Как пользоваться монтажной платой. Как пользоваться макетной платой для монтажа без пайки. Основные виды макетных плат

Всем привет. Сегодня мы поговорим о беспаечной макетной плате или о breadboard , как называют её буржуи. Данная плата, если можно так выразится, входит в список обязательных инструментов, что должны быть у электронщика (будь то юный мозгочинчик, что только делает первые неуверенные шажки или прожженный и повидавший жизнь мозгочин).

Знания о том, какие бывают макетные платы, как и где применяют такие инструменты, помогут вам при разработке и наладке собственных проектов различных электронных самоделок .

Первые платы выглядели так:

На основу крепились металлические стойки, на которые в последствии закреплялись (просто наматывались) провода и контактные выводы элементов.

Хорошо, что технический прогресс не стоит на месте – ведь благодаря его влиянию мы можем пользоваться вот такими замечательными инструментами.

В противовес беспаечной макетной плате можно выставить вот такие (они значительно дешевле и изготавливаются исходя из необходимых параметров).

Однако при монтаже на беспаечной плате вам не понадобится паяльник/припой. Кроме этого вы избежите трудностей связанных с распайкой деталей по поверхности платы.

Правилом хорошего тона, да и здравого смысла, всегда было и остается прототипирование электронных схем. Важно знать, как поведёт себя устройство при тех или иных определенных параметрах, до сборки готового устройства.


Кроме этого с помощью беспаечной платы можно производить проверку работоспособности новый компонентов и радиодеталей.

Рассмотрим строение беспаечной платы

Посмотрим на рисунок платы. Она состоит из рядов металлических пластин (рельсов).

Рельса в свою очередь состоят из зажимов, в которые и происходит установка «ножек» радиодеталей. Все 5 отверстий в ряду соединены воедино.

Теперь обратим наш взор на две вертикальные/горизонтальные полосы (зависит в каком положении смотреть), что расположены отдельно (по краям) – это пластины питания. Все гнезда одной длинной пластины соединены друг с другом.

Центральный паз изолирует стороны платы. Ширина данной полосы закреплена стандартом. Она позволяет устанавливать DIP-микросхемы таким образом, чтобы каждый вывод был установлен в отдельную рельсу и позволял подключит до 4 внешних выводов.

На платах нанесены буквенные и цифровые последовательности. Данные обозначения помогают ориентироваться при монтаже компонентов, чтобы исключить ошибочное подключение (что может закончится неработоспособностью схемы или выходом из строя отдельных деталей).

Также выпускают платы, которые изготавливаются на отдельных подставках со специальными прижимными клеммами. Они используются для подключения источника питания к плате.

Если вы обратили внимание на некоторых платах есть специальные пазы и выступы (они расположены по бокам). С их помощью можно объединять платы и создавать рабочую поверхность любого размера.

Также на некоторых платах на задней части нанесена самоклеющаяся основа.

На рисунке представлен способ «запитки» платы от Arduino.

Если же вам в руки попала плата с клеммами для подачи питания, необходимо подключить их к линиям на макетной плате с помощью проводников (джамперов). Клеммы не связаны ни с одной линией. Чтобы подключить провод к клемме, снимите (открутите) пластиковый колпачок и расположите конец провода в отверстие. Установите колпачок обратно. Обычно используются две клеммы: для питания и для земли.

Теперь дело осталось за малым, подключаем внешний источник питания. Это можно сделать с помощью:

  • джамперов;
  • «крокодилов» или обычных проводов;

  • модулей-стабилизаторов питания, что выпускаются под беспаечные платы.

Спасибо за внимание. Продолжение следует 🙂

ЖЖ не проглотил вторую часть поста целиком тоже, поэтому разбиваю еще на две части. Здесь Часть 3 - Сама первая лабораторная работа , .

Итак, первое лабораторное занятие - "Сборка простых электронных схем на основе микросхем малой степени интеграции" - несколько практических упражнений для знакомства с основами цифровой логики:
- знакомство с макетными платами и базовыми элементами схемотехники (светодиоды, диоды, конденсаторы и т.п),
- базовые операции булевой алгебры в физическом исполнении,
- логические элементы (гейты),
- динамика в виде простого таймера,
- элементарные устройства вывода (диодный дисплей)

триггеры (флип-флопы) из первого знакомства выпали и оставлены для лучших времен.

Входные предположения об объектах обучения:
- имеют смутные воспоминания об основах электродинамики из курса школьной программы (напряжение плюс-минус, течет ток, можно добавлять сопротивление)
- имеют хорошее представление как минимум об основах дискретной математики (булева алгебра) и программирования (процедурное мышление), чтобы после прохождения ознакомительных упражнений иметь возможность интуитивно ощутить, что из представленных простых физических элементов логики можно строить большие дискретные системы любой степени сложности, в которых будут реализованы уже сложные абстрактные идеи, которые можно сформулировать на языке логики.

Собственно лабораторная работа

1. Главные детали макетная плата, диоды и светодиоды

Макетная плата (breadboard) позволяет создавать электронные цепи любой конфигурации без применения паяльника - просто втыкая ножки элементов схемы в отверстия платы. Это возможно благодаря тому, каким образом эти дырочки соединены внутри под пластмассой проводниками. По краям проходят горизонтальные полосы с плюсом и минусом по всей длине платы - если воткнуть провод от батарейки (например плюс) в одну из дырок в любом месте, плюс будет подан по всей длине этой полосы и от него можно будет "питаться", воткнув провод в любую другую дырку этой же горизонтальной полосы.

Основа платы - последовательность вертикальных (если смотреть на фото ниже) полосок-проводников по пять дырок над каждой. Если воткнуть два провода в две дырки над одной и той же вертикальной полосой, они будут соединены в цепь (тоже самое, что скрутить их ножки напрямую). Две соседние полоски никак не соединены, поэтому втыкая одни концы элементов в одни вертикальные полоски, а другие концы тех же элементов втыкать в другие, можно выстраивать последовательные цепи любой конфигурации. После этого с горизонтальной полосы с плюсом на одну из вертикальных полос через проводок подается плюс, а с горизонтальный полосы с минусом в другую часть цепи через другой проводок подается минус, и вся схема начинает работать.

Если сейчас не очень понятно, все прояснится после первого эксперимента со светодиодом.

За направление тока на схемах принято брать направление от плюса (+) к минусу (-).

Замечание: не путать "конвенционное" направление тока (от плюса к минусу) с направлением физического потока электронов, которые бегут от минуса к плюсу - т.е. в противоположном направлении - в некоторой литературе (в том числе в книге tron.ix на одной из первых картинок - отсюда и замечание) - используется направление потока электронов, в другой - "конвенционное" направление тока - это связано с традициями и некоторыми другими нюансами - электрические схемы удобнее читать, используя "конвенционное" направление плюс->минус, поэтому будем использовать везде именно его.

Диод - это проводник, который пропускает ток только в одном направлении - от плюса (+) к минусу (-), а от минуса (-) к плюсу (+) не пропускает. На схемах диод обозначается стрелочкой, упирающейся в вертикальную черту, стрелка указывает разрешенное диодом направление тока. Ножка диода, которую в режиме пропускания тока нужно подключать к плюсу называется анод , которую к минусу - катод .

Светодиод - тот же самый диод, только в режиме пропускания тока (когда на анод подается плюс, а на катод - минус) он светит лампочкой, а в режиме непропускания не светит. На схеме светодио обозначается также, как обычный диод, только стрелочка обведена в кружочек. Анод светодиода - длинная ножка (на нее подаем плюс), катод - короткая (ее обычно подключаем к минусу). На всех схемах в лабе - на фото и видео - длинная ножка находится слева, а короткая - справа.

2. Определение булевых значений TRUE/FALSE на выбранном участке цепи светодиод в качестве индикатора текущего значения

Булевы переменные определяются уровнем напряжения на участке цепи, с которого снимаем значение. За TRUE=1=HIGH принимаем значение плюс (+) ("напряжение HIGH"), за FALSE=0=LOW принимаем минус (-) или землю ("напряжение LOW").

Для того, чтобы воочию проверить текущее булево значение на выбранном участке, можно использовать светодиод - подключить к точке снятия значения анод (длинная ножка), катод (короткая ножка) при этом подключить к минусу. Если в точку подключения анода подан плюс (+), т.е. снимаемое значение должно быть TRUE, ток потечет от анода к катоду через светодиод и его лампочка загорится. Если в точке подключения анода будет минус или земля, ток не потечет, лампочка не загорится - снятое значение - FALSE.

Замечание: светодиод не рекомендуется подключать напрямую к батарейке без промежуточного сопротивления или если подключенное сопротивление слишком мало, т.к. иначе он сможет перегореть из-за слишком сильного тока, на который он не рассчитан (какое-то время он будет светиться, но при этом сильно нагреется и в конечном итоге перегорит). С сопротивление 500Ом (которое быше было выбрано в качестве "послабее") светодиоду ничего не грозит.

Задание в аудитории: нарисовать на доске схему подключения светодиода и попросить группу реализовать ее на макетных платах. В этот момент сразу вскрывается нюанс, специфический для работы в аудитории. В книге tron.ix для каждого упражнении есть две картинки - одна показывает логическую схему подключения, на второй нарисована макетная плата с дырочками и все нужные элементики так, чтобы было видно, какие ножки куда втыкаются и т.п. Сидя дома с книгой проще смотреть на вторую картинку и просто повторять рисунок из книги на живой макетной плате. В аудитории с большим количеством человек этот фокус никак не прокатывает - внятное фотореалистичное изображение макетной платы со всеми дырочками и со всеми элементами, натыкаными в кучку, на доске маркером нарисовать довольно сложно, поэтому проще нарисовать принципиальную схему, а студенты уже сами вникают, как составить ее физическое воплощение на макетной плате. Первое задание с простым светодиодом и сопротивлением заняло около 10ти минут, т.к. это было первое знакомство с устройством макетной платы (схему соединений дырочек внутри платы во время первого задания кстати с доски можно не стирать) и повторная встреча с основами электродинамики после долго расставания - кое-кто например сначала решил засунуть ножки светодиода прямо в дырки полос для электропитания (причем обе в плюс), но после некоторых разъяснений и уточнений все в тему вникли и на следующих заданиях процесс конвертации логической схемы в физическую цепь шел уже значительно веселее.

3. Таблица истинности и оператор OR
Как было показано в предыдущем упражнении, в качестве переменных , которые могут принимать булевы значения TRUE/FALSE, мы можем брать определенные участки цепи - т.к. в разных условиях напряжение на одном и том же участке может быть как HIGH (+), так и LOW (-) - отсюда и термин "переменная " - возможностью присвоения значения.

При этом если мы встроим между двумя участками цепи некоторое комбинацию из электрических элементов (типа диодов, сопротивлений и т.п), эта промежуточная комбинация (или схема) может влиять на то, какое значение будет снято на втром (выходном участке) цепи в зависимости от текущего значения на 1м (входном) участке цепи. Т.е. эта промежуточная схема по сути преобразовывает одно или несколько значений на входящих участках цепи в новое значение на исходящем участке цепи по определенному правилу. Т.к. значения на всех участках (входящих и исходящих) могут принимать значение TRUE/FALSE, т.е. они являются булевыми переменными , мы можем принять промежуточную схему-преобразователь за обычный булев оператор (а именно за его физическую реализацию).

В дискретной математике любой оператор задается своей таблицей истинности, в которой перечислены все возможные комбинации значений переменных-параметров (для двух входных переменных: 11, 10, 01, 00) и указано значение резульатата действия оператора для каждой из комбинаций (для двух входных переменных это будет 4 значения единиц и нулей).

Как было указано в начале - предполагается, что аудитория должна быть знакома как минимум с основыми понятиями дискретной математики, к которым относятся в том числе таблицы истинности - в аудитории это предположение подтвердилось - долго объяснять, что из себя представляет таблица истинности, не пришлось - все и так уже были в курсе.

В качестве первого примера рассмотрим физическую реализацию элементарного булева оператора OR . Его принципиальная схема выглядит следующим образом:

Как выглядит его таблица истинности можно узнать, найдя определение этого оператора в учебнике по дискретной математике или собрав приведенную схему на макетной плате - для задания значений входным переменным-параметрам A и B можно втыкать соответствующие провода A и B в отсеки (+) (TRUE=1) или (-) (FALSE=0), при этом результат действия оператора на участке цепи Q будет видно по текущему состоянию красного светодиода (горит - оператор вернул Q=TRUE=1, не горит - Q=FALSE=0). Мы воспользуемся конечно вторым вариантом.

Замечание: почему так происходит физически в данном случае понять довольно просто - при подключении анода любого из входных диодов к плюсу (A=1 или B=1) цепь замыкается и на точку Q (к которой в том числе подключен анод светодиода) подается ненулевое напряжение - лампочка горит - Q=HIGH=TRUE. Если ни один из анодов A и B не подключен к плюсу (+) (т.е. A=0=FALSE и B=0=FALSE), напряжению в цепи взяться вообще неоткуда, т.к. участок с плюсом полностью изолирован - поэтому лампочка гореть не может и Q=LOW=FALSE. Но заострять внимание здесь и на следующих схемах на этом механизме во время занятия в аудитории думаю не обязательно, т.к. мозг студентов в этот момент занят впитыванием и усвоением информации о том, что привычные им из дискретной математики и программирования булевы операторы могут вести себя также, как и живые лампочки на схеме, которую они только что собрали из нескольких проводов, т.е. давать одни и те же таблицы истинности. Поэтому важнее сакнцентировать внимание именно на наблюдении принципиальной возможности существования точки перехода "физика в лице электродинамики" -> "абстракции дискретной математики". Дополнительное погружение в электродинамику может повредить этому процессу или в конечном итоге просто не будет воспринятно так, как нужно - объяснение деталей механизма этого процесса можно оставить на самостоятельную работу, на отдельное занятие напотом или иметь ввиду на случай дополнительных вопросов из аудитории (если вдруг кто-то все-таки усвоит новую информацию достаточно быстро и захочет дополнительных объяснений).

4. Оператор AND
Почти ничего нового по сравнию с предыдущим упражнением - просто строим оператор AND по схеме.

Замечание: п о физике процесса - если замыкаем один из катодов (A или B) на минус (-), ток потечет напрямую от плюса к минусу по участку сети через соответствующий диод, а на участок сети Q (при такой конфигурации он оказывается подключенным параллельно диоду) силы тока просто "не хватит", чтобы зажечь лампочку (т.е. присвоить Q=TRUE), т.к. при параллельном подключении участков цепи ток распределяется обратнопропорционально значению внутренних сопротивлений этих участков (например если подключить один из диодов через индивидуально сопротивление, то фокус работать не будет - ток потечет по обоим каналам).

Замечание: в аудитории - при построении цепи желательно уместить ее в левой пловине макетной платы, т.к. дальше мы будем использовать ее же для составного оператора NAND.

Возвращаясь к аналогиям интерфейсов ввода-вывода и черных ящиков - транзистор как раз является примером такого ящика, устройство которого нам в принципе не известно. Если с сопротивлениями или диодами все более-менее понятно интуитивно - их работа может быть основана например на физико-химических свойствах проводимости материалов, из которых они сделаны, то логика поведения транзистора очевидно должна быть реализована через какие-то более хитрые механизмы и комбинации материалов. Но нам для того, чтобы им пользоваться в рамках курса, вникать в это устройство в общем не обязательно (и мы это делать не будем) - достаточно знать, что на коллектор нужно подавать плюс, на эмиттер - минус, а проводимость можно включать/выключать плюсом-минусом на базе.

Замечание: п о физике процесса - почти аналогично цепи с AND - если база на минусе (A=FALSE), транзистор закрыт, ток может течь только через участок Q с диодом - Q=TRUE. Если база подключена к плюсу (A=TRUE), ток начинает течь через транзистор, на подключенный параллельно участок Q его силы уже не хватает - получаем Q=FALSE.

Замечание: в аудитории - п ри построении цепи NOT цепь AND из предущего упражнения не разбираем - строим NOT в правой части макетной платы, т.к. в следущем упражнении мы сделаем из них составной оператор NAND.

6. Объединение логических элементов в логическую цепь оператор NAND как AND+NOT
Очень простое технически и важное концептуально упражнение - соединение двух операторов в один составной путем подачи вывода одного оператора на вход другого. Вставляем проводок "A" от оператора NOT в отверстие на выходной подсети "Q" оператора AND (катод красного светодиода AND) - получили оператор NAND - входные параметры - провода "A" и "B" от оператора AND, выходной результат - зеленый светодиод "Q" оператора NOT. Промежуточный красный светодиод-индикатор от оператора AND оставляем для наглядности - при изменении значений входных параметров A и B красный и зеленый светодиоды должны всегда находиться в протифофазе (горит только один из них).

(В аудитории совмещали OR и NOT в NOR, но для плавного перехода к следующему у пражнению с модулем 4011 лучше делать NAND)

Здесь можно сделать перерыв .

7. Знакомство с модулями цифровой логики 4 оператора NAND внутри модуля 4011
Новый важный концептуально элемент - модуль цифровой логики (logic gate) на примере гейта 4011, который содержит внутри себя 4 цифровых логических оператора NAND - на этот раз это черный ящик в буквальном смысле - со всех сторон прямоугольный параллелепипед черного цвета (если не считать серебристую надпись) с торчащими наружу лапками, которые идеально втыкаются в макетную плату (если не забыли про нюанс с корпусом DIP) - некоторые из них являются интерфейсом ввода, некоторые - интерфейсом вывода.

Очевидно подобные логические модули должны очень сильно облегчать жизнь схемотехнику, т.к. поднимают его на один уровень выше в иерархии успрощающих абстракций - чтобы в этом убедиться, достаточно сравнить размер элемента 4011 (который содержит 4 оператора NAND) и схему одного оператора NAND, который мы собрали выше руками. Для того, что воспользоваться готовым логическим модулем достаточно посмотреть на его принципиальную схему и выяснить, какие ножки за что отвечают.

В случае с 4011, чтобы воспользоваться например первым оператором NAND из 4х доступных, можно подключить провода ввода A и B к ножкам 1 и 2 соответственно, а провод вывода Q к ножке 3 (ну и подать питание - минус (-) на ножку 7, плюс (+) на ножку 14) - таблица истинности для Q будет показывать действие оператора NAND точно как и в прошлом примере.

(в конце ролика небольшая помарка - в последней строке должно быть записано "0, 0, 1" вместо "1, 1, 1")

Понятное дело, что подобных логических элементов создано большое количество на все случаи жизни (от базовых логических операторов до генераторов импульса типа 555 или драйвера 7мисегментного дисплея 4511) - как и в случае с 4011, для того, чтобы ими пользоваться, не особо важно знать, как они устроены внутри - достаточно посмотреть в документацию про то, что и при каких обстоятельствах можно подавать и что снимать с его лапок. В общем, почти полная аналогия с библиотеками готовых функций или объектов в мире программирования.

(Если не разбирать NAND из упражнения AND+NOT и уместить NAND из 4011 рядом с ним, то можно убедиться, что лампочки обоих NAND"в при одинаковых входных значениях должны давать одинаковые выходные значения, т.е. схема собранная руками из сопротивлений, диодов и транзисторов, дает тот же результат, что и схема, прошитая внутри черного модуля 4011).

8. Таймер из двух элементов NAND и конденсатора
И опять важный новый элемент - генератор периодического сигнала - таймер (Clock). До этого момента все собираемые логические схемы были статичными - при подаче нужных сигналов на входные подсети (A и B) их значение однозначно преобразовывалось через последовательную цепочку логических операторов в значение выходного сигнала Q, которое без ручного изменения значений входящих сигналов (A и B) (например ручного перетыкания провода из плюса в минус) никак меняться не будет. Элемент "таймер" (или "часы" - в tron.ix он называется Clock, при этом был еще дополнительный специальный элемент Timer) добавляет динамики в этот процесс - значение выходного сигнала таймера самостоятельно меняется с HIGH (TRUE) на LOW (FALSE) и обратно с определенной частотой и при этом человек в этом процессе никак не участвует (нет нужды руками перетыкивать провод из плюса в минус).

В связке с триггерами (flip-flop"ами - элементами, которые умеют "запоминать" свое значение) это в будущем позволит строить конечные автоматы, которые на каждый "такт" таймера будут последовательно переходить из одного состояния в другое.

Последовательность выходных значений HIGH/LOW в каждый момент времени изображают в виде ломаной линии на специальном графике - в дальнейшем с такими графиками будет более плотное знакомство в следующих лабах при симуляции поведения конечных автоматов.

Таймер можно собрать из 2х элементов NAND (взять из логического элемента 4011) и конденсатора C1 (новый элемент на схеме - см. замечание ниже). У конденсатора две ножки - одна длинне (условный плюс), вторая короче (условный минус), но судя по всему какой стороной втыкать конденсатор по крайней мере в данную схему особой роли не играет, т.к. их полярность все равно меняется в процессе колебания (в этом весь смысл).

Замечание: по физике процесса - новый электрический элемент схемы, без которого таймер не смог бы работать - конденсатор - внутри устроен достаточно просто - две изолированные друг от друга пластины - если на одной из них накопить заряд (+), а на второй оставить минус (-) (т.е. конденсатор будет заряжен ) и потом подсоединить ножки к разным участкам цепи, через цепь потечет ток от плюса к минусу пока заряды не уравняются (конденсатор разрядится ). После разрядки конденсатор можно опять зарядить, подав на одну пластину плюс, а на другую - минус. На данной схеме при помощи двух элементов NAND организован процесс, при котором конденсатор будет постоянно то заряжаться, то разряжаться с определенной периодичностью и таким образом генерировать периодический импульс. Когда половинка конденсатора C1, подсоединенная на схеме к выходу 3 1го элемента NAND через сопротивление R1, заряжена плюсом (+), входы 1 и 2 1го элемента NAND имеют значение TRUE (+) и TRUE (+), что на выходе 3 дает значение FALSE (-) (см таблицу истинности NAND) и таким образом конденсатор имеет возможность разрядить свой плюс (+) в этот минусовой участок цепи через сопротивление R1. После того, как плюсовой (+) заряд конденсатора полностью спущен, те. превращается в минус (-), входы 1 и 2 1го элемента NAND логично получают значения FALSE (-) и FALSE (-), что соответственно меняет значение значение выхода 3 на значение TRUE (+) - в итоге получаем, что ток идет уже в противоположном направлении обратно в конденсатор до тех пор, пока он не зарядится обратно до плюса (+) - т.е. попадаем в исходное состояние. И так по кругу - частота процесса будет зависеть от емкости конденсатора (это его физическая характеристика) и силы сопротивления R1 (F=1/R1*C1). Можно в качестве дополнительного эксперимента заменить R1 на сопротивление с другим значением и убедиться, что частота мигания лампочки изменится.

Замечание: для генерации периодического сигнала на схемах можно использовать специальный логический модуль 555, но эксперименты с ним в лабу не вошли.

9. Устройство вывода семисегментный диодный дисплей
В качестве расслабляющего упражнения напоследок - знакомство с первым "человеческим" устройством вывода - семисегментным диодным дисплеем. По сути те же светодиодные лампочки, но подавая ток на нужные сегменты экрана, можно "рисовать" на нем все цифры от 0 до 9 и некоторые буквы.

Рассказывать об устройстве особо нечего - для общеанодного дисплея нужно подать на общую для всех сегментов ножку (анод) плюс, а на ножки нужных сегментов - минус; для общекатодного дисплея - наоборот на общую для всех сегментов ножку (катод) минус, а на ножки нужных сегментов - плюс.

Но главный эффект думаю производит сам факт того, что дисплей впервые показывает способ донести внутреннее состояние собранной схемы до человека в привичном для него виде (читабельными цифрами и буквами), т.е. в конечном итоге задает цель, к которой должна прийти любая собранная схема - сделать что-нибудь с устройством вывода (черный ящик без устройства вывода - это "вещь в себе", от которой не понятно какая польза и зачем она нужна).

Всем очень понравились семисегментные диодные дисплеи с общим анодом. Даже вместо того, чтобы расходиться после длинного занятия, было принято стихийное решение составить из них название группы "10-ПМ" (Прикладная Математика 2010го года поступления - букву "М" сделали в виде повернутой на бок цифры "3") и заснять его на фото.

10. Замечание - выпавший триггер
В список упражнений не вошел последний важный концептуально элемент - это триггер (flip-flop) - элемент схемы, который может запоминать последнее установленное в него значение. Без этого элемента было бы невозможно строить конечные автоматы (в частности процессоры). Изначально планировалось включить знакомство с понянием триггера на примере RS-триггера (т.к. у него довольно простая схема), но по ходу занятия стало понятно, что количество новой информации воспринимаемой за один раз уже подошло к лимиту усвояемости. Поэтому знакомство с триггерами (простым RS-триггером и более важным D-триггером) перенесено на следующие лабораторные работы непосредственно перед их использованием, когда будем рассматривать уже конкретно конечные автоматы.

Заключение
Мои впечатления от лабораторной работы как выпускника специальности Прикладная Матемитика и Java-программиста. Самый важный результат заключается в том, что эта лабораторная работа показала существование надстройки основ дискретной математики (булевой алгебры) над школьной электродинамикой (из которой лично у меня мало чего оставалось кроме смутных воспоминаний о законе Ома) - осознание этого факта открывает дорогу к пониманию принципов построения более сложных электронных систем, в основе которых лежит все та же дискретка.

С практической точки зрения игры с лампочками на макетных платах оказались довольно важны для визуального ускоренного усвоения новой информации, но за осуществление каких-то относительно сложных проектов лично я бы имея на руках одни макетные платы и россыпь разных логических гейтов не взялся - все-таки при увеличении сложности схемы процесс соединения проводков на схеме становится довольно утомительным и затратным по времени, при этом сложность (а значит и ценность проекта) собираемой системы будет довольно сильно ограничена чисто физически - площадь макетной платы можно увеличить, но как делать "рефакторинг кода" или искать ошибки, когда из одной куче торчит тысяча проводов я представляю слабо (хотя судя по информации в интернете кто-то умудряется водружать на них целые процессоры, поэтому так категорично утверждать не буду) - при этом вопрос создания проектной документации и конвертация собранного таким образом прототипа в формат документа, который мог бы быть использован для серийного производства, вообще не рассматривается. Совершенно другое дело - это чипы ПЛИС (FPGA) с программируемой цифровой логикой (в их основе лежат все те же самые базовые элементы, которые были рассмотрены в текущей лабе, но процесс манипуляции с ними организован на качественно более высоком уровне) - знакомство с ними сразу на порядки расширяет границы для фантазии в выборе целей возможных проектов - первое знакомство с ними запланировано на следующую лабораторную работу.

Все люди в мире от мала до велика знают, что перед тем, как создать что-либо, надо сначала создать макет этого “что-либо”, будь это макет здания, стадиона или даже небольшого сельского туалета. В электротехнике это называют прототипом. Прототип – это работающая модель устройства. Поэтому опытные электронщики, перед тем собрать устройство по схеме в интернете, выложенной не пойми кем и не пойми зачем, должны убедиться, что эта схема реально заработает. Поэтому, схему надо быстренько тяп-наляп собрать и убедиться в ее работоспособности, то есть собрать макет. Ну а для того, чтобы его собрать нам то как раз и понадобится макетная плата.

Виды макетных плат

Толстый картон

Давным-давно, когда еще вас не было даже и в планах, наши дедушки, а может быть и бабушки, мало ли:-), использовали толстый картон. Это самый быстрый и дешевый способ проверки схем. В картоне прорезались дырочки под выводы радиоэлементов и с другой стороны они соединялись с помощью проводов и других элементов, если те не влезали на лицевую сторону. Выглядело это примерно как-то так:

А – типа лицевая сторона, В – обратная сторона.

Все бы хорошо, но приходилось паять выводы, смотреть, чтобы ничего нигде не замкнуло, да и пока “лепишь” эту схемку можно даже ненароком растеряться:-). Да и не красиво как-то.

Самодельные макетные платы

Эти времена я еще застал на радиокружке. Тогда мы делали макетные платы сами. Брали острый резец и нарезали квадратики на фольгированном текстолите. Далее покрывали их припоем.


Если надо где-то было соединить дорожки, мы просто делали перемычки между квадратиками каплей припоя. Получалось качественно и красиво. Если было лень перепаивать радиоэлементы на нормально-разведенную плату с дорожками, просто оставляли как есть и пользовались устройством.

Одноразовые макетные платы

Производители все-таки это дело “чухнули”, или как говорится в экономике, спрос рождает предложение. Стали появляться готовые макетные платки односторонние и даже двухсторонние на любой размер и вкус.



Кстати, их можно найти на Али сразу целым набором .

Отверстия очень удобно подобраны по размерам выводов микросхем, а также других радиоэлементов. Поэтому очень удобно на таких макетных платах собирать и проверять радиоэлектронное устройство. Да и стоят они недорого.


Обратная сторона таких макетных плат уже с готовыми устройствами будет выглядеть приблизительно вот так:


В чем же минусы этих макетных плат? Лучше все-таки их использовать единожды, так как при многоразовом использовании у них могут отлетать пятачки, что приведет к ее непригодности.

Беспаечные макетные платы

Прогресс шагает своим уверенным шагом по нашему миру, и вот на рынке появились беспаечные макетные платы.


Стоят они чуть подороже, чем простые одноразовые макетные платы, но честно говоря, оно того стоит.

Они очень удобны в плане установки деталей, а также их связи между собой. В такие макетные платы можно вставлять провода не более, чем 0,7 мм и не менее, чем 0,4 мм в диаметре. Чтобы узнать, какие отверстия и дорожки между собой звонятся, проверяем все это дело . Для конструирования больших схем (вдруг вы будете разрабатывать какой-нибудь блок управления адронным коллайдером) можно добавлять такие же макетные платы впритык. Для этого есть специальные ушки. Одно движение, и макетная плата станет чуток больше.



Ну какая же макетная плата может быть без соединительных проводов? Соединительные провода, или джамперы (от английского – прыгать), нужны для соединения радиодеталей на самой макетной плате.


Чуть позже с Алиэкспресса я купил вот такие джамперы. Они намного удобнее, чем проволочные:


Здесь все просто, берем джампер и вставляем его легким движением руки



Давайте соберем простейшую схемку включения светодиода через кнопочку на макетной плате


Вот так она будет выглядеть


Выставляем на Блоке питания 5 Вольт и нажимаем на кнопочку. Светодиод загорается ярко-зеленым цветом. Значит схема работоспособная, и мы ее можем использовать по своему усмотрению.


Заключение

Беспаечные макетные платы завоевывают мир. Любую схему на них можно собрать и разобрать за считанные минуты. После сборки и проверки схемы на макетной плате, можно смело приступать к ее сборке в чистом виде. Думаю, у каждого уважаемого себя электронщика должна быть такая макетная. Но имейте ввиду, схемы с большим током в цепи лучше все таки на ней не проверять, так как контакты макетные платки могут просто-напросто выгореть – закон Джоуля-Ленца . Удачи вам в разработке и конструировании радиоэлектронных устройств!

Где купить макетную плату

Макетную плату с гибкими джамперами и даже с готовым блоком питания 5 Вольт можно сразу купить набором на Алиэкспрессе. Выбирайте на ваш вкус и цвет!


Если же не хотите , то проще всего будет купить одноразовую макетную плату и собрать на ней готовое устройство:

В распоряжении имеется заводская макетная плата вот такого типа:

Она не нравится мне по двум причинам:

1) При монтаже деталей приходится постоянно вертеть туда-сюда, чтоб сначала поставить радиодеталь, а потом припаять проводник. На столе ведёт себя неустойчиво.

2) После демонтажа отверстия остаются залиты припоем, перед следующим использованием платы приходится их прочищать.

Поискав в интернете различные виды макетных плат, которые можно сделать своими руками и из доступных материалов, наткнулся на несколько интересных вариантов, один из которых решил повторить.

Вариант №1

Цитата с форума: «Я, например многие годы, использую вот такие самодельные макетные платы. Собраны из куска стеклотекстолита, в который наклёпаны медные штырьки. Такие штырьки можно либо купить на радиорынке, либо изготовить самому из медной проволоки диаметром 1,2-1,3 мм. Более тонкие штырьки слишком сильно гнутся, а более толстые забирают слишком много тепла при пайке. Эта «макетка» позволяет многократно использовать самые затрапезные радиоэлементы. Соединения лучше делать проводом во фторопластовой изоляции МГТФ. Тогда однажды изготовленных концов хватит на всю жизнь.»

Думаю, что такой вариант подойдёт мне больше всего. Но стеклотекстолита и готовых медных штырьков в наличии не имеется, так что сделаю немного по-другому.

Медную проволоку добыл из провода:

Зачистил изоляцию и при помощи нехитрого ограничителя наделал штырьков одинаковой длины:

Диаметр штырьков — 1 мм .

За основу платы взял фанеру толщиной 4 мм (чем толще, тем крепче будут держаться штырьки ):

Чтобы не мучиться с разметкой, скотчем наклеил на фанеру разлинованную бумагу:

И просверлил отверстия с шагом 10 мм сверлом диаметром 0.9 мм :

Получаем ровные ряды отверстий:

Теперь нужно забить штырьки в отверстия. Так как диаметр отверстия меньше диаметра штырька, соединение получится внатяг и штырь будет плотно зафиксирован в фанере.

При забивании штырьков под низ фанеры нужно подложить металлический лист. Штырьки забиваются лёгкими движениями, и когда звук изменится, значит, штырь достиг листа.

Чтобы плата не ёрзала, делаем ножки:

Приклеиваем:

Макетная плата готова!

Таким же методом можно сделать плату для поверхностного монтажа (фото из интернета, радиоприёмник):

Ниже для полноты картины я приведу несколько годных конструкций, найденных в интернете.

Вариант №2

В отрезок доски забиваются канцелярские кнопки с металлической головкой:

Осталось только залудить их. Омеднёные кнопки лудятся без проблем, а вот со стальными .

Для конструирования и отладки прототипов самых различных устройств на ардуино используются макетные платы (другое название – беспаечные монтажные платы и breadboard). Они бывают нескольких разновидностей и отличаются по размерам и некоторым другим конструктивным особенностям. Макетные платы breadboard могут помочь как начинающим инженерам для создания простых схем, так и при макетировании сложных устройств. Что такое макетная плата и как пользоваться этим приспособлением расскажет данная статья.

Редко какой реальный проект Arduino содержит менее 5-10 элементов, соединенных между собой. Даже в простой хорошо всем известной схеме маячка применяются 2 элемента, светодиод и резистор, которые надо как-то соединять друг с другом. И тут как раз и встает вопрос о том, каким способом это сделать.

На сегодняшний момент существуют следующие основные способы монтажа, которыми используются в электронике и робототехнике на этапе создания прототипов:

  • Пайка. Для этого применяют специальные платы с отверстиями, в которые вставляются детали и соединяются друг с другом пайкой (с использованием паяльника) и перемычками.
  • Накрутка. По данной технологии контактные соединения устройств объединяются с макетной платой при помощи обмотки чистого провода к штыревому контакту.

Самым современным вариантом для создания прототипов является беспаечная макетная плата, которая обладает несомненными преимуществами:

  • Возможность проводить отладочные работы большое количество раз изменяя модификацию схем и способы подключения устройств;
  • Возможность соединения нескольких плат в одну большую, что позволяет работать с более сложными и большими проектами;
  • Простота и быстрота создания прототипов;
  • Долговечность и надежность.

Английский вариант названия беспаечной макетной платы – breadboard.

Схема макетной платы

Чтобы знать, как пользоваться макетной платой, следует понять принцип ее устройства.

Макетная плата для монтажа без пайки имеет пластиковое основание с множеством отверстий (стандартное расстояние между ними составляет 2,54 мм). Внутри конструкции расположены ряды металлических пластин. На каждой пластине имеются клипсы, которые спрятаны в пластиковой части установки.

Включение проводов выполняется именно в эти клипсы. При подключении проводника к одному из отдельных отверстий, контакт одновременно подключается и ко всем остальным контактам отдельного ряда.

Стоит обратить внимание, что одна рельса содержит 5 клипс. Это общий стандарт для всех беспаечных плат. То есть, к каждому рельсу можно подсоединить до пяти элементов, и они будут соединены между собой.

Следует отметить, что хотя в каждом ряду расположены десять отверстий, они все-таки разделены на две изолированные части, по пять в каждой. Между ними расположен рельс без пинов. Такая конструкция необходима для изоляции пластин друг от друга, и позволяет просто подключать микросхемы, выполненные в DIP-корпусах.

Некоторые макетные платы включают также по две линии питания с каждой из сторон. Обычно «красная линия» используется для подачи «+» напряжения, «синяя» – для «-». За счет наличия двух шин питания на плату могут подаваться два различных уровня напряжения.

Для упрощения ориентации на макетную плату также нанесены цифровые и буквенные обозначения, которыми можно руководствоваться, создавая, например, инструкцию для подключения.

Основные виды макетных плат

Макетные платы различаются по количеству выводов, расположенных на панели, числом шин и конфигурацией. Бывают и макетные платы, в которых контактные соединения выполняются посредством пайки, однако работать с ними сложнее, чем с беспаечными устройствами.

В зависимости от характеристик наиболее распространены такие виды:

  • Для сборки больших микросхем в основном используются беспаечные платы на 830 или 400 отверстий. Для соединения нескольких компонентов и подвода проводов к необходимым точкам – на 8, 10, 16 отверстий;
  • С наличием пазов для сцепления плат, которые позволяют реализовывать достаточно большие проекты;
  • С наличием самоклейки на основании для надежного закрепления на устройстве;
  • С нанесенными на плату обозначениями для подключения устройств.

В зависимости о стоимости и производителя в комплектацию могут входить и дополнительные аксессуары – провода-джамперы, разнообразные разъемы. Но главным критерием качества всегда остается количество контактных разъемов и их технические характеристики.

Как пользоваться макетной платой

Пользоваться макетной платой достаточно просто. При создании схемы в отверстия на пластиковом корпусе вставляются необходимые элементы – конденсаторы, резисторы, различные индикаторы, светодиоды и т.д. Ширина разъемов позволяет подключать к контактам проводники с сечением от 0,4 до 0,7 мм.

Простейшим примером создания прототипа схемы с использованием макетной платы может стать такой вариант реализации:

Для ее сборки необходимо взять:

  • Макетную плату (breadboard);
  • провода для соединения;
  • 1 светодиод;
  • тактовую кнопку;
  • резистор с номинальным сопротивлением 330 Ом;
  • батарейку типа «Крона» на 9В.

Плюс батарейки подключается к плюсовой шине, а минус к отрицательной. Если схема собрана правильно, то при нажатии на кнопку будет обеспечиваться загорание светодиода.

Внимание! Беспаечные макетные платы абсолютно недопустимо использовать с напряжением 220В!

Макетные платы breadboard оптимальны для создания практически любых цифровых схем и не предназначены для сборки аналоговых схем, с высокой чувствительностью к величине сопротивления. В своей практике их часто используют как новички, познающие основы схемотехники, так и опытные профессионалы ввиду простоты монтажа и высокого качества соединения рабочих контактов.

 
Статьи по теме:
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение
Кислотно-основной гомеостаз
1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов. 2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода. 4. Индикан мочи,значение исследов
Святой апостол андрей первозванный (†ок
Святой апостол Андрей Первозванный был родом из города Вифсаида, который располагался на берегу Галилейского моря. Его отца звали Иона, и он занимался рыбной ловлей. Этим он кормил семью. Повзрослевшие сыновья Симон и Андрей присоединились к отцу и тоже с