Может ли человек дышать жидкостью? Глубокое дыхание

При подъеме в горы из-за падения атмосферного давления снижается парциальное давление кислорода в альвеолярном пространстве. Когда это давление становится ниже 50 мм рт. ст. (5 км высоты), неадаптированному человеку необходимо дышать газовой смесью, в которой повышено содержание кислорода. На высоте 9 км парциальное давление в альвеолярном воздухе падает до 30 мм рт. ст., и практически выдержать такое состояние невозможно. Поэтому используется вдыхание 100% кислорода. В этом случае при данном барометрическом давлении парциальное давление кислорода в альвеолярном воздухе составляет 140 мм рт. ст., что создает большие возможности для газообмена. На высоте 12 км при вдыхании обычного воздуха альвеолярное давление равно 16 мм рт. ст. (смерть), при вдыхании чистого кислорода - всего лишь 60 мм рт. ст., т. е. дышать еще можно, но уже опасно. В этом случае можно подавать чистый кислород под давлением и обеспечить дыхание при подъеме на высоту 18 км. Дальнейший подъем возможен только в скафандрах .

Дыхание под водой на больших глубинах

При опускании под воду растет атмосферное давление. Например, на глубине 10 м давление равно 2 атмосферам, на глубине 20 м - 3 атмосферам, и т. д. В этом случае парциальное давление газов в альвеолярном воздухе соответственно возрастает в 2 и 3 раза.

Это грозит высоким растворением кислорода. Но избыток его не менее вреден для организма, чем недостаток. Поэтому один из путей уменьшения этой опасности - использование газовой смеси, в которой процентное содержание кислорода уменьшено. Например, на глубине 40 м дают смесь, содержащую 5% кислорода, на глубине 100 м - 2%.

Второй проблемой является влияние азота. Когда парциальное давление азота возрастает, то это приводит к повышенному растворению азота в крови и вызывает наркотическое состояние. Поэтому, начиная с глубины 60 м, азотно-кислородная смесь заменяется гелиокислородной смесью. Гелий менее токсичен. Он начинает оказывать наркотический эффект лишь на глубине 200-300 м. Сейчас проводятся исследования по использованию водородно-кислородных смесей для работы на глубинах до 2 км, т. к. водород очень легкий газ.

Третья проблема водолазных работ - это декомпрессия. Если быстро подниматься с глубины, то растворенные в крови газы вскипают и вызывают газовую эмболию - закупорку сосудов. Поэтому требуется постепенная декомпрессия. Например, подъем с глубины 300 м требует 2-х недельной декомпрессии .

Разрабатываемая Фондом перспективных исследований (ФПИ) система жидкостного дыхания поможет подводникам быстро подниматься на поверхность без кессонной болезни. Антропоморфный робот Фёдор примет участие в испытаниях нового российского космического корабля и может помочь Росатому в утилизации ядерных отходов. Подводный аппарат для экстремальных глубин будет испытан на дне Марианской впадины. О проектах ФПИ «Известиям» рассказал председатель научно-технического совета фонда Виталий Давыдов.

- Сколько проектов реализовано фондом и какие из них вы бы отметили особо?

В разной стадии выполнения у нас находится около 50 проектов. Еще 25 завершены. Полученные результаты переданы или передаются заказчикам. Созданы демонстраторы технологий, получено порядка 400 результатов интеллектуальной деятельности. Диапазон тематик - от погружения на дно Марианской впадины до космоса.

Из реализованных проектов можно назвать, например, успешно проведенные в прошлом году совместно с ведущим предприятием ракетного двигателестроения НПО «Энергомаш» испытания ракетного детонационного двигателя. Параллельно впервые в мире фонд получил устойчивый рабочий режим демонстратора детонационного воздушно-реактивного двигателя. Если первый предназначен для космической техники, то второй - для авиационной. Гиперзвуковые летательные аппараты, использующие такие системы, столкнутся с множеством проблем. Например, с высокими температурами. Фонд нашел решение этих проблем, использовав эффект термоэмиссии - преобразования тепловой энергии в электрическую. Фактически мы получаем электроэнергию для питания систем аппарата и одновременно охлаждаем элементы планера и двигатель.

- Один из самых известных проектов Фонда - робот Фёдор. Его создание завершено?

Да, работы по Фёдору завершены. Сейчас идет передача МЧС полученных результатов. Причем оказалось, что они заинтересовали не только МЧС, но и другие министерства, а также госкорпорации. Многие, наверное, слышали, что технологии Фёдора будут использованы «Роскосмосом» для создания робота-испытателя, который отправится в полет на новом российском пилотируемом космическом корабле «Федерация». Большой интерес к роботу проявил «Росатом». Ему нужны технологии, обеспечивающие возможность работы в условиях, опасных для человека. Например, при утилизации ядерных отходов.

- Можно ли использовать Фёдора для спасения экипажей подлодок, обследования затонувших кораблей?

Технологии, полученные при создании Фёдора, могут быть использованы для различных целей. Фонд реализует ряд проектов, связанных с подводными необитаемыми аппаратами. И в принципе технологии антропоморфного робота могут быть в них интегрированы. В частности, предусматривается создание подводного аппарата для работы на экстремальных глубинах. Мы намерены испытать его в Марианской впадине. При этом не просто опуститься на дно, как наши предшественники, а обеспечить возможность передвижения в придонной области и проведения научных исследований. Такого еще никто не делал.

В США разрабатывается четырехногий робот для перевозки грузов BigDog. Ведутся ли в ФПИ аналогичные разработки?

Что касается шагающих платформ для переноски грузов или боеприпасов, то фонд такую работу не ведет. Но некоторые организации, с которыми мы сотрудничаем, в инициативном порядке занимались подобными разработками. Вопрос о том, нужен ли подобный робот на поле боя, остается открытым. В большинстве случаев выгоднее использовать колесные или гусеничные машины.

- Какие робототехнические платформы создаются в ФПИ, помимо Фёдора?

У нас разрабатывается целый спектр платформ различного назначения. Это и наземные, и воздушные, и морские роботы. Выполняющие задачи разведки, транспортировки грузов, а также способные вести боевые действия. Одним из направлений работ в этой области является определение облика и отработка способов применения дронов, включая групповой. Думаю, что если всё будет идти теми же темпами, уже в ближайшее время произойдет существенное расширение применения дронов в том числе и для решения боевых задач.

- ФПИ разрабатывает атмосферный спутник «Сова» - большой электросамолет. Как идут его испытания?

-Испытания демонстратора беспилотного аппарата «Сова» завершены. Состоялся длительный полет на высоте около 20 тыс. м. К сожалению, аппарат попал в зону сильной турбулентности и получил серьезные повреждения. Но к этому времени мы уже получили все необходимые данные, убедились как в перспективности самого направления исследований, так и правильности выбранных конструктивных решений . Полученный опыт будет использован при создании и испытании полноразмерного аппарата.

Предприятие «Роскосмоса» НПО им. Лавочкина ведет аналогичную разработку - создает атмосферный спутник «Аист». Вы следите за разработкой конкурентов?

Мы в курсе этих работ, поддерживаем связь с разработчиками «Аиста». Речь идет не о конкуренции, а о взаимном дополнении.

Могут ли подобные аппараты использоваться в арктической зоне, где нет связи и инфраструктуры для частых взлетов-посадок?

Необходимо учитывать, что весной и осенью, а тем более в условиях полярной ночи «атмосферный спутник» может просто не получить энергии, необходимой для зарядки батарей. Это ограничивает его применение.

Недавно общественности были продемонстрированы технологии жидкостного дыхания – погружение таксы в специальную насыщенную кислородом жидкость. Демонстрация «утопления» вызвала волну протестов. Продолжатся ли после этого работы в данном направлении?

-Работы по жидкостному дыханию продолжаются. На основе нашей разработки могут быть спасены тысячи жизней. И речь идет не только о подводниках, которые благодаря жидкостному дыханию смогут без последствий в виде кессонной болезни оперативно подняться на поверхность. Есть целый ряд заболеваний и травм легких, при лечении которых можно добиться успеха с помощью жидкостного дыхания. Интересны перспективы использования технологии жидкостного дыхания для быстрого охлаждения организма, когда необходимо замедлить протекающие в нем процессы. Сейчас это делается за счет внешнего охлаждения или ввода в кровь специального раствора. Можно то же самое, но более эффективно, делать с помощью заполнения легких охлажденной дыхательной смесью.

Руководитель лаборатории ФПИ по созданию жидкостного дыхания Антон Тоньшин с таксой по кличке Николас, с помощью которой ученые Фонда перспективных исследований (ФПИ) изучали возможности жидкостного дыхания

Надо отметить, что нет никакого нанесения вреда здоровью животных, участвующих в данных экспериментах. Все «экспериментаторы» живы. Часть из них содержится в лаборатории, где их состояние контролируют. Многие стали домашними питомцами сотрудников, но при этом их состояние также периодически отслеживается нашими специалистами. Результаты наблюдений свидетельствуют об отсутствии негативных последствий жидкостного дыхания. Технология отработана, и мы перешли к созданию специальных устройств для ее практической реализации.

- Когда перейдете к исследованиям жидкостного дыхания на людях?

Теоретически мы готовы к таким экспериментам, но для их начала необходимо по крайней мере создать и отработать соответствующее оборудование.

В свое время ФПИ разработал программную платформу для проектирования различной техники, призванную заменить иностранный софт. Используется ли она где-то?

Работы по созданию единой среды российского инженерного программного обеспечения «Гербарий» действительно завершены. Сейчас рассматривается вопрос о ее использовании в «Росатоме» и «Роскосмосе» - для проектирования перспективных образцов продукции атомной промышленности, а также ракетно-космической техники.

- Работает ли фонд в области технологий дополненной реальности?

-Да, фонд ведет такие работы - в частности, совместно с «КамАЗом». Одна из наших лабораторий создала прототип очков дополненной реальности, которые обеспечивают контроль сборки агрегатов для автомобиля. Программа подсказывает, какую деталь нужно взять и куда ее установить. Если оператор совершает неправильные действия, например отступает от установленного порядка сборки изделия или неверно устанавливает его элементы, звучит звуковое оповещение о неверном шаге, а на очки выводится информация об ошибке. При этом факт неправильных действий или даже их попытка фиксируется в электронном журнале. В итоге должна быть создана система, исключающая возможность неправильной сборки. В дальнейшем мы намерены развивать указанную систему в направлении миниатюризации, заменить очки на более совершенные устройства.

Перспективы вычислительной техники сейчас связывают с развитием квантовых компьютеров, а защиты информации - с квантовой криптографией. Развивает ли ФПИ эти направления?

Фонд занимаемся проблематикой, связанной с квантовыми вычислениями, созданием соответствующей элементной базы. Что касается квантовой связи, у всех на слуху опыты китайских коллег. Но и мы не стоим на месте.

Еще осенью 2016 года ФПИ и «Ростелеком» обеспечили квантовую передачу информации по оптико-волоконному кабелю между Ногинском и Павловским Посадом. Эксперимент прошел успешно. Сегодня можно уже поговорить по квантовому телефону. Важной особенностью квантовой передачи информации является невозможность ее перехвата.

В ходе упомянутого эксперимента квантовая связь была обеспечена на расстоянии около 30 км. Технически нет проблем осуществить ее и на большей дальности. Готовимся провести сеанс связи по атмосферному каналу. Прорабатываем возможность эксперимента по квантовой связи из космоса с использованием потенциала Международной космической станции.

Ихтиандры среди нас. Российские ученые начали испытывать технологию жидкостного дыхания у подводников. Опыты сейчас пока проходят на собаках. Рекорд дыхания в жидкости — уже 30 минут. Как чудеса из романов и фильмов претворяются в жизнь, выяснял корреспондент «Вестей ФМ» Сергей Гололобов.

Наблюдение за экспериментом. Таксу погружают в ванну с жидкостью мордой вниз. Удивительно, но собака не захлебнулась, а начала дышать той самой жидкостью. Заглатывая её судорожно, рывками. Но ведь дышала. Спустя 15 минут ее вытащили. Собака была вялой, причем, скорее, от переохлаждения, но, главное, живой. А спустя некоторое время и во все пришла в свое обычное игривое настроение. Чудо. Что-то похожее демонстрировалось в знаменитом голливудском фильме «Бездна» 1989 года. Там, залив в колбу с водой некие присадки, запускали туда белую крысу. Причем снято все натурально. И крыса действительно дышала якобы под водой.

А хитрость этого эпизода из фильма «Бездна» в том, что крыса дышала не водой как таковой, а некой специальной жидкостью. Именно на этом и основывается технология жидкостного дыхания. Наиболее подходящими веществами для этой цели считаются перфторуглеродные соединения. Они хорошо растворяют в себе кислород и углекислый газ и не приносят вред организму. То есть живые существа вдыхают не воду, а те самые жидкие углероды. Для чего это нужно людям, рассказал врач-пульмонолог, руководитель научной темы по жидкостному дыханию еще с восьмидесятых годов Андрей Филиппенко.

«Это нужня для спасения подводников. При большом давлении, если у них будет в легких жидкость, если они из этой жидкости извлекут кислород, то они смогут выйти на большой глубине, и быстро, без всякой декомпрессионной проблемы подняться к поверхности».

Известно, что выход с больших глубин у водолазов и подводников занимает часы. Если же подниматься на поверхность быстро, то вас настигнет кессонная болезнь. Попадающие с дыхательной смесью в кровь пузырьки азота вскипают из-за резкого перепада давления и разрушают сосуды. Если использовать аппарат со специальной дыхательной жидкостью, таких проблем не возникнет, поясняет Андрей Филиппенко.

«Фторуглеродная жидкость является носителем, так сказать, азот-кислорода, то есть переносчиком. Но в отличие от азота, который переходит в ткань организма при большом давлении, на глубине, и из-за этого возникает кессонная болезнь, здесь этого нет. То есть нет причин для кессонной болезни. Нет пересыщения инертным газом организма. То есть нет принципиально причин для пузырьков».

Опыты по жидкостному дыханию активно велись, начиная с 60-х, в Советском Союзе и США. Но дальше экспериментов с животными дело не доходило. После развала Союза у нас научный поиск в этом направлении сошел на нет. Но очень мощные наработки остались. И сейчас их решено использовать по новой, говорит Андрей Филиппенко.

«Большой задел по технологии жидкостного дыхания, и по жидкостям. И плюс еще у нас еще есть последствия этих жидкостей. Потому что все вводимые в кровь фторуглероды, а у нас уже 25 лет используется такое вещество, выходят через легкие. То есть мы знаем и последствия влияния на организм введения в него перфторуглеродов. У американцев или французов, англичан таких данных нет».

Недавно российские ученые создали специальную капсулу для собак, которую погружали в гидрокамеру с повышенным давлением. И сейчас собаки могут без последствий для здоровья более получаса дышать на глубине до полукилометра. А вскоре планируется перейти к экспериментам на людях. Самое страшное — это, конечно, заставить себя вдохнуть жидкость, размышляет президент Конфедерации подводной деятельности России Валентин Сташевский:

«Когда воду вдыхаешь, это просто кошмар. Это значит первый путь к тому, чтобы утонуть. Так было по всем историческим предшествующим событиям. Захлебываешься, как только вода попадает в дыхательные пути и так далее».

Тем не менее, желающие стать фактически утопленниками, но при этом начать дышать как человек-амфибия, ну или Садко, у нас есть, отмечает Андрей Филиппенко.

«Добровольцы есть. Но давайте сразу уточним, добровольцами здесь могут быть только те люди, которые очень хорошо понимают, что может произойти. То есть это фактически могут быть только те врачи, которые много занимались жидкостным дыханием. Вот такие в нашей команде есть. И не один. Нужно только правильно всё оорганизовать».

Сейчас работы по жидкостному дыханию переданы в НИИ медицины труда. Основная цель исследований — создать специальный скафандр, который пригодится не только подводникам, но и летчикам, а также космонавтам. Но, повторим, речь идет о дыхании специальными жидкостями. Дышать непосредственно водой, как ихтиандр, пока человеку недоступно.

Это уже, наверное, клише в научной фантастике: в костюм или капсулу очень быстро поступает некое вязкое вещество, и главный герой внезапно для себя обнаруживает, как быстро он теряет остатки воздуха из собственных лёгких, а его внутренности заполняются необычной жидкостью оттенка от лимфы до крови. В конце концов он даже паникует, но делает несколько инстинктивных глотков или, скорее, вздохов и с удивлением обнаруживает - он может дышать этой экзотической смесью так, словно он дышит обычным воздухом.

Так ли мы далеки от реализации идеи жидкостного дыхания? Возможно ли дышать жидкой смесью, и есть ли в этом реальная необходимость?
Существует три перспективных пути использования этой технологии: это медицина, ныряние на большие глубины и космонавтика.

Давление на тело ныряльщика растёт с каждыми десятью метрами на одну атмосферу. Из-за резкого понижения давления может начаться кессонная болезнь, при проявлениях которой растворённые в крови газы начинают закипать пузырьками. Также при высоком давлении возможны кислородное и наркотическое азотное отравление. Со всем этим борются применением специальных дыхательных смесей, но и они не дают никаких гарантий, а лишь снижают вероятность неприятных последствий. Конечно, можно использовать водолазные скафандры, которые поддерживают давление на тело ныряльщика и его дыхательной смеси ровно в одну атмосферу, но они в свою очередь крупногабаритны, громоздки, затрудняют движение, а также очень дороги.

Жидкостное дыхание могло бы предоставить третье решение этой проблемы с сохранением мобильности эластичных гидрокомбинезонов и низких рисков жёстких скафандров. Дыхательная жидкость в отличие от дорогих дыхательных смесей не насыщает тело гелием или азотом, поэтому также отпадает необходимость в медленной декомпрессии для избежания кессонной болезни.

В медицине жидкостное дыхание можно использовать при лечении недоношенных детей, чтобы избежать повреждения недоразвитых бронхов лёгких давлением, объёмом и концентрацией кислорода воздуха аппаратов искусственной вентиляции лёгких. Подбирать и пробовать различные смеси для обеспечения выживания недоношенного плода начали уже в 90-х. Возможно использование жидкой смеси при полных остановках или частичных недостаточностях дыхания.

Космический полёт сопряжён с большими перегрузками, а жидкости распространяют давление равномерно. Если человека погрузить в жидкость, то при перегрузках давление будет идти на всё его тело, а не конкретные опоры (спинки кресла, ремни безопасности). Такой принцип использовался при создании костюма для перегрузок Libelle, который представляет из себя жёсткий скафандр, наполненный водой, что позволяет пилоту сохранять сознание и работоспособность даже при перегрузках выше 10 g.

Этот метод ограничен разницей плотностей тканей тела человека и используемой жидкостью для погружения, поэтому предел составляет 15-20 g. Но можно пойти дальше и заполнить лёгкие жидкостью, близкой по плотности к воде. Полностью погруженный в жидкость и дышащий жидкостью космонавт будет относительно слабо ощущать эффект экстремально высоких перегрузок, поскольку силы в жидкости распределяются равномерно во всех направлениях, но эффект всё равно будет из-за различной плотности тканей его тела. Предел всё равно останется, но он будет высок.

Первые эксперименты по жидкостному дыханию проводились в 60-х годах прошлого века на лабораторных мышах и крысах, которых заставили вдыхать солевой раствор с высоким содержанием растворённого кислорода. Эта примитивная смесь давала животным возможность выжить некоторое количество времени, но она не могла удалять углекислый газ, поэтому лёгким животных наносился непоправимый вред.

Позже начались работы с перфторуглеродами, и их первые результаты были куда лучше результатов экспериментов с соляным раствором. Перфторуглероды - это органические вещества, в которых все атомы водорода замещены на атомы фтора. Перфторуглеродные соединения обладают способностью растворять как кислород, так и углекислый газ, они очень инертны, бесцветны, прозрачны, не могут нанести повреждения ткани лёгких и не усваиваются организмом.

С того момента жидкости для дыхания были улучшены, самое совершенное на данный момент решение называется перфлуброн или «Ликвивент» (коммерческое название). Эта маслоподобная прозрачная жидкость с плотностью в два раза выше плотности воды обладает множеством полезных качеств: она может нести в два раза больше кислорода, чем обычный воздух, имеет низкую температуру кипения, поэтому после использования окончательное её удаление из лёгких производится испарением. Альвеолы под воздействием этой жидкости лучше открываются, и вещество получает доступ к их содержимому, это улучшает обмен газами.

Лёгкие могут заполняться жидкостью полностью, это потребует мембранного оксигенатора, нагревающего элемента и принудительной вентиляции. Но в клинической практике чаще всего так не делают, а используют жидкостное дыхание в комбинации с обычной газовой вентиляцией, заполняя лёгкие перфлуброном лишь частично, примерно на 40% от всего объёма.


Кадр из фильма Бездна (The Abyss), 1989 год

Что же мешает нам использовать жидкостное дыхание? Жидкость для дыхания вязка и плохо выводит углекислый газ, поэтому понадобится принудительная вентиляция лёгких. Для удаления углекислого газа от обычного человека массой 70 килограммов потребуется поток 5 литров в минуту и выше, и это очень много с учётом высокой вязкости жидкостей. При физических нагрузках величина необходимого потока будет только расти, и вряд ли человек сможет двигать 10 литров жидкости в минуту. Наши лёгкие просто не созданы для дыхания жидкостью и сами прокачивать такие объёмы не в состоянии.

Использование положительных черт жидкости для дыхания в авиации и космонавтике тоже может навсегда остаться мечтой - жидкость в лёгких для костюма защиты от перегрузок должна обладать плотностью воды, а перфлуброн в два раза её тяжелей.

Да, наши лёгкие технически способны «дышать» определённой богатой кислородом смесью, но, к сожалению, пока мы можем это делать только на протяжении нескольких минут, поскольку наши лёгкие не настолько сильны, чтобы обеспечивать циркуляцию дыхательной смеси продолжительные периоды времени. Ситуация может измениться в будущем, остаётся лишь обратить наши надежды на исследователей в этой области.

Недавно Научно-технический совет государственного Фонда перспективных исследований одобрил «проект по созданию технологии спасения подводников свободным всплытием с использованием метода жидкостного дыхания», реализацией которого должен заняться московский Институт медицины труда (на момент написания статьи руководство института было недоступно для комментариев). «Чердак» решил разобраться, что скрывается за таинственным словосочетанием «жидкостное дыхание».

Наиболее впечатляюще жидкостное дыхание показано в фильме Джеймса Кэмерона «Бездна».

Правда, в таком виде опыты на людях еще никогда не проводились. Но в целом ученые не сильно уступают Кэмерону по части исследования этого вопроса.

Мыши как рыбы

Первым, кто показал, что млекопитающие в принципе могут получать кислород не из смеси газов, а из жидкости, был Йоханнес Килстра (Johannes Kylstra) из медицинского центра университета Дьюка (США). Вместе с коллегами он в 1962 году опубликовал работу «Мыши как рыбы » (Of mice as fish) в журнале Transactions of American Society for Artificial Internal Organs .

Килстра и его коллеги погружали мышей в физраствор. Чтобы растворить в нем достаточное для дыхания количество кислорода, исследователями «вгоняли» газ в жидкость под давлением до 160 атмосфер — как на глубине 1,5 километра. Мыши в этих экспериментах выживали, но не очень долго: кислорода в жидкости было достаточно, а вот сам процесс дыхания, втягивания и выталкивания жидкости из легких требовал слишком больших усилий.

«Вещество Джо»

Стало понятно, что нужно подобрать такую жидкость, в которой кислород будет растворяться намного лучше, чем в воде. Требуемыми свойствами обладали два типа жидкостей: силиконовые масла и жидкие перфторуглероды. После экспериментов Леланда Кларка (Leland Clark), биохимика из медицинской школы университета Алабамы, в середине 1960-х годов выяснилось, что оба типа жидкостей можно использовать для доставки кислорода в легкие. В опытах мышей и кошек полностью погружали и в перфторуглероды, и в силиконовые масла. Однако последние оказались токсичны — подопытные звери погибали вскоре после эксперимента. А вот перфторуглероды оказались вполне пригодны для использования.

Перфторуглероды были впервые синтезированы в ходе Манхэттенского проекта по созданию атомной бомбы: ученые искали вещества, которые бы не разрушались при взаимодействии с соединениями урана, и они проходили под кодовым названием «вещества Джо» (Joe’s stuff). Для жидкостного дыхания они подходят очень хорошо: «вещества Джо» не взаимодействуют с живыми тканями и прекрасно растворяют газы, в том числе кислород и углекислый газ при атмосферном давлении и нормальной температуре человеческого тела.

Килстра и его коллеги исследовали технологию жидкостного дыхания в поисках технологии, которая бы позволяла людям погружаться и всплывать на поверхность, не опасаясь развития кессонной болезни. Быстрый подъем с большой глубины с запасом сжатого газа очень опасен: газы лучше растворяются в жидкостях под давлением, поэтому по мере того, как водолаз всплывает, растворенные в крови газы, в частности азот, образуют пузырьки, которые повреждают кровеносные сосуды. Результат может быть печальным, вплоть до смертельного.

В 1977 году Килстра представил в Военно-морское министерство США заключение, в котором писал, что, по его расчетам, здоровый человек может получать необходимое количество кислорода при использовании перфторуглеродов, и, соответственно, их потенциально возможно использовать вместо сжатого газа. Ученый указывал, что такая возможность открывает новые перспективы для спасения подводников с больших .

Эксперименты на людях

На практике техника жидкостного дыхания, к тому времени получившая название жидкостной вентиляции легких, была применена на людях всего один раз, в 1989 году. Тогда Томас Шаффер (Thomas Shaffer), педиатр из медицинской школы Темпльского университета (США), и его коллеги использовали этот метод для спасения недоношенных младенцев. Легкие зародыша в утробе матери заполнены жидкостью, а когда человек рождается и начинает дышать воздухом, тканям легких на протяжении всей оставшейся жизни не дает слипаться смесь веществ, называемая легочным сурфактантом. У недоношенных младенцев он не успевает накопиться в нужном количестве, и дыхание требует очень больших усилий, что чревато летальным исходом. В тот раз, правда, жидкостная вентиляция младенцев не спасла: все трое пациентов вскоре умерли, однако этот печальный факт был отнесен на счет других причин, а не на счет несовершенства метода.

Больше экспериментов по тотальной жидкостной вентиляции легких, как эта технология называется по-научному, на людях не проводилось. Однако в 1990-х годах исследователи модифицировали метод и проводили на пациентах с тяжелым воспалительным поражением легких эксперименты по частичной жидкостной вентиляции, при которой легкие заполняются жидкостью не полностью. Первые результаты выглядели обнадеживающими, но в конечном счете до клинического применения дело не дошло — оказалось, что обычная вентиляция легких воздухом работает не хуже.

Патент на фантастику

В настоящее время исследователи вернулись к идее использования полной жидкостной вентиляции легких. Однако фантастическая картина водолазного костюма, в котором человек будет дышать жидкостью вместо специальной смеси газов, далека от реальности, хотя и будоражит воображение публики и умы изобретателей.

Так, в 2008 году отошедший от дел американский хирург Арнольд Ланде (Arnold Lande) запатентовал водолазный костюм с использованием технологии жидкостной вентиляции. Вместо сжатого газа он предложил использовать перфторуглероды, а избыток углекислоты, которая будет образовываться в крови, выводить при помощи искусственных жабр, «воткнутых» прямо в бедренную вену водолаза. Изобретение получило некоторую известность после того, как о нем написало издание The Inpependent .

Как считает специалист по жидкостной вентиляции из Шербрукского университета в Канаде Филипп Мишо (Philippe Micheau), проект Ланде выглядит сомнительным. «В наших экспериментах (Мишо и его коллеги проводят эксперименты на ягнятах и крольчатах со здоровыми и поврежденными легкими — прим. «Чердака») по тотальному жидкостному дыханию животные находятся под анестезией и не двигаются. Поэтому мы можем организовать нормальный газообмен: доставку кислорода и удаление углекислого газа. Для людей при физической нагрузке, такой как плавание и ныряние, доставка кислорода и удаление углекислоты будут проблемой, так как выработка углекислоты в таких условиях выше нормы», — прокомментировал Мишо. Ученый также отметил, что технология закрепления «искусственных жабр» в бедренной вене ему неизвестна.

Главная проблема «жидкостного дыхания»

Более того, Мишо считает саму идею «жидкостного дыхания» сомнительной, поскольку для «дыхания» жидкостью человеческая мускулатура не приспособлена, а эффективная система насосов, которая бы помогала закачивать и выкачивать жидкость из легких человека, когда он двигается и выполняет какую-то работу, до сих пор не разработана.

«Я должен заключить, что на современном этапе развития технологий невозможно разработать водолазный костюм, используя метод жидкостной вентиляции», — считает исследователь.

Однако применение этой технологии продолжает исследоваться для других, более реалистичных целей. Например, для помощи утонувшим, промывания легких при различных заболеваниях или быстрого понижения температуры тела (применяется в случаях реанимации при остановке сердца у взрослых и новорожденных с гипоксически-ишемическим поражением мозга).

 
Статьи по теме:
Куриная печень в сливках Куриная печень в сливках
Куриная печень - продукт не только вкусный, но и полезный. Надоели привычные паштеты и подливы? Приготовьте что-нибудь новенькое. Обязательно обратите внимание на такой деликатес, как в сливках. Приготовить это кушанье можно и по случаю праздничного засто
Ленивая овсянка: быстрый и полезный завтрак на все случаи жизни
Как часто мы что-то готовим на завтрак впопыхах, бегая между кухней, детской комнатой и туалетным столиком. При этом яичница подгорает, бутерброды падают маслом вниз, а задуманными всмятку яйцами впору стены разбивать. Другое дело - ленивая овсянка в банк
Торт «Медовик» пошаговый рецепт с фотографиями
Торт «Медовик» завоевал популярность и приобрел множество фанатов еще давным-давно. И все потому, что этот классический медовый торт можно без труда приготовить в домашних условиях, а получится он не менее вкусным, чем у профессиональных кондитеров. Рецеп
Таро Звезда — значение в прямом и перевернутом положении
На карте Звезда нарисована девушка с двумя кувшинами. На небе видны звезды. Одна из них большая желтого цвета. Девушка на коленях стоит перед водоемом. Вода из кувшинов льется на землю. 17 аркан Звезда по праву считается картой магов. Это связь всех мисти