Как найти силу ускорения. Ускорение. Равноускоренное движение. Зависимость скорости от времени при равноускоренном движении

В курсе физики VII класса вы изучали самый простой вид движения - равномерное движение по прямой линии. При таком движении скорость тела была постоянной и тело за любые равные промежутки времени проходило одинаковые пути.

Большинство движений, однако, нельзя считать равномерными. На одних участках тела могут иметь меньшую скорость, на других - большую. Например, поезд, отходящий от станции, начинает двигаться все быстрее и быстрее. Подъезжая к станции, он, наоборот, замедляет свое движение.

Проделаем опыт. Установим на тележку капельницу, из которой через одинаковые промежутки времени падают капли окрашенной жидкости. Поместим эту тележку на наклонную доску и отпустим. Мы увидим, что расстояние между следами, оставленными каплями, по мере движения тележки вниз будет становиться все больше и больше (рис. 3). Это означает, что за равные промежутки времени тележка проходит неодинаковые пути. Скорость тележки возрастает. Причем, как можно доказать, за одни и те же промежутки времени скорость тележки, съезжающей по наклонной доске, возрастает все время на одну и ту же величину.

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным.

Так, например, опытами установлено, что скорость любого свободно падающего тела (при отсутствии сопротивления воздуха) за каждую секунду возрастает примерно на 9,8 м/с, т. е. если вначале тело покоилось, то через секунду после начала падения оно будет иметь скорость 9,8 м/с, еще через секунду - 19,6 м/с, еще через секунду - 29,4 м/с и т. д.

Физическая величина, показывающая, на сколько изменяется скорость тела за каждую секунду равноускоренного движения, называется ускорением.

a - ускорение.

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с 2 и называют «метр на секунду в квадрате».

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 10 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 10 м/с, т. е. в 10 раз быстрее, чем при ускорении 1 м/с 2 .

Примеры ускорений, встречающихся в нашей жизни, можно найти в таблице 1.


Как рассчитывают ускорение, с которым тела начинают двигаться?

Пусть, например, известно, что скорость отъезжающего от станции электропоезда за 2 с увеличивается на 1,2 м/с. Тогда, для того чтобы узнать, на сколько она возрастает за 1 с, надо 1,2 м/с разделить на 2 с. Мы получим 0,6 м/с 2 . Это и есть ускорение поезда.

Итак, чтобы найти ускорение тела, начинающего равноускоренное движение, надо приобретенную телом скорость разделить на время, за которое была достигнута эта скорость:

Обозначим все величины, входящие в это выражение, латинскими буквами:

a - ускорение; v - приобретенная скорость; t - время.

Тогда формулу для определения ускорения можно записать в следующем виде:

Эта формула справедлива для равноускоренного движения из состояния покоя, т. е. когда начальная скорость тела равна нулю. Начальную скорость тела обозначают Формула (2.1), таким образом, справедлива лить при условии, что v 0 = 0.

Если же нулю равна не начальная, а конечная скорость (которая обозначается просто буквой v ), то формула ускорения принимает вид:

В таком виде формулу ускорения применяют в тех случаях, когда тело, имеющее некоторую скорость v 0 , начинает двигаться все медленнее и медленнее, пока наконец не остановится (v = 0). Именно по этой формуле, например, мы будем рассчитывать ускорение при торможении автомобилей и других транспортных средств. Под временем t при этом мы будем понимать время торможения.

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. 4, а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. 4, б).

При равномерном прямолинейном движении скорость тела не изменяется. Поэтому ускорение при таком движении отсутствует (a = 0) и на рисунках изображено быть не может.

1. Какое движение называют равноускоренным? 2. Что такое ускорение? 3. Что характеризует ускорение? 4. В каких случаях ускорение равно нулю? 5. По какой формуле находится ускорение тела при равноускоренном движении из состояния покоя? 6. По какой формуле находится ускорение тела при уменьшении скорости движения до нуля? 7. Как направлено ускорение при равноускоренном прямолинейном движении?

Экспериментальное задание. Используя линейку в качестве наклонной плоскости, положите на ее верхний край монету и отпустите. Будет ли двигаться монета? Если будет, то как - равномерно или равноускоренно? Как это зависит от угла наклона линейки?



Ускорение – это величина, которая характеризует быстроту изменения скорости.

Например, автомобиль, трогаясь с места, увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля – автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус (как вы помните, – это векторная величина).


> – это отношение изменения скорости к промежутку времени, за который это изменении произошло. Определить среднее ускорение можно формулой:

где – вектор ускорения .

Направление вектора ускорения совпадает с направлением изменения скорости Δ = - 0 (здесь 0 – это начальная скорость, то есть скорость, с которой тело начало ускоряться).

В момент времени t1 (см. рис 1.8) тело имеет скорость 0 . В момент времени t2 тело имеет скорость . Согласно правилу вычитания векторов найдём вектор изменения скорости Δ = - 0 . Тогда определить ускорение можно так:

Рис. 1.8. Среднее ускорение.

В СИ единица ускорения – это 1 метр в секунду за секунду (или метр на секунду в квадрате), то есть

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.


Мгновенное ускорение тела (материальной точки) в данный момент времени – это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами – это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчёта (проекциями а Х, a Y , a Z).

При ускоренном прямолинейном движении скорость тела возрастает по модулю, то есть

Если скорость тела по модулю уменьшается, то есть

V 2 то направление вектора ускорения противоположно направлению вектора скорости 2 . Иначе говоря, в данном случае происходит замедление движения , при этом ускорение будет отрицательным (а

Рис. 1.9. Мгновенное ускорение.

При движении по криволинейной траектории изменяется не только модуль скорости, но и её направление. В этом случае вектор ускорение представляют в виде двух составляющих (см. следующий раздел).


Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

= τ + n

Позволяет нам существовать на этой планете. Как можно понять, что представляет собой центростремительное ускорение? Определение этой физической величины представлено ниже.

Наблюдения

Самый простой пример ускорения тела, движущегося по окружности, можно наблюдать, вращая камень на веревке. Вы тянете веревку, а веревка тянет камень к центру. В каждый момент времени веревка сообщает камню некоторое количество движения, и каждый раз - в новом направлении. Можно представить движение веревки в виде серии слабых рывков. Рывок - и веревка изменяет свое направление, еще рывок - еще раз изменение, и так по кругу. Если вы внезапно отпустите веревку, рывки прекратятся, а вместе с ними и прекратится изменение направления скорости. Камень будет двигаться в направлении касательной к кругу. Возникает вопрос: "С каким ускорением будет двигаться тело в это мгновение?"

Формула центростремительного ускорения

Прежде всего стоит заметить, что движение тела по окружности является сложным. Камень участвует в двух видах движения одновременно: под действием силы он движется к центру вращения, и одновременно по касательной к окружности, от этого центра удаляется. Согласно Второму закону Ньютона, сила, удерживающая камень на веревке, направлена к центру вращения вдоль этой веревки. Туда же будет направлен вектор ускорения.

Пусть за некоторое время t наш камень, равномерно двигаясь со скоростью V, попадает из точки A в точку B. Предположим, что в момент времени, когда тело пересекало точку B, на него перестала действовать центростремительная сила. Тогда за промежуток времени оно попало бы в точку K. Она лежит на касательной. Если бы в тот же момент времени на тело действовали бы только центростремительные силы, то за время t, двигаясь с одинаковым ускорением, оно оказалось бы в точке O, которая расположена на прямой, представляющей собой диаметр окружности. Оба отрезка являются векторами и подчиняются правилу векторного сложения. В результате суммирования этих двух движений за отрезок времени t получаем результирующую движения по дуге AB.

Если промежуток времени t взять пренебрежимо малым, то дуга AB будет мало отличаться от хорды AB. Таким образом, можно заменить движение по дуге движением по хорде. В этом случае перемещение камня по хорде будет подчиняться законам прямолинейного движения, то есть пройденное расстояние AB будет равно произведению скорости камня на время его движения. AB = V х t.

Обозначим искомое центростремительное ускорение буквой a. Тогда пройденный только под действием центростремительного ускорения путь можно рассчитать по формуле равноускоренного движения:

Расстояние AB равно произведению скорости и времени, то есть AB = V х t,

AO - вычислено ранее по формуле равноускоренного движения для перемещения по прямой: AO = at 2 / 2.

Подставляя эти данные в формулу и преобразуя их, получаем простую и изящную формулу центростремительного ускорения:

Словами это можно выразить так: центростремительное ускорение тела, двигающегося по окружности, равно частному от деления линейной скорости в квадрате на радиус окружности, по которой вращается тело. Центростремительная сила в таком случае будет выглядеть так, как на картинке ниже.

Угловая скорость

Угловая скорость равна частному от деления линейной скорости на радиус окружности. Верно и обратное утверждение: V = ωR, где ω - угловая скорость

Если подставить это значение в формулу, можно получить выражение центробежного ускорения для угловой скорости. Оно будет выглядеть так:

Ускорение без изменения скорости

И все же, отчего тело с ускорением, направленным к центру, не движется быстрее и не перемещается ближе к центру вращения? Ответ кроется в самой формулировке ускорения. Факты говорят о том, что движение по окружности реально, но для его поддержания требуется ускорение, направленное к центру. Под действием силы, вызванной данным ускорением, происходит изменение количества движения, в результате чего траектория движения постоянно искривляется, все время меняя направление вектора скорости, но не изменяя ее абсолютной величины. Двигаясь по кругу, наш многострадальный камень устремляется внутрь, в противном случае он продолжал бы двигаться по касательной. Каждое мгновение времени, уходя по касательной, камень притягивается к центру, но не попадает в него. Еще одним примером центростремительного ускорения может стать водный лыжник, описывающий небольшие круги на воде. Фигура спортсмена наклонена; он как бы падает, продолжая движение и наклонившись вперед.

Таким образом, можно сделать вывод о том, что ускорение не увеличивает скорость тела, так как векторы скорости и ускорения перпендикулярны друг к другу. Добавляясь к вектору скорости, ускорение лишь меняет направление движения и удерживает тело на орбите.

Превышение запаса прочности

В предыдущем опыте мы имели дело с идеальной веревкой, которая не рвалась. Но, допустим, наша веревка самая обычная, и даже можно вычислить усилие, после которого она просто порвется. Для того чтобы рассчитать эту силу, достаточно сопоставить запас прочности веревки с нагрузкой, которую она испытывает в процессе вращения камня. Вращая камень с большей скоростью, вы сообщаете ему большее количество движения, а значит, и большее ускорение.

При диаметре джутовой веревки около 20 мм ее прочность на разрыв равна около 26 кН. Примечательно, что длина веревки нигде не фигурирует. Вращая груз размером в 1 кг на веревке радиусом в 1 м, можно вычислить, что линейная скорость, необходимая для ее разрыва равна 26 х 10 3 = 1кг х V 2 / 1 м. Таким образом, скорость, которую опасно превышать, будет равна √26 х 10 3 = 161 м/с.

Сила тяжести

При рассмотрении опыта мы пренебрегали действием силы тяжести, так как при таких больших скоростях ее влияние пренебрежимо мало. Но можно заметить, что при раскручивании длинной веревки тело описывает более сложную траекторию и постепенно приближается к земле.

Небесные тела

Если перенести законы движения по окружности в космос и применить их к движению небесных тел, можно заново открыть несколько давно знакомых формул. Например, сила, с которой тело притягивается к Земле, известна по формуле:

В нашем случае множитель g и является тем самым центростремительным ускорением, которое было выведено из предыдущей формулы. Только в этом случае роль камня будет выполнять небесное тело, притягивающееся к Земле, а роль веревки - сила земного притяжения. Множитель g будет выражен через радиус нашей планеты и скорость ее вращения.

Итоги

Сущность центростремительного ускорения состоит в тяжелой и неблагодарной работе удержания движущегося тела на орбите. Наблюдается парадоксальный случай, когда при постоянном ускорении тело не изменяет величины своей скорости. Для неподготовленного ума такое заявление довольно парадоксально. Тем не менее и при расчете движения электрона вокруг ядра, и при вычислении скорости вращения звезды вокруг черной дыры, центростремительной ускорение играет не самую последнюю роль.

Перемеще́ние (в кинематике) - изменение местоположения физического тела в пространстве относительно выбранной системы отсчёта. Также перемещениемназывают вектор, характеризующий это изменение. Обладает свойством аддитивности.

Ско́рость (часто обозначается , от англ. velocity или фр. vitesse) - векторная физическая величина, характеризующая быстротуперемещения и направления движения материальной точки в пространстве относительно выбранной системы отсчёта (например, угловая скорость).

Ускоре́ние (обычно обозначается , в теоретической механике ) - производная скорости по времени, векторная величина, показывающая, насколько изменяется вектор скорости точки (тела) при её движении за единицу времени (т.е. ускорение учитывает не только изменение величины скорости, но и её направления).

Тангенциальное (касательное) ускорение – это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Рис. 1.10. Тангенциальное ускорение.

Направление вектора тангенциального ускорения τ (см. рис. 1.10) совпадает с направлением линейной скорости или противоположно ему. То есть вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение

Нормальное ускорение – это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть вектор нормального ускорения перпендикулярен линейной скорости движения (см. рис. 1.10). Нормальное ускорение характеризует изменение скорости по направлению и обозначается буквой n . Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

(согласно теореме Пифагора для прямоугольно прямоугольника).

Направление полного ускорения также определяется правилом сложения векторов:

    Сила. Масса. Законы Ньютона.

Си́ла - векторная физическая величина, являющаяся мерой интенсивности воздействия на данное тело других тел, а также полей. Приложенная к массивному телу сила является причиной изменения его скорости или возникновения в нём деформаций.

Ма́сса (от греч. μάζα) - скалярная физическая величина, одна из важнейших величин в физике. Первоначально (XVII-XIX века) она характеризовала «количество вещества» в физическом объекте, от которого, по представлениям того времени, зависели как способность объекта сопротивляться приложенной силе (инертность), так и гравитационные свойства - вес. Тесно связана с понятиями «энергия» и «импульс» (по современным представлениям - масса эквивалентна энергии покоя).

Первый закон Ньютона

Существуют такие системы отсчёта, называемые инерциальными, относительно которых материальная точка при отсутствии внешних воздействий сохраняет величину и направление своей скорости неограниченно долго.

Второй закон Ньютона

В инерциальной системе отсчёта ускорение, которое получает материальная точка, прямо пропорционально равнодействующей всех приложенных к ней сил и обратно пропорционально её массе.

Третий закон Ньютона

Материальные точки попарно действуют друг на друга с силами, имеющими одинаковую природу, направленными вдоль прямой, соединяющей эти точки, равными по модулю и противоположными по направлению:

    Импульс. Закон сохранения импульса. Упругие и неупругие удары.

И́мпульс (Количество движения) - векторная физическая величина, характеризующая меру механического движения тела. В классической механике импульс тела равен произведению массы m этого тела на его скорость v, направление импульса совпадает с направлением вектора скорости:

Зако́н сохране́ния и́мпульса (Зако́н сохране́ния количества движения) утверждает, что векторная сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил.

Как и любой из фундаментальных законов сохранения, закон сохранения импульса описывает одну из фундаментальных симметрий, - однородность пространства.

Абсолютно неупругим ударом называют такое ударное взаимодействие, при котором тела соединяются (слипаются) друг с другом и движутся дальше как одно тело.

При абсолютно неупругом ударе механическая энергия не сохраняется. Она частично или полностью переходит во внутреннюю энергию тел (нагревание).

Абсолютно упругим ударом называется столкновение, при котором сохраняется механическая энергия системы тел.

Во многих случаях столкновения атомов, молекул и элементарных частиц подчиняются законам абсолютно упругого удара.

При абсолютно упругом ударе наряду с законом сохранения импульса выполняется закон сохранения механической энергии.

4. Виды механической энергии. Работа. Мощность. Закон сохранения энергии.

В механике различают два вида энергии: кинетическую и потенциальную.

Кинетической энергией называют механическую энергию всякого свободно движущегося тела и измеряют ее той работой, которую могло бы совершить тело при его торможении до полной остановки.

Итак, кинетическая энергия поступательно движущегося тела равна половине произведения массы этого тела на квадрат его скорости:

Потенциальная энергия – это механическая энергия системы тел, определяемая их взаимным расположением и характером сил взаимодействия между ними. Численно потенциальная энергия системы в данном ее положении равна работе, которую произведут действующие на систему силы при перемещении системы из этого положения в то, где потенциальная энергия условно принимается равной нулю (E n = 0). Понятие «потенциальная энергия» имеет место только для консервативных систем, т.е. систем, у которых работа действующих сил зависит только от начального и конечного положения системы.

Так, для груза весом P, поднятого на высоту h, потенциальная энергия будет равна E n = Ph (E n = 0 при h = 0); для груза, прикрепленного к пружине, E n = kΔl 2 / 2, где Δl - удлинение (сжатие) пружины, k – ее коэффициент жесткости (E n = 0 при l = 0); для двух частиц с массами m 1 и m 2 , притягивающимися по закону всемирного тяготения, , где γ – гравитационная постоянная, r – расстояние между частицами (E n = 0 при r → ∞).

Термин "работа" в механике имеет два смысла: работа как процесс, при котором сила перемещает тело, действуя под углом, отличном от 90°; работа - физическая величина, равная произведению силы, перемещения и косинуса угла между направлением действия силы и перемещением:

Работа равна нулю, когда тело движется по инерции (F = 0), когда нет перемещения (s = 0) или когда угол между перемещением и силой равен 90° (cos а = 0). Единицей работы в СИ служит джоуль (Дж).

1 джоуль - это такая работа, которая совершается силой 1 Н при перемещении тела на 1 м по линии действия силы. Для определения быстроты совершения работы вводят величину "мощность".

Мо́щность - физическая величина, равная отношению работы, выполняемой за некоторый промежуток времени, к этому промежутку времени.

Различают среднюю мощность за промежуток времени :

и мгновенную мощность в данный момент времени:

Так как работа является мерой изменения энергии, мощность можно определить также как скорость изменения энергии системы.

В системе СИ единицей измерения мощности является ватт, равный одному джоулю, делённому на секунду.

Зако́н сохране́ния эне́ргии - фундаментальный закон природы, установленный эмпирически и заключающийся в том, что для изолированной физической системыможет быть введена скалярная физическая величина, являющаяся функцией параметров системы и называемая энергией, которая сохраняется с течением времени. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то его можно именовать не законом, а принципом сохранения энергии.

При прямолинейном равноускоренном движении тело

  1. двигается вдоль условной прямой линии,
  2. его скорость постепенно увеличивается или уменьшается,
  3. за равные промежутки времени скорость меняется на равную величину.

Например, автомобиль из состояния покоя начинает двигаться по прямой дороге, и до скорости, скажем, в 72 км/ч он двигается равноускоренно. Когда заданная скорость достигнута, то авто движется без изменения скорости, т. е. равномерно. При равноускоренном движении его скорость возрастала от 0 до 72 км/ч. И пусть за каждую секунду движения скорость увеличивалась на 3,6 км/ч. Тогда время равноускоренного движения авто будет равно 20 секундам. Поскольку ускорение в СИ измеряется в метрах на секунду в квадрате, то надо ускорение 3,6 км/ч за секунду перевести в соответствующие единицы измерения. Оно будет равно (3,6 * 1000 м) / (3600 с * 1 с) = 1 м/с 2 .

Допустим, через какое-то время езды с постоянной скоростью автомобиль начал тормозить, чтобы остановиться. Движение при торможении тоже было равноускоренным (за равные промежутки времени скорость уменьшалась на одинаковую величину). В данном случае вектор ускорения будет противоположен вектору скорости. Можно сказать, что ускорение отрицательно.

Итак, если начальная скорость тела нулевая, то его скорость через время в t секунд будет равно произведению ускорения на это время:

При падении тела «работает» ускорение свободного падения, и скорость тела у самой поверхности земли будет определяться по формуле:

Если известна текущая скорость тела и время, которое понадобилось, чтобы развить такую скорость из состояния покоя, то можно определить ускорение (т. е. как быстро менялась скорость), разделив скорость на время:

Однако тело могло начать равноускоренное движение не из состояния покоя, а уже обладая какой-то скоростью (или ему придали начальную скорость). Допустим, вы бросаете камень с башни вертикально вниз с приложением силы. На такое тело действует ускорение свободного падения, равное 9,8 м/с 2 . Однако ваша сила придала камню еще скорости. Таким образом, конечная скорость (в момент касания земли) будет складываться из скорости, развившийся в результате ускорения и начальной скорости. Таким образом, конечная скорость будет находиться по формуле:

Однако, если камень бросали вверх. То начальная его скорость направлена вверх, а ускорение свободного падения вниз. То есть вектора скоростей направлены в противоположные стороны. В этом случае (а также при торможении) произведение ускорения на время надо вычитать из начальной скорости:

Получим из этих формул формулы ускорения. В случае ускорения:

at = v – v 0
a = (v – v 0)/t

В случае торможения:

at = v 0 – v
a = (v 0 – v)/t

В случае, когда тело равноускоренно останавливается, то в момент остановки его скорость равна 0. Тогда формула сокращается до такого вида:

Зная начальную скорость тела и ускорение торможения, определяется время, через которое тело остановится:

Теперь выведем формулы для пути, которое тело проходит при прямолинейном равноускоренном движении . Графиком зависимость скорости от времени при прямолинейном равномерном движении является отрезок, параллельный оси времени (обычно берется ось x). Путь при этом вычисляется как площадь прямоугольника под отрезком. То есть умножением скорости на время (s = vt). При прямолинейном равноускоренном движении графиком является прямая, но не параллельная оси времени. Эта прямая либо возрастает в случае ускорения, либо убывает в случае торможения. Однако путь также определяется как площадь фигуры под графиком.

При прямолинейном равноускоренном движении эта фигура представляет собой трапецию. Ее основаниями являются отрезок на оси y (скорость) и отрезок, соединяющий точку конца графика с ее проекцией на ось x. Боковыми сторонами являются сам график зависимости скорости от времени и его проекция на ось x (ось времени). Проекция на ось x - это не только боковая сторона, но еще и высота трапеции, т. к. перпендикулярна его основаниям.

Как известно, площадь трапеции равна полусумме оснований на высоту. Длина первого основания равна начальной скорости (v 0), длина второго основания равна конечной скорости (v), высота равна времени. Таким образом получаем:

s = ½ * (v 0 + v) * t

Выше была дана формула зависимости конечной скорости от начальной и ускорения (v = v 0 + at). Поэтому в формуле пути мы можем заменить v:

s = ½ * (v 0 + v 0 + at) * t = ½ * (2v 0 + at) * t = ½ * t * 2v 0 + ½ * t * at = v 0 t + 1/2at 2

Итак, пройденный путь определяется по формуле:

s = v 0 t + at 2 /2

(К данной формуле можно прийти, рассматривая не площадь трапеции, а суммируя площади прямоугольника и прямоугольного треугольника, на которые разбивается трапеция.)

Если тело начало двигаться равноускоренно из состояния покоя (v 0 = 0), то формула пути упрощается до s = at 2 /2.

Если вектор ускорения был противоположен скорости, то произведение at 2 /2 надо вычитать. Понятно, что при этом разность v 0 t и at 2 /2 не должна стать отрицательной. Когда она станет равной нулю, тело остановится. Будет найден путь торможения. Выше была приведена формула времени до полной остановки (t = v 0 /a). Если подставить в формулу пути значение t, то путь торможения приводится к такой формуле.

 
Статьи по теме:
Планировка и застройка городских и сельских поселений
СП 42.13330.2011 «ГРАДОСТРОИТЕЛЬСТВО. ПЛАНИРОВКА И ЗАСТРОЙКА ГОРОДСКИХ И СЕЛЬСКИХ ПОСЕЛЕНИЙ». Разарботан авторским коллективом: руководитель темы - П.Н. Давиденко, канд. архит., чл.-корр. РААСН; Л.Я. Герцберг, д-р техн. наук, чл.-корр. РААСН; Б.В. Черепан
Основные типы животных тканей Сравнение эпителиальной и соединительной ткани
МОУ «Гимназия» п.г.т. Сабинского муниципального района Республики Татарстан Районный семинар «Повышение творческой инициативы учащихся на уроках биологии путем использования информационных технологий» «Ткани животных: эпителиальная и соединительная» О
Распространенность аллергических заболевании
1 Аллергические заболевания в последние десятилетия все больше привлекают внимание из-за нарастающей распространенности среди населения. В статье представлены результаты исследования распространенности аллергических заболеваний за 2009-2015 годы в Липец
Военные походы александра македонского Походы александра македонского были в
После смерти царя Филиппа II престол занял его сын Александр. Весть о смене правителя разнеслась по предместьям очень быстро, после чего власти в Афинах, Фивах и некоторых других крупных городах попытались изгнать македонские гарнизоны. К тому же начали б