65(4-5).- P. 879-884.

150. Sundaresan M., Yu Z.-X., Ferrans V. J., Irani K., Finkel T. Requirement for generation of H202 for platelet-derived growth factor signal transduction // Science (Wash. DC).- 1995.- Vol. 270.- P. 296-299.

151. Suzuki J., Gao M., Ohinata H., Kuroshima A., Koyama T. Chronic cold exposure stimulates microvascular remodeling preferentially in oxidative muscles in rats // Jpn. J. Physiol.- 1997.- Vol. 47(6).- P. 513-520.

152. Tamai H., Miki M., Mino M. Hemolysis and membrane lipid changes induced by xanthine oxidase in vitamin E deficient red cells // J. Free Radic. Biol. Med.-1986.-Vol. 2(1).- P. 49-56.

153. Tanaka M., Sotomatsu A., Hirai S. Aging of the brain and vitamin E // J. Nutr. Sci. Vitaminol. (Tokyo).- 1992.- Spec. No.- P. 240-243.

154. Tappel A. L. Free radical lipid peroxidation damage and its inhibition by vita-mine E and selenium // Fed. Proc.- 1965.- Vol. 24(1).- P. 73-78.

155. Tappel A. L. Lipid peroxidation damage to cell components // Fed. Proc.- 1973.-Vol. 32(8).-P. 1870-1874.

156. Taylor A.J. N. Asthma and allergy // В. M. J.- 1998.- Vol. 316.- P. 997-999.

157. Tate D. J., Miceli M. V., Newsome D. A. Phagocytosis and H2C>2 induce catalase and metaliothionein irene expression in human retinal pigment epithelial cells // Invest. Onithalmol. Vis. Sci.- 1995.- Vol. 36.- P. 1271-1279.

158. Tensuo N. Effect of daily infusion of noradrenaline on metabolism and skin temperature in rabbits // J. Appl. Physiol.- 1972.- Vol. 32(2).- P. 199-202.

159. Tiidus P. M., Houston M. E. Antioxidant and oxidative enzyme adaptations to vitamin E deprivation and training // Med. Sci. Sports. Exerc.- 1994.- Vol. 26(3).-P. 354-359.

160. Tsen С. C., Collier H. B. The protective action of tocopherol against hemolisis of rat eritrocites by dialuric acid // Canad. J. Biochem. Physiol.- I960.- Vol. 38(9).- P. 957-964.

161. Tudhope G. R., Hopkins J. Lipid peroxidation in human erythrocytes in tocopherol deficiency // Acta Haematol.- 1975.- Vol. 53(2).- P. 98-104.

162. Valentine J. S., Wertz D. L., Lyons T. J., Liou L.-L., Goto J. J., Gralla E. B. The dark side of dioxygen biochemistry // Current Opinion in Chemical Biology.-1998.-Vol. 2.-P. 253-262.

163. Vransky V. K. Red blood cell membrane resistanse // Biophys. Membrane Transport.- Wroclaw.- 1976.- Part 2.- P. 185-213.

164. Vuillanine R. Role biologiqe et mode d" action des vitamines E // Rec. med vet.-1974.-Vol. 150(7).-P. 587-592.

165. Wang J., Huang C. J., Chow С. K. Red cell vitamin E and oxidative damage: a dual role of reducing agents // Free Radic. Res.- 1996 Vol. 24(4).- P. 291-298.

166. Wagner B. A., Buettner G. R., Burns C. P. Vitamin E slows the rate of free radical-mediated lipid peroxidation in cells // Arch. Biochem. Biophys.- 1996.- Vol. 334.-P. 261-267.

167. Wallace J. L., Bell C. J. Gastroduodenal mucosal defense // Current Opinion in Gastroenterology 1994 .-Vol. 10.-P. 589-594.

168. Walsh D. M., Kennedy D. G., Goodall E. A., Kennedy S. Antioxidant enzyme activity in the muscles of calves depleted of vitamin E or selenium or both // Br. J. Nutr.- 1993.- Vol. 70(2).- P. 621-630.

169. Watson A. L., Palmer M. E., Jauniaux E., Burton G. J. Variations in expression of copper/zinc superoxide dismutase in villous trophoblast of the human placenta with gestational age // Placenta.- 1997.- Vol. 18(4).- P. 295-299.

170. Young J. В., Shimano Y. Effects of rearing temperature on body weight and abdominal fat in male and female rats // APStracts.-1991.- Vol. 4.- P. 041 OR.

171. Zeiher A. M., Drexler H., Wollschlager H., Just H. Endothelial dysfunction of the coronary microvasculature is associated with coronary blood flow regulation in patients with early atherosclerosis // Circulation.- 1991.- Vol. 84.- P. 19841992.

Обратите внимание, представленные выше научные тексты размещены для ознакомления и получены посредством распознавания оригинальных текстов диссертаций (OCR). В связи с чем, в них могут содержаться ошибки, связанные с несовершенством алгоритмов распознавания.
В PDF файлах диссертаций и авторефератов, которые мы доставляем, подобных ошибок нет.



Для того чтобы понять механизмы закаливания, в том числе и механизмы адаптации детей к сниженной температуре среды, необходимо разобрать вопросы, связанные с терморегуляцией в раннем постнатальном периоде.
В антенатальном периоде организм развивается в условиях постоянной температуры, равной температуре тела матери. Постоянство температуры окружающей среды во внутриутробном периоде является важным и непременным фактором раннего развития, поскольку плод еще не способен сам поддерживать собственную температуру тела. Преждевременно рождающиеся дети, а также незрелорождающиеся млекопитающие в условиях обычной температуры окружающей среды, равной 21-22 °С, не могут поддерживать гомойотер- мию и потому снижают температуру собственного тела. Исследования показали, что однократное или многократное снижение температуры беременного животного не безразлично для внутриутробного развития и приводит к существенной задержке роста и развития плода.
Сразу после рождения температура окружающей среды для ребенка снижается на 10-15 °С.
Какие физиологические закономерности лежат в основе регуляции функций в этих условиях? Пониманию законо-мерностей целого организма в значительной степени способствует развитие системного подхода в биологии и медицине. Системы нередко определяются как «совокупность отдельных элементов», их «упорядоченность». Открытие системных закономерностей в деятельности живых систем связано с именем академика П. К. Анохина. П. К. Анохин обратил внимание на то, что системы живых организмов не просто упорядочивают входящие в них отдельные элементы, но и объединяют их для осуществления отдельных жизненно важных функций. Такие системы получили название функциональных систем.
Системообразующим фактором функциональной системы любой степени сложности (по П. К. Анохину) являются полезные приспособительные результаты для системы и организма в целом. К ним относятся: 1) показатели внутренней среды (питательные вещества, кислород, температура, реакции крови, осмотическое и кровяное давление), то, что в зна-чительной мере определяет уровень здоровья взрослых и детей; 2) результаты поведенческой и социальной деятельности, удовлетворяющие основные биологические потребности организма (пищевые, питьевые, оборонительные и т. д.) и социальные.
Рассмотрим отдельные узловые механизмы формирования функциональной системы, определяющей оптимальный для метаболизма уровень температуры тела. Она объединяет две подсистемы: подсистему внутренней эндогенной саморегуляции и подсистему поведенческой регуляции температуры тела [Макаров В. А., 1983]. Эндогенные механизмы саморегуляции за счет процессов теплопродукции и теплорегуля- ции определяют поддержание необходимой для метаболизма температуры тела. Однако в отдельных условиях действия этих механизмов становятся недостаточными. Тогда на основе первичных изменений внутри организма рождается мотивация к изменению положения организма во внешней среде и возникает поведение, направленное на восстановление температурного оптимума организма.
Принципиальная архитектура функциональной системы, поддерживающей температуру тела на оптимальном для метаболизма уровне, представлена на рис. 2. Полезным приспособительным результатом данной функциональной системы является температура крови, которая, с одной стороны, обеспечивает нормальное течение обменных процессов в организме, а с другой стороны, сама определяется интенсивностью процессов метаболизма.
Для нормального течения метаболических процессов го- мойотермные животные, в том числе и человек, вынуждены поддерживать температуру тела на относительно постоянном уровне. Измерение температуры в течение дня позволяет определить ее суточные колебания с наивысшим уровнем в 12-16 ч и низшим - в 2-4 ч. Эти колебания идут параллельно с функциональными сдвигами процессов кровообращения, дыхания, пищеварения и др. и отражают, таким образом, суточные колебания жизнедеятельности организма, обусловленные биологическими ритмами. Благодаря механизмам саморегуляции необходимая для обмена веществ температура поддерживается уже в крови. Температура крови и ее малейшие изменения немедленно воспринимаются терморецепторами сосудов или клетками гипоталамической области. В случае повышения температуры крови усиливаются процессы теплоотдачи за счет расширения сосудов, усиления потери тепла конвекцией, излучением и др. Одновременно с этим наблюдается торможение процессов теплопродукции.
При повышении температуры крови усиливаются процессы теплопродукции за счет мышечной деятельности, дрожи, усиления клеточного метаболизма. Наряду с этим тормозятся процессы теплоотдачи, что и приводит к восстановлению температуры крови. Данная функциональная система находится в постоянных взаимоотношениях с внешней средой посредством действия внешней температуры на терморецепторы кожи.
В последние годы установлено, что в раннем возрасте уже осуществляется функция теплопродукции, которая обеспечивается в первую очередь активностью бурого жира. У плода уже в антенатальном периоде представлена бурая жировая ткань, расположенная главным образом в межлопаточной области [Новикова Е. Ч., Корниенко И. А. и др., 1972; Корниенко И. А., 1979]. Показано, что усиление функции бурого жира связано с возрастанием симпатической регуляции, а именно с изменением содержания норадреналина.
Теплопродукция за счет сократительной активности скелетных мышц в раннем постнатальном возрасте не является основной, первостепенной. У детей еще отсутствует холодовая дрожь. Вместе с тем у них, начиная с периода новорожденное™, уже представлен терморегуляционный тонус скелетных мышц, который приводит к созданию специфической позы (согнутое положение конечностей по отношению к туловищу, что обеспечивает повышение теплопродукции). Во время сна тонус скелетных мышц исчезает, но терморегуляционная активность бурой жировой ткани обеспечивает термогенез и во время сна.
В раннем постнатальном возрасте скелетная мускулатура принимает участие в терморегуляции только при значительном снижении температуры среды. В более старшем возрасте (172-3 года) терморегуляционная активность скелетных мышц начинает проявляться при местном охлаждении - погружении рук в холодную воду (+15 °С) на 2 мин.
С возрастом происходит уменьшение роли химической терморегуляции и возрастание физической терморегуляции, о чем свидетельствует снижение кожной температуры и тем самым увеличение температурных градиентов туловища и конечностей [Кореневская Е. И. и др., 1971; Саатов М. С., 1974; Гохблит И. И., Корниенко И. А., 1978].
Сниженная температура среды через раздражение рецепторов кожи и легких может стимулировать центры иннервации скелетных мышц и способствовать возникновению так называемого терморегуляциопного мышечного тонуса. Как представлены адаптивные механизмы поддержания постоянной температуры тела у взрослого и растущего организма?
Существенное значение в терморегуляции как у взрослых, так и у детей принадлежит скелетной мускулатуре. Однако в детском возрасте значение скелетной мускулатуры в каче-стве фактора теплопродукции меньше, чем у взрослых, поскольку у взрослых больше масса мускулатуры. Она составляет 40 %, в то время как у детей - на 10 % меньше.
Большая роль в теплопродукции отводится печени, кишечнику, причем тем большая, чем меньше возраст ребенка. Хорошо известно, что сокращение мышцы сопровождается освобождением тепла. Однако химическая терморегуляция может проявляться и при отсутствии сократительной деятельности мышц. Это явление получило название «химический тонус», «бездрожевой», «несократительный термогенез».
В настоящее время показано, что функциональная система терморегуляции включает в себя корковый и гипота- ламический отделы мозга [Нетт^\уау А., 1963]. Закаливание изменяет в целом деятельность нервной системы и эндокринного аппарата, приводит к формированию новых условных рефлексов [Миих А. А., 1980].
Как уже было сказано, начальные стадии адаптации к холоду обязаны усилению теплообразования за счет возрастания мышечной активности. Далее дрожевая активность меняется на несократительный термогенез, связанный с возникновением свободного окисления.
Таким образом, если на уровне целостного организма адаптация к холоду вызывает возбуждение симпатического отдела нервной системы, то на уровне клетки адаптивные изменения приводят к увеличению свободного окисления. Это ведет к падению концентрации макроэргов, увеличению потен
циала фосфорилирования, мобилизации гликолиза, что в конечном итоге направлено на увеличение активности генетического аппарата клеток и увеличение количества митохондрий [Меерсон Ф. 3., 1973].
Адаптация к низкой температуре среды предполагает не только увеличение теплопродукции, что обеспечило бы растущему организму выживание, но и сохранение или увеличение рабочих возможностей организма в среде. Иными словами, адаптация к холоду предполагает высокий уровень разобщения окисления и фосфорилирования - возрастание мощности системы разобщения.
Установлено, что адаптация к холоду в раннем постнатальном возрасте может привести к увеличению рабочих воз-‘ можностей сердечно-сосудистой системы. При этом возрастает содержание миоглобина как в сердце, так и в скелетных мышцах [Празников В. П., 1972].
Во время адаптации взрослого организма к холоду происходит увеличение концентрации катехоламинов и, в частности, норадреналина в плазме крови и моче. Чувствительность организма к адреналину и норадреналину во время адаптации к холоду существенно возрастает и становится большей, чем у неадаптированных к холоду животных [Меерсон Ф. 3., Гомазков О. А., 1970]. Еще большая чувствительность к холоду имела место у животных раннего возраста. При фармакологическом выведении катехоламинов из тканей и крови животных раннего возраста происходит резкое снижение адаптивной устойчивости к холоду.
Адаптация детского организма к сниженной температуре среды в целях увеличения устойчивости, резистентности по отношению к переохлаждению и возникновению заболеваний может быть рассмотрена на примере временных холодовых экспозиций, а также на «модели» адаптации детей к условиям Севера. При этом имеется в виду изыскание оптимальных условий проведения различных приемов закаливания в условиях средней полосы и Севера. С другой стороны, адаптация детей к Европейскому и Азиатскому Северу вскрывает те факторы риска, которые могут встретиться при чрезмерной адаптации, при чрезмерном закаливании ребенка к холоду в средней полосе или даже на юге. Чрезмерная адаптация ведет, как правило, к «полому» возможностей сопротивления организма к ряду средовых воздействий и возникновению заболеваний.
Содержание
I . Введение

II . Основная часть

1. Оптиум и пессиум. Сумма эффективности температур

2. Пойкилотермные организмы

2.1 Пассивная устойчивость

2.2 Скорость метаболизма

2.3 Температурные адаптации

3. Гомойотермные организмы

3.1 Температура тела

3.2 Механизм терморегуляции

Список литературы
I. Введение
Организмы – реальные носители жизни, дискретные единицы обмена веществ. В процессе обмена организм потребляет из окружающей среды необходимые вещества и выделяет в нее продукты обмена, которые могут быть использованы другими организмами; умирая, организм также становится источником питания определенных видов живых существ. Таким образом, деятельность отдельных организмов лежит в основе проявления жизни на всех уровнях ее организации.

Изучение фундаментальных процессов обмена веществ в живом организме – предмет физиологии. Однако эти процессы протекают в сложной, динамичной обстановке естественной среды обитания, находятся под постоянным воздействием комплекса ее факторов. Поддержание устойчивого обмена веществ в колеблющихся условиях внешней среды невозможно без специальных адаптаций. Изучение этих адаптаций – задача экологии.

Адаптации к средовым факторам могут основываться на структурных особенностях организма – морфааогические адаптации – или на специфических формах функционального ответа на внешние воздействия – физиологические адаптации. У высших животных важную роль в адаптации играет высшая нервная деятельность , на базе которой формируются приспособительные формы поведения – экологические адаптации.

В области изучения адаптаций на уровне организма эколог приходит в наиболее тесное взаимодействие с физиологией и применяет многие физиологические методы. Однако, применяя физиологические методики, экологи используют их для решения своих специфических задач: эколога в первую очередь интересует не тонкая структура физиологического процесса , а его конечный результат и зависимость процесса от воздействия внешних факторов. Иными словами, в экологии физиологические показатели служат критериями реакции организма на внешние условия, а физиологические процессы рассматриваются прежде всего как механизм, обеспечивающий бесперебойное осуществление фундаментальных физиологических функций в сложной и динамичной среде.
II. ОСНОВНАЯ ЧАСТЬ
1. Оптимум и пессимум. Сумма эффективных температур
Любой организм способен жить в пределах определенного диапазона температур. Диапазон температур на планетах Солнечной системы равен тысячам градусов, а пределы . В которых может существовать известная нам жизнь , очень узки- от -200 до +100°С. Большинство видов обитает в еще более узком температурном диапазоне.

Некоторые организмы. Особенно в стадии покоя, могут существовать при очень низких температурах, а отдельные виды микроорганизмов способны жить и размножаться в городских источниках при температуре, близкой к точке кипения. Диапазон колебаний температуры в воде обычно меньший, чем на суше. Соответственно изменяется и диапазон толерантности. С температурой часто связаны зональность и стратификация как в воде, так и в сухопутных местах обитания. Важны также степень изменчивости температуры и ее колебания , то есть если температура изменяется в пределах от10 до 20 С и среднее значение составляет 15 С, то это не значит, что колеблющаяся температура оказывает такое же действие, что и постоянная. Многие организмы лучше развиваются в условиях переменных температур.

Оптимальные условия те, при которых все физиологические процессы в организме или экосистемах идут с максимальной эффективностью. Для большинства видов температурный оптимум находится в пределах 20-25° С, несколько сдвигаясь в ту или другую стороны: в сухих тропиках он выше – 25-28°С, в умеренных и холодных зонах ниже – 10-20°С. В ходе эволюции, приспосабливаясь не только к периодическим изменениям температуры, но и к разным по теплообеспеченности районам, растения и животные выработали в себе различную потребность к теплу в разные периоды жизни. У каждого вида свой оптимальный диапазон температур, причем и для разных процессов (роста, цветения, плодоношения и др.) имеются тоже «свои» значения оптимумов.

Известно, что физиологические процессы в тканях растений начинаются при температуре +5°С и активизируются при +10°С и выше. В приморских лесах развитие весенних видов особенно четко связаны со среднесуточными температурами от -5°С до +5°С. За день-два до перехода температур через -5°С под лесной подстилкой начинается развитие весенника звездчатого и адониса амурского, а во время перехода через 0°С - появляются первые цветущие особи. И уже при среднесуточной температуре +5°С цветут оба вида. Из-за недостатка тепла ни адонис, ни весенник не образуют сплошного покрова, растут одиночно, реже - по нескольку особей вместе. Чуть-чуть позже них - с разницей в 1-3 дня, трогаются в рост и зацветают ветреницы.

Температуры, «лежащие» между летальными и оптимальными относятся к пессимальным. В зоне пессимумов все жизненные процессы идут очень слабо и очень медленно.

Температуры, при которых происходят активные физиологические процессы, называются эффективными, значения их не выходят за пределы летальных температур. Суммы эффективных температур (ЭТ), или сумма тепла, величина постоянная для каждого вида. Ее рассчитывают по формуле:
ЭТ = (t – t1) × n,
Где t – температура окружающей среды (фактическая), t1 – температура нижнего порога развития, часто 10°С, n – продолжительность развития в днях (часах).

Выявлено, что каждая фаза развития растений и эктотермных животных наступает при определенном значении этого показателя, при условии, что и другие факторы в оптимуме. Так, цветение мать-и-мачехи наступает при сумме температур 77°С, земляники – при 500°С. Сумма эффективных температур (ЭТ) для всего жизненного цикла позволяет выявить потенциальный географический ареал любого вида, а также сделать ретроспективный анализ распространения видов в прошлом. Например, северный предел древесной растительности, в частности лиственницы Каяндера, совпадает с июльской изотермой +12°С и суммой ЭТ выше 10°С – 600°. Для ранних с х культур сумма ЭТ составляет 750°, этого вполне достаточно для выращивания ранних сортов картофеля даже в Магаданской области. А для кедра корейского сумма ЭТ составляет 2200°, пихты цельнолистной – около 2600°, поэтому и растут оба вида в Приморье, и пихта (Abies holophylla) – только на юге края.
2. ПОЙКИЛОТЕРМНЫЕ ОРГАНИЗМЫ
К пойкилотермным (от греч. poikilos – изменчивый, меняющийся) организмам относят все таксоны органического мира, кроме двух классов позвоночных животных – птиц и млекопитающих. Название подчеркивает одно из наиболее за заметных свойств представителей этой группы: неустойчивость, температуры их тела, меняющейся в широких пределах в зависимости от изменений температуры окружающей среды.

Температура тела . Принципиальная особенность теплообмена пойкилотермных организмов заключается в том, что благодаря относительно низкому уровню метаболизма главным источником энергии у них является внешнее тепло. Именно этим объясняется прямая зависимость температуры тела пойкилотермных от температуры среды, точнее от притока теплоты извне, поскольку наземные пойкилотермные формы используют также и радиационный обогрев.

Впрочем, полное соответствие температур тела и среды наблюдается редко и свойственно главным образом организмам очень мелких размеров. В большинстве случаев существует некоторое расхождение между этими показателями. В диапазоне низких и умеренных температур среды температура тела организмов, не находящихся в состоянии оцепенения, оказывается более высокой, а в очень жарких условиях – более низкой. Причина превышения температуры тела над средой заключается в том, что даже при низком уровне обмена продуцируется эндогенное тепло – оно и вызывает повышение температуры тела. Это проявляется, в частности, в существенном повышении температуры у активно двигающихся животных. Например, у насекомых в покое превышение температуры тела над средой выражается десятыми долями градуса, тогда как у активно летающих бабочек, шмелей и других видов температура поддерживается на уровне 36 – 40"С даже при температуре воздуха ниже 10"С.

Пониженная по сравнению со средой температура при жаре свойственна наземным организмам и объясняется в первую очередь потерями тепла с испарением, которое при высокой температуре и низкой влажности существенно увеличивается.

Скорость изменений температуры тела пойкилотермов связана обратной зависимостью с их размерами. Это прежде всего определяется соотношением массы и поверхности : у более крупных форм относительная поверхность тела уменьшается, что ведет к уменьшению скорости потери тепла. Это имеет большое экологическое значение, определяя для разных видов возможность заселения географических районов или биотопов с определенными режимами температур. Показано, например, что у крупных кожистых черепах, пойманных в холодных водах, температура в глубине тела была -, на 18"С выше температуры воды; именно крупные размеры позволяют этим черепахам проникать в более холодные районы океана, что не свойственно менее крупным видам.
2.1 Пассивная устойчивость
Рассмотренные закономерности охватывают диапазон изменений температуры, в пределах которого сохраняется активная жизнедеятельность. За границами этого диапазона, которые широко варьируют у разных видов и даже географических популяций одного вида, активные формы деятельности пойкилотермных организмов прекращаются, и они переходят в состояние оцепенения, характеризующееся резким снижением уровня обменных процессов, вплоть до полной потери видимых проявлений жизни. В таком пассивном состоянии пойкилотермные организмы могут переносить достаточно сильное повышение и еще более выраженное понижение температуры без патологических последствий. Основа такой температурной толерантности заключена в высокой степени тканевой устойчивости, свойственной всем видам пойкилотермных и часто поддерживаемой сильным обезвоживанием (семена , споры, некоторые мелкие животные).

Переход в состояние оцепенения следует рассматривать как адаптивную реакцию: почти не функционирующий организм не подвергается многим повреждающим воздействиям, а также не расходует энергию, что позволяет выжить при неблагоприятных условиях температур в течение длительного времени. Более того , сам процесс перехода в состояние оцепенения может быть формой активной перестройки типа реакции на температуру. «Закаливание» морозостойких растений – активный сезонный процесс , идущий поэтапно и связанный с достаточно сложными физиологическими и биохимическими изменениями в организме. У животных впадение в оцепенение в естественных условиях часто также выражено сезонно и предваряется комплексом физиологических перестроек в организме. Есть данные, что процесс перехода к оцепенению может регулироваться какими-то гормональными факторами; объективный материал по этому поводу еще не достаточен для широких выводов.

При переходе температуры среды за пределы толерантности наступает гибель организма от причин, рассмотренных в начале этой главы.
2.2 Скорость метаболизма
Изменчивость температуры влечет за собой соответствующие изменения скорости обменных реакций. Поскольку динамика температуры тела пойкилотермных организмов определяется изменениями температуры среды интенсивность метаболизма также оказывается в прямой зависимости от внешней температуры. Скорость потребления кислорода , в частности, при быстрых изменениях температуры следует за этими изменениями, увеличиваясь при повышении ее и уменьшаясь при снижении. То же относится и к другим физиологическим функциям : частота сердцебиений, интенсивность пищеварения и т. д. У растений в зависимости от температуры изменяются темпы поступления воды и питательных веществ через корни: повышение температуры до определенного предела увеличивает проницаемость протоплазмы для воды. Показано, что при понижении температуры от 20 до 0"С поглощение воды корнями уменьшается на 60 – 70%. Как и у животных, повышение температуры вызывает у растений усиление дыхания.

Последний пример показывает, что влияние температуры не прямолинейно: по достижении определенного порога стимуляция процесса сменяется его подавлением. Это общее правило, объясняющееся приближением к зоне порога нормальной жизни.

У животных зависимость от температуры весьма заметно выражена в изменениях активности, которая отражает суммарную реакцию организма и у пойкилотермных форм самым существенным образом зависит от температурных условий. Хорошо известно, что насекомые , ящерицы и многие другие животные наиболее подвижны в теплое время суток и в теплые дни, тогда как при прохладной погоде они становятся вялыми, малоподвижными. Начало их активной деятельности определяется скоростью разогревания организма, зависящей от температуры среды и от прямого солнечного облучения. Уровень подвижности активных животных в принципе также связан с окружающей температурой, хотя у наиболее активных форм эта связь может “маскироваться” эндогенной теплопродукцией, связанной с работой мускулатуры.

2.3 Температурные адаптации

Пойкилотермные живые организмы распространены во всех средах, занимая различные по температурным условиям местообитания, вплоть до самых экстремальных: практически они обитают во всем диапазоне температур, регистрируемом в биосфере. Сохраняя во всех случаях общие принципы температурных реакций (рассмотренные выше) , разные виды и даже популяции одного вида проявляют эти реакции в соответствии с особенностями климата , адаптируют ответы организма на определенный диапазон температурных воздействий. Это проявляется, в частности, в формах устойчивости к теплу и холоду: виды, обитающие в более холодном климате , отличаются большей устойчивостью к низким температурам и меньшей к высоким; обитатели жарких регионов проявляют обратные реакции.

Известно, что растения тропических лесов повреждаются и погибают при температурах + 5...+ 8 0С, тогда как обитатели сибирской тайги выдерживают в состоянии оцепенения полное промерзание.

Различные виды карпозубых рыб показали отчетливую корреляцию верхнего летального порога с температурой воды в свойственных виду водоемах.

Арктические и антарктические рыбы , напротив, показывают высокую устойчивость к низким температурам и весьма чувствительны к ее повышению. Так, антарктические рыбы погибают при повышении температуры до 6"С. Аналогичные данные получены по многим видам пойкилотермных животных. Например, наблюдения на о-ве Хоккайдо (Япония) показали отчетливую связь холодоустойчивости нескольких видов жуков и их личинок с их зимней экологией : наиболее устойчивыми оказались виды, зимующие в подстилке; формы, зимующие в глубине почвы, отличались малой устойчивостью к замерзанию и относительно высокой температурой переохлаждения. В опытах с амебами было установлено, что их теплоустойчивость прямо зависит от температуры культивирования.
3. ГОМОЙОТЕРМНЫЕ ОРГАНИЗМЫ
К этой групп пе относят два класса высших позвоночных – птицы и млекопитающие . Принципиальное отличие теплообмена гомойотермныи животных от пойкилотермных заключается в том, что приспособления к меняющимся температурным условиям среды основаны у них на функционировании комплекса активных регуляторных механизмов поддержания теплового гомеостаза внутренней среды организма. Благодаря этому биохимические и физиологические процессы всегда протекают в оптимальных температурных условиях.

Гомойотермный тип теплообмена базируется на высоком уровне метаболизма, свойственном птицам и млекопитающим. Интенсивность обмена веществ у этих животных на один-два порядка выше, чем у всех других живых организмов при оптимальной температуре среды. Так, у мелких млекопитающих потребление кислорода при температуре среды 15 – 0"С составляет примерно 4 – тыс. см 3 кг -1 ч -1 , а у беспозвоночных животных при такой же температуре – 10 – 0 см 3 кг -1 ч -1 . При одинаковой массе тела (2,5 кг) суточный метаболизм гремучей змеи составляет 32,3 Дж/кг (382 Дж/м 2), у сурка – 120,5 Дж/кг (1755 Дж/м 2), у кролика – 188,2 Дж/кг (2600 Дж/м 2).

Высокий уровень метаболизма приводит к тому, что у гомойотермных животных в основе теплового баланса лежит использование собственной теплопродукции, значение внешнего обогрева относительно невелико. Поэтому птиц и млекопитающих относят к эндотермным" организмам. Эндотермия – важное свойство, благодаря которому существенно снижается зависимость жизнедеятельности организма от температуры внешней среды.
3.1 Температура тела
Гомойотермные животные не только обеспечены теплом за счет собственной теплопродукции, но и способны активно регулировать его производство и расходование. Благодаря этому им свойственна высокая и достаточно устойчивая температура тела. У птиц глубинная температура тела в норме составляет около 41"С с колебаниями у разных видов от 38 до 43,5"С (данные по 400 видам). В условиях полного покоя (основной обмен) эти различия несколько сглаживаются, составляя от 39,5 до 43,0"С. На уровне отдельного организма температура тела показывает высокую степень устойчивости: диапазон ее суточных изменений обычно не превышает 2 – ~4"С, причем эти колебания не связаны с температурой воздуха, а отражают ритм обмена веществ. Даже у арктических и антарктических видов при температуре среды до 20 – 50"С мороза температура тела колеблется в пределах тех же 2 – 4"С.

Повышение температуры среды иногда сопровождается некоторым возрастанием температуры тела. Если исключить патологические состояния, оказывается, что в условиях обитания в жарком климате некоторая степень гипертермии может быть адаптивной: при этом уменьшается разница температуры тела и среды и снижаются затраты воды на испарительную терморегуляцию. Аналогичное явление отмечено и у некоторых млекопитающих: у верблюда, например, при дефиците воды температура тела может подниматься от 34 до 40"С. Во всех таких случаях отмечена повышенная тканевая устойчивость к гипертермии.

У млекопитающих температура тела несколько ниже, чем у птиц, и у многих видов подвержена более сильным колебаниям . Отличаются по этому показателю и разные таксоны. У однопроходных ректальная температура составляет 30 – 3"С (при температуре среды 20"С), у сумчатых она несколько выше – около 34"С при той же внешней температуре. У представителей обеих этих групп, а также у неполнозубых довольно заметны колебания температуры тела в связи с внешней температурой: при снижении температуры воздуха от 20 – 5 до 14 –15"С регистрировалось падение температуры тела на два с лишним градуса, а в отдельных случаях – даже на 5"С. У грызунов средняя температура тела в активном состоянии колеблется в пределах 35 – 9,5"С, в большинстве случаев составляя 36 – 37"С. Степень устойчивости ректальной температуры у них в норме выше, чем у рассмотренных ранее групп, но и у них отмечены колебания в пределах 3 – "С при изменении внешней температуры от 0 до 35"С.

У копытных и хищных температура тела поддерживается весьма устойчиво на свойственном виду уровне; межвидовые отличия обычно укладываются в диапазон от 35,2 до 39"С. Для многих млекопитающих характерно снижение температуры во время сна; величина этого снижения варьирует у разных видов от десятых долей градуса до 4 – "С.

Все сказанное относится к так называемой глубокой температуре тела, характеризующей тепловое состояние термостатируемого «ядра» тела. У всех гомойотермных животных наружные слои тела (покровы, часть мускулатуры и т. д.) образуют более или менее выраженную «оболочку», температура которой изменяется в широких пределах. Таким образом, устойчивая температура характеризует лишь область локализации важных внутренних органов и процессов. Поверхностные же ткани выдерживают более выраженные колебания температуры. Это может быть полезным для организма, поскольку при такой ситуации снижается температурный градиент на границе организма и среды, что делает возможным поддержание теплового гомеостаза «ядра» организма с меньшими расходами энергии.
3.2 Механизмы терморегуляции
Физиологические механизмы, обеспечивающие тепловой гомеостаз организма (его «ядра»), подразделяются на две функциональные группы: механизмы химической и физической терморегуляции. Химическая терморегуляция представляет собой регуляцию теплопродукции организма. Тепло постоянно вырабатывается в организме в процессе окислительно-восстановительных реакций метаболизма. При этом часть его отдается во внешнюю среду тем больше, чем больше разница температуры тела и среды. Поэтому поддержание устойчивой температуры тела при снижении температуры среды требует соответствующего усиления процессов метаболизма и сопровождающего их теплообразования, что компенсирует теплопотери и приводит к сохранению общего теплового баланса организма и поддержанию постоянства внутренней температуры. Процесс рефлекторного усиления теплопродукции в ответ на снижение температуры окружающей среды и носит название химической терморегуляции. Выделение энергии в виде тепла сопровождает функциональную нагрузку всех органов и тканей и свойственно всем живым организмам. Специфика гомойотермных животных состоит в том, что изменение теплопродукции как реакция на меняющуюся температуру представляет у них специальную реакцию организма, не влияющую на уровень функционирования основных физиологических систем.

Специфическое терморегуляторное теплообразование сосредоточено преимущественно в скелетной мускулатуре и связано с особыми формами функционирования мышц, не затрагивающими их прямую моторную деятельность. Повышение теплообразования при охлаждении может происходить и в покоящейся мышце, а также при искусственном выключении сократительной функции действием специфических ядов.

Один из наиболее обычных механизмов специфического терморегуляторного теплообразования в мышцах – так называемый терморегуляционный тонус. Он выражен микросокращениями фибрилл, регистрируемыми в виде повышения электрической активности внешне неподвижной мышцы при ее охлаждении. Терморегуляционный тонус повышает потребление кислорода мышцей подчас более чем на 150 %. При более сильном охлаждении наряду с резким повышением терморегуляционного тонуса включаются видимые сокращения мышц в форме холодовой дрожи. Газообмен при этом возрастает до 300 – 400 % . Характерно , что по доле участия в терморегуляторном теплообразовании мышцы неравноценны. У млекопитающих наиболее велика роль жевательной мускулатуры и мышц, поддерживающих позу животного, т. е. функционирующих в основном как тонические. У птиц наблюдается сходное явление.

При длительном воздействии холода сократительный тип термогенеза может быть в той или иной степени замещен (или дополнен) переключением тканевого дыхания в мышце на так называемый свободный (нефосфорилирующий) путь, при котором выпадает фаза образования и последующего расщепления АТФ. Этот механизм не связан с сократительной деятельностью мышц. Общая масса тепла, выделяющегося при свободном дыхании, практически такая же, как и при дрожевом термогенезе, но при этом большая часть тепловой энергии расходуется немедленно, а окислительные процессы не могут быть заторможены недостатком АДФ или неорганического фосфата.

Последнее обстоятельство позволяет беспрепятственно поддерживать высокий уровень теплообразования в течение длительного времени.

У млекопитающих имеется еще одна форма недрожевого термогенеза, связанная с окислением особой бурой жировой ткани, откладывающейся под кожей в области межлопаточного пространства, шеи и грудной части позвоночника. Бурый жир содержит большое количество митохондрий и пронизан многочисленными кровеносными сосудами. Под действием холода увеличивается кровоснабжение бурого жира, интенсифицируется его дыхание , возрастает выделение тепла. Важно, что при этом непосредственно нагреваются расположенные вблизи органы: сердце , крупные сосуды, лимфатические узлы, а также центральная нервная система . Бурый жир используется, главным образом, как источник экстренного теплообразования, в частности при разогревании организма животных, выходящих из состояния спячки. Роль бурого жира у птиц не ясна. Долгое время считалось, что его у них вообще нет; в последнее время появились сообщения об обнаружении этого типа жировой ткани у птиц, но ни точной идентификации, ни функциональной оценки ее не проведено.

Изменения интенсивности обмена веществ вызванные влиянием температуры среды на организм гомойотермных животных, закономерны. В определенном интервале внешних температур теплопродукция, соответствующая обмену покоящегося организма, полностью скомпенсирована его «нормальной» (без активной интенсификации) теплоотдачей. Теплообмен организма со средой сбалансирован. Этот температурный интервал называют термонейтральной зоной. Уровень обмена в этой зоне минимален. Нередко говорят о критической точке, подразумевая конкретное значение температуры, при котором достигается тепловой баланс со средой. Теоретически это верно, но экспериментально установить такую точку практически невозможно из-за постоянных незакономерных колебаний метаболизма и нестабильности теплоизолирующих свойств покровов.

Понижение температуры среды за пределы термонейтральной зоны вызывает рефлекторное повышение уровня обмена веществ и теплопродукции до уравновешивания теплового баланса организма в новых условиях. В силу этого температура тела остается неизменной.

Повышение температуры среды за пределы термонейтральной зоны также вызывает повышение уровня обмена веществ, что вызвано включением механизмов активизации отдачи тепла, требующих дополнительных затрат энергии на свою работу. Так формируется зона физической терморегуляции , на протяжении которой температура такыре остается стабильной. По достижении определенного порога механизмы усиления теплоотдачи оказываются неэффективными, начинается перегрев и в конце концов гибель организма.

Видовые отличия химической терморегуляции выражаются в разнице уровня основного (в зоне термонейтральности) обмена, положения и ширины термонейтральной зоны, интенсивности химической терморегуляции (повышение обмена при снижении температуры среды на 1"С), а также в диапазоне эффективного действия терморегуляции. Все эти параметры отражают экологическую специфику отдельных видов и адаптивным образом меняются в зависимости от географического положения региона, сезона года, высоты над уровнем моря иряда других экологических факторов.

Физическая терморегуляция объединяет комплекс морфофизиологических механизмов, связанных с регуляцией теплоотдачи организма как одной из составных частей его общего теплового баланса. Главное приспособление, определяющее общий уровень теплоотдачи организма гомойотермного животного,– строение теплоизолирующих покровов. Теплоизоляционные структуры (перья, волосы) не обусловливают гомойотермию, как это иногда думают. В ее основе лежит высокий и что, уменьшая теплопотери, она способствует поддер гомойотермии с меньшими энергетическими затратами. Это особенно важно при обитании в условиях устойчиво низких температур, поэтому теплоизолирующие покровные структуры и прослойки подкожного жира наиболее выражены у животных из регионов холодного климата.

Механизм теплоизолирующего действия перьевого и волосяного покровов заключается в том, что определенным образом расположенные, различные по структуре группы волос или перьев удерживают вокруг тела слой воздуха, который и выполняет роль теплоизолятора . Адаптивные изменения теплоизолирующей функции покровов сводятся к перестройке их структуры, включающей соотношение различных типов волос или перьев, их длину и густоту расположения. Именно по этим параметрам отличаются обитатели различных климатических зон, они же определяют сезонные изменения теплоизоляции. Показано, например, что у тропических млекопитающих теплоизоляционные свойства шерстного покрова почти на порядок ниже, чем у обитателей Арктики. Тому же адаптивному направлению следуют сезонные изменения теплоизолирующих свойств покровов в процессе линьки.

Рассмотренные особенности характеризуют устойчивые свойства теплоизолирующих покровов, определяющие общий уровень тепловых потерь, и, по существу, не представляют собой активных терморегуляционных реакций. Возможность лабильной регуляции теплоотдачи определяется подвижностью перьев и волос, в силу чего на фоне неизменной структуры покрова возможны быстрые изменения толщины теплоизолирующей воздушной прослойки, а соответственно и интенсивности теплоотдачи. Степень распущенности волос или перьев может быстро меняться в зависимости от температуры воздуха и от активности самого животного. Такую форму физической терморегуляции обозначают как пиломоторную реакцию. Эта форма регуляции теплоотдачи действует главным образом при низкой температуре среды и обеспечивает не менее быстрый и эффективный ответ на нарушения теплового баланса, чем химическая терморегуляция, требуя при этом меньших затрат энергии.

Регуляторные реакции, направленные на сохранение постоянной температуры тела при перегреве, представлены различными механизмами усиления теплоотдачи во внешнюю среду. Среди них широко распространена и обладает высокой эффективностью теплоотдача путем интенсификации испарения влаги с поверхности тела или (и) верхних дыхательных путей. При испарении влаги расходуется тепло, что может способствовать сохранению теплового баланса. Реакция включается при признаках начинающегося перегрева организма. Итак, адаптивные изменения теплообмена у гомойотермных животных могут быть направлены не только на поддержание высокого уровня обмена веществ, как у большинства птиц и млекопитающих, но и на установку низкого уровня в условиях, грозящих истощением энергетических резервов.
Список литературы
1. Основы экологии : Учебник В.В.Маврищев. Мн.: Выш. Шк., 2003. – 416 с.

2. http :\\Абиотические факторы среды.htm

3. http :\\Абиотические факторы среды и организмы.htm

 
Статьи по теме:
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение
Кислотно-основной гомеостаз
1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов. 2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода. 4. Индикан мочи,значение исследов
Святой апостол андрей первозванный (†ок
Святой апостол Андрей Первозванный был родом из города Вифсаида, который располагался на берегу Галилейского моря. Его отца звали Иона, и он занимался рыбной ловлей. Этим он кормил семью. Повзрослевшие сыновья Симон и Андрей присоединились к отцу и тоже с