Наибольшее и наименьшее значение функции определение коротко. Наибольшее и наименьшее значения функции на отрезке

Исследование такого объекта математического анализа как функция имеет большое значение и в других областях науки. Например, в экономическом анализе постоянно требуется оценить поведение функции прибыли, а именно определить ее наибольшее значение и разработать стратегию его достижения.

Инструкция

Исследование поведения любой всегда следует начинать с поиска области определения. Обычно по условию конкретной задачи требуется определить наибольшее значение функции либо на всей этой области, либо на конкретном ее интервале с открытыми или закрытыми границами.

Исходя из , наибольшим является значение функции y(x0), при котором для любой точки области определения выполняется неравенство y(x0) ≥ y(x) (х ≠ x0). Графически эта точка будет наивысшей, если расположить значения аргумента по оси абсцисс, а саму функцию по оси ординат.

Чтобы определить наибольшее значение функции , следуйте алгоритму из трех этапов. Учтите, что вы должны уметь работать с односторонними и , а также вычислять производную. Итак, пусть задана некоторая функция y(x) и требуется найти ее наибольшее значение на некотором интервале с граничными значениями А и В.

Выясните, входит ли этот интервал в область определения функции . Для этого необходимо ее найти, рассмотрев все возможные ограничения: присутствие в выражении дроби, квадратного корня и т.д. Область определения – это множество значений аргумента, при которых функция имеет смысл. Определите, является ли данный интервал его подмножеством. Если да, то переходите к следующему этапу.

Найдите производную функции и решите полученное уравнение, приравняв производную к нулю. Таким образом, вы получите значения так называемых стационарных точек. Оцените, принадлежит ли хоть одна из них интервалу А, В.

Рассмотрите на третьем этапе эти точки, подставьте их значения в функцию. В зависимости от типа интервала произведите следующие дополнительные действия. При наличии отрезка вида [А, В] граничные точки входят в интервал, об этом говорят скобки. Вычислите значения функции при х = А и х = В. Если открытый интервал (А, В), граничные значения являются выколотыми, т.е. не входят в него. Решите односторонние пределы для х→А и х→В. Комбинированный интервал вида [А, В) или (А, В], одна из границ которого принадлежит ему, другая – нет. Найдите односторонний предел при х, стремящемся к выколотому значению, а другое подставьте в функцию. Бесконечный двусторонний интервал (-∞, +∞) или односторонние бесконечные промежутки вида: , (-∞, B). Для действительных пределов А и В действуйте согласно уже описанным принципам, а для бесконечных ищите пределы для х→-∞ и х→+∞ соответственно.

Задача на этом этапе


Постановка задачи 2:

Дана функция , определенная и непрерывная на некотором промежутке . Требуется найти наибольшее (наименьшее) значение функции на этом промежутке.

Теоретические основы.
Теорема (Вторая теорема Вейерштрасса):

Если функция определена и непрерывна в замкнутом промежутке , то она достигает в этом промежутке своих наибольшего и наименьшего значений.

Функция может достигать своих наибольших и наименьших значений либо на внутренних точках промежутка, либо на его границах. Проиллюстрируем все возможные варианты.

Пояснение:
1) Функция достигает своего наибольшего значения на левой границе промежутка в точке , а своего наименьшего значения на правой границе промежутка в точке .
2) Функция достигает своего наибольшего значения в точке (это точка максимума) , а своего наименьшего значения на правой границе промежутка в точке .
3) Функция достигает своего наибольшего значения на левой границе промежутка в точке , а своего наименьшего значения в точке (это точка минимума).
4) Функция постоянна на промежутке, т.е. она достигает своего минимального и максимального значения в любой точке промежутка, причем минимальное и максимальное значения равны между собой.
5) Функция достигает своего наибольшего значения в точке , а своего наименьшего значения точке (несмотря на то, что функция имеет на этом промежутке как максимум, так и минимум).
6) Функция достигает своего наибольшего значения в точке (это точка максимума), а своего наименьшего значения в точке (это точка минимума).
Замечание:

«Максимум» и «максимальное значение» — разные вещи. Это следует из определения максимума и интуитивного понимания словосочетания «максимальное значение».

Алгоритм решения задачи 2.



4) Выбрать из полученных значений наибольшее (наименьшее) и записать ответ.

Пример 4:

Определить наибольшее и наименьшее значение функции на отрезке .
Решение:
1) Найти производную функции .

2) Найти стационарные точки (и точки, подозрительные на экстремум), решив уравнение . Обратить внимание на точки, в которых не существует двусторонней конечной производной.

3) Вычислить значения функции в стационарных точках и на границах интервала.



4) Выбрать из полученных значений наибольшее (наименьшее) и записать ответ.

Функция на этом отрезке достигает своего наибольшего значения в точке с координатами .

Функция на этом отрезке достигает своего наименьшего значения в точке с координатами .

В правильность вычислений можно убедиться, взглянув на график исследуемой функции.


Замечание: Наибольшего значения функция достигает в точке максимума, а наименьшего – на границе отрезка.

Частный случай.

Предположим, требуется найти максимально и минимальное значение некоторой функции на отрезке. После выполнение первого пункта алгоритма, т.е. вычисления производной, становится ясно, что, например, она принимает только отрицательные значения на всем рассматриваемом отрезке. Помним, что если производная отрицательна, то функция убывает. Получили, что на всем отрезке функция убывает. Эта ситуация отображена на графике № 1 в начале статьи.

На отрезке функция убывает, т.е. точек экстремумов у нее нет. Из картинки видно, что наименьшее значение функция примет на правой границе отрезка, а наибольшее значение — на левой. если же производная на отрезке всюду положительна, то функция возрастает. Наименьшее значение — на левой границе отрезка, наибольшее — на правой.

И для её решения потребуется минимальное знание темы. Заканчивается очередной учебный год, всем хочется на каникулы, и чтобы приблизить этот момент я сразу же перехожу к делу:

Начнём с области. Область, о которой идёт речь в условии, представляет собой ограниченное замкнутое множество точек плоскости . Например, множество точек, ограниченное треугольником, включая ВЕСЬ треугольник (если из границы «выколоть» хотя бы одну точку, то область перестанет быть замкнутой) . На практике также встречаются области прямоугольной, круглой и чуть более сложных форм. Следует отметить, что в теории математического анализа даются строгие определения ограниченности, замкнутости, границы и т.д. , но, думаю, все осознаЮт эти понятия на интуитивном уровне, а бОльшего сейчас и не надо.

Плоская область стандартно обозначается буквой , и, как правило, задаётся аналитически – несколькими уравнениями (не обязательно линейными) ; реже неравенствами. Типичный словесный оборот: «замкнутая область , ограниченная линиями ».

Неотъемлемой частью рассматриваемого задания является построение области на чертеже. Как это сделать? Нужно начертить все перечисленные линии (в данном случае 3 прямые ) и проанализировать, что же получилось. Искомую область обычно слегка штрихуют, а её границу выделяют жирной линией:


Эту же область можно задать и линейными неравенствами : , которые почему-то чаще записывают перечислительным списком, а не системой .
Так как граница принадлежит области, то все неравенства, разумеется, нестрогие .

А теперь суть задачи. Представьте, что из начала координат прямо на вас выходит ось . Рассмотрим функцию , которая непрерывна в каждой точке области . График данной функции представляет собой некоторую поверхность , и маленькое счастье состоит в том, что для решения сегодняшней задачи нам совсем не обязательно знать, как эта поверхность выглядит. Она может располагаться выше, ниже, пересекать плоскость – всё это не важно. А важно следующее: согласно теоремам Вейерштрасса , непрерывная в ограниченной замкнутой области функция достигает в ней наибольшего (самого «высокого») и наименьшего (самого «низкого») значений, которые и требуется найти. Такие значения достигаются либо в стационарных точках , принадлежащих области D , либо в точках, которые лежат на границе этой области. Из чего следует простой и прозрачный алгоритм решения:

Пример 1

В ограниченной замкнутой области

Решение : прежде всего, нужно изобразить область на чертеже. К сожалению, мне технически трудно сделать интерактивную модель задачи, и поэтому я сразу приведу финальную иллюстрацию, на которой изображены все «подозрительные» точки , найденные в ходе исследования. Обычно они проставляются одна за другой по мере их обнаружения:

Исходя из преамбулы, решение удобно разбить на два пункта:

I) Найдём стационарные точки. Это стандартное действие, которые мы неоднократно выполняли на уроке об экстремумах нескольких переменных :

Найденная стационарная точка принадлежит области: (отмечаем её на чертеже) , а значит, нам следует вычислить значение функции в данной точке:

– как и в статье Наибольшее и наименьшее значения функции на отрезке , важные результаты я буду выделять жирным шрифтом. В тетради их удобно обводить карандашом.

Обратите внимание на наше второе счастье – нет никакого смысла проверять достаточное условие экстремума . Почему? Даже если в точке функция достигает, например, локального минимума , то это ЕЩЁ НЕ ЗНАЧИТ, что полученное значение будет минимальным во всей области (см. начало урока о безусловных экстремумах ) .

Что делать, если стационарная точка НЕ принадлежит области? Почти ничего! Нужно отметить, что и перейти к следующему пункту.

II) Исследуем границу области.

Поскольку граница состоит из сторон треугольника, то исследование удобно разбить на 3 подпункта. Но лучше это сделать не абы как. С моей точки зрения, сначала выгоднее рассмотреть отрезки, параллельные координатным осям, и в первую очередь – лежащие на самих осях. Чтобы уловить всю последовательность и логику действий постарайтесь изучить концовку «на одном дыхании»:

1) Разберёмся с нижней стороной треугольника. Для этого подставим непосредственно в функцию:

Как вариант, можно оформить и так:

Геометрически это означает, что координатная плоскость (которая тоже задаётся уравнением ) «высекает» из поверхности «пространственную» параболу , вершина которой немедленно попадает под подозрение. Выясним, где она находится :

– полученное значение «попало» в область, и вполне может статься, что в точке (отмечаем на чертеже) функция достигает наибольшего либо наименьшего значения во всей области . Так или иначе, проводим вычисления:

Другие «кандидаты» – это, конечно же, концы отрезка. Вычислим значения функции в точках (отмечаем на чертеже) :

Тут, кстати, можно выполнить устную мини-проверку по «урезанной» версии :

2) Для исследования правой стороны треугольника подставляем в функцию и «наводим там порядок»:

Здесь сразу же выполним черновую проверку, «прозванивая» уже обработанный конец отрезка:
, отлично.

Геометрическая ситуация родственна предыдущему пункту:

– полученное значение тоже «вошло в сферу наших интересов», а значит, нужно вычислить, чему равна функция в появившейся точке :

Исследуем второй конец отрезка :

Используя функцию , выполним контрольную проверку:

3) Наверное, все догадываются, как исследовать оставшуюся сторону . Подставляем в функцию и проводим упрощения:

Концы отрезка уже исследованы, но на черновике всё равно проверяем, правильно ли мы нашли функцию :
– совпало с результатом 1-го подпункта;
– совпало с результатом 2-го подпункта.

Осталось выяснить, если ли что-то интересное внутри отрезка :

– есть! Подставляя в уравнение прямой , получим ординату этой «интересности»:

Отмечаем на чертеже точку и находим соответствующее значение функции :

Проконтролируем вычисления по «бюджетной» версии :
, порядок.

И заключительный шаг : ВНИМАТЕЛЬНО просматриваем все «жирные» числа, начинающим рекомендую даже составить единый список:

из которого выбираем наибольшее и наименьшее значения. Ответ запишем в стилистике задачи нахождения наибольшего и наименьшего значений функции на отрезке :

На всякий случай ещё раз закомментирую геометрический смысл результата:
– здесь самая высокая точка поверхности в области ;
– здесь самая низкая точка поверхности в области .

В разобранной задаче у нас выявилось 7 «подозрительных» точек, но от задачи к задаче их количество варьируется. Для треугольной области минимальный «исследовательский набор» состоит из трёх точек. Такое бывает, когда функция , например, задаёт плоскость – совершенно понятно, что стационарные точки отсутствуют, и функция может достигать наибольшего/наименьшего значений только в вершинах треугольника. Но подобных примеров раз, два и обчёлся – обычно приходится иметь дело с какой-нибудь поверхностью 2-го порядка .

Если вы немного порешаете такие задания, то от треугольников голова может пойти кругом, и поэтому я приготовил для вас необычные примеры чтобы она стала квадратной:))

Пример 2

Найти наибольшее и наименьшее значения функции в замкнутой области, ограниченной линиями

Пример 3

Найти наибольшее и наименьшее значения функции в ограниченной замкнутой области .

Особое внимание обратите на рациональный порядок и технику исследования границы области, а также на цепочку промежуточных проверок, которая практически стопроцентно позволит избежать вычислительных ошибок. Вообще говоря, решать можно как угодно, но в некоторых задачах, например, в том же Примере 2, есть все шансы значительно усложнить себе жизнь. Примерный образец чистового оформления заданий в конце урока.

Систематизируем алгоритм решения, а то с моей прилежностью паука он как-то затерялся в длинной нити комментариев 1-го примера:

– На первом шаге строим область , её желательно заштриховать, а границу выделить жирной линией. В ходе решения будут появляться точки, которые нужно проставлять на чертеже.

– Найдём стационарные точки и вычислим значения функции только в тех из них , которые принадлежат области . Полученные значения выделяем в тексте (например, обводим карандашом). Если стационарная точка НЕ принадлежит области, то отмечаем этот факт значком либо словесно. Если же стационарных точек нет вовсе, то делаем письменный вывод о том, что они отсутствуют. В любом случае данный пункт пропускать нельзя!

– Исследуем границу области. Сначала выгодно разобраться с прямыми, которые параллельны координатным осям (если таковые есть вообще) . Значения функции, вычисленные в «подозрительных» точках, также выделяем. О технике решения очень много сказано выше и ещё кое-что будет сказано ниже – читайте, перечитывайте, вникайте!

– Из выделенных чисел выбираем наибольшее и наименьшее значения и даём ответ. Иногда бывает, что такие значения функция достигает сразу в нескольких точках – в этом случае все эти точки следует отразить в ответе. Пусть, например, и оказалось, что это наименьшее значение. Тогда записываем, что

Заключительные примеры посвящены другим полезным идеям, которые пригодятся на практике:

Пример 4

Найти наибольшее и наименьшее значения функции в замкнутой области .

Я сохранил авторскую формулировку, в которой область задана в виде двойного неравенства. Это условие можно записать эквивалентной системой или же в более традиционном для данной задачи виде:

Напоминаю, что с нелинейными неравенствами мы сталкивались на , и если вам не понятен геометрический смысл записи , то, пожалуйста, не откладывайте и проясните ситуацию прямо сейчас;-)

Решение , как всегда, начинается с построения области, которая представляет собой своеобразную «подошву»:

Мда, иногда приходится грызть не только гранит науки….

I) Найдём стационарные точки:

Система-мечта идиота:)

Стационарная точка принадлежит области, а именно, лежит на её границе.

А так, оно, ничего… весело урок пошёл – вот что значит попить правильного чая =)

II) Исследуем границу области. Не мудрствуя лукаво, начнём с оси абсцисс:

1) Если , то

Найдём, где вершина параболы:
– ценИте такие моменты – «попали» прямо в точку , с которой уже всё ясно. Но о проверке всё равно не забываем:

Вычислим значения функции на концах отрезка:

2) С нижней частью «подошвы» разберёмся «за один присест» – безо всяких комплексов подставляем в функцию, причём, интересовать нас будет лишь отрезок :

Контроль:

Вот это уже вносит некоторое оживление в монотонную езду по накатанной колее. Найдём критические точки:

Решаем квадратное уравнение , помните ещё о таком? …Впрочем, помните, конечно, иначе бы не читали эти строки =) Если в двух предыдущих примерах были удобны вычисления в десятичных дробях (что, кстати, редкость), то здесь нас поджидают привычные обыкновенные дроби. Находим «иксовые» корни и по уравнению определяем соответствующие «игрековые» координаты точек-«кандидатов»:


Вычислим значения функции в найденных точках:

Проверку по функции проведите самостоятельно.

Теперь внимательно изучаем завоёванные трофеи и записываем ответ :

Вот это «кандидаты», так «кандидаты»!

Для самостоятельного решения:

Пример 5

Найти наименьшее и наибольшее значения функции в замкнутой области

Запись с фигурными скобками читается так: «множество точек , таких, что ».

Иногда в подобных примерах используют метод множителей Лагранжа , но реальная необходимость его применять вряд ли возникнет. Так, например, если дана функция с той же областью «дэ», то после подстановки в неё – с производной от никаких трудностей; причём оформляется всё «одной строкой» (со знаками ) без надобности рассматривать верхнюю и нижнюю полуокружности по отдельности. Но, конечно, бывают и более сложные случаи, где без функции Лагранжа (где , например, то же уравнение окружности) обойтись трудно – как трудно обойтись и без хорошего отдыха!

Всем хорошо сдать сессию и до скорых встреч в следующем сезоне!

Решения и ответы:

Пример 2: Решение : изобразим область на чертеже:

Процесс поиска наименьшего и наибольшего значения функции на отрезке напоминает увлекательный облёт объекта (графика функции) на вертолёте с обстрелом из дальнобойной пушки определённых точек и выбором из этих точек совсем особенных точек для контрольных выстрелов. Точки выбираются определённым образом и по определённым правилам. По каким правилам? Об этом мы далее и поговорим.

Если функция y = f (x ) непрерывна на отрезке [a , b ] , то она достигает на этом отрезке наименьшего и наибольшего значений . Это может произойти либо в точках экстремума , либо на концах отрезка. Поэтому для нахождения наименьшего и наибольшего значений функции , непрерывной на отрезке [a , b ] , нужно вычислить её значения во всех критических точках и на концах отрезка, а затем выбрать из них наименьшее и наибольшее.

Пусть, например, требуется определить наибольшее значение функции f (x ) на отрезке [a , b ] . Для этого следует найти все её критические точки, лежащие на [a , b ] .

Критической точкой называется точка, в которой функция определена , а её производная либо равна нулю, либо не существует. Затем следует вычислить значения функции в критических точках. И, наконец, следует сравнить между собой по величине значения функции в критических точках и на концах отрезка (f (a ) и f (b ) ). Наибольшее из этих чисел и будет наибольшим значением функции на отрезке [a , b ] .

Аналогично решаются и задачи на нахождение наименьших значений функции .

Ищем наименьшее и наибольшее значения функции вместе

Пример 1. Найти наименьшее и наибольшее значения функции на отрезке [-1, 2] .

Решение. Находим производную данной функции . Приравняем производную нулю () и получим две критические точки: и . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке достаточно вычислить её значения на концах отрезка и в точке , так как точка не принадлежит отрезку [-1, 2] . Эти значения функции - следующие: , , . Из этого следует, что наименьшее значение функции (на графике ниже обозначено красным), равное -7, достигается на правом конце отрезка - в точке , а наибольшее (тоже красное на графике), равно 9, - в критической точке .

Если функция непрерывна в некотором промежутке и этот промежуток не является отрезком (а является, например, интервалом; разница между интервалом и отрезком: граничные точки интервала не входят в интервал, а граничные точки отрезка входят в отрезок), то среди значений функции может и не быть наименьшего и наибольшего. Так, например, функция, изображённая на рисунке ниже, непрерывна на ]-∞, +∞[ и не имеет наибольшего значения.

Однако для любого промежутка (закрытого, открытого или бесконечного) справедливо следующее свойство непрерывных функций.

Пример 4. Найти наименьшее и наибольшее значения функции на отрезке [-1, 3] .

Решение. Находим производную данной функции как производную частного:

.

Приравниваем производную нулю, что даёт нам одну критическую точку: . Она принадлежит отрезку [-1, 3] . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Сравниваем эти значения. Вывод: , равного -5/13, в точке и наибольшего значения , равного 1, в точке .

Продолжаем искать наименьшее и наибольшее значения функции вместе

Есть преподаватели, которые по теме нахождения наименьшего и наибольшего значений функции не дают студентам для решения примеры сложнее только что рассмотренных, то есть таких, в которых функция - многочлен либо дробь, числитель и знаменатель которой - многочлены. Но мы не ограничимся такими примерами, поскольку среди преподавателей бывают любители заставить студентов думать по полной (таблице производных). Поэтому в ход пойдут логарифм и тригонометрическая функция.

Пример 6. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции как производную произведения :

Приравниваем производную нулю, что даёт одну критическую точку: . Она принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Результат всех действий: функция достигает наименьшего значения , равного 0, в точке и в точке и наибольшего значения , равного e ² , в точке .

Пример 7. Найти наименьшее и наибольшее значения функции на отрезке .

Решение. Находим производную данной функции:

Приравниваем производную нулю:

Единственная критическая точку принадлежит отрезку . Для нахождения наименьшего и наибольшего значений функции на заданном отрезке находим её значения на концах отрезка и в найденной критической точке:

Вывод: функция достигает наименьшего значения , равного , в точке и наибольшего значения , равного , в точке .

В прикладных экстремальных задачах нахождение наименьшего (наибольшего) значений функции, как правило, сводится к нахождению минимума (максимума). Но больший практический интерес имеют не сами минимумы или максимумы, а те значения аргумента, при которых они достигаются. При решении прикладных задач возникает дополнительная трудность - составление функций, описывающих рассматриваемое явление или процесс.

Пример 8. Резервуар ёмкостью 4 , имеющий форму параллелепипеда с квадратным основанием и открытый сверху, нужно вылудить оловом. Каковы должны быть размеры резервуара, чтобы на его покрытие ушло наименьшее количество материала?

Решение. Пусть x - сторона основания, h - высота резервуара, S - площадь его поверхности без крышки, V - его объём. Площадь поверхности резервуара выражается формулой , т.е. является функцией двух переменных . Чтобы выразить S как функцию одной переменной, воспользуемся тем, что , откуда . Подставив найденное выражение h в формулу для S :

Исследуем эту функцию на экстремум. Она определена и дифференцируема всюду в ]0, +∞[ , причём

.

Приравниваем производную нулю () и находим критическую точку . Кроме того, при производная не существует, но это значение не входит в область определения и поэтому не может быть точкой экстремума. Итак, - единственная критическая точка. Проверим её на наличие экстремума, используя второй достаточный признак. Найдём вторую производную . При вторая производная больше нуля (). Значит, при функция достигает минимума . Поскольку этот минимум - единственный экстремум данной функции, он и является её наименьшим значением . Итак, сторона основания резервуара должна быть равна 2 м, а его высота .

Пример 9. Из пункта A , находящегося на линии железной дороги, в пункт С , отстоящий от неё на расстоянии l , должны переправляться грузы. Стоимость провоза весовой единицы на единицу расстояния по железной дороге равна , а по шоссе она равна . К какой точке М линии железной дороги следует провести шоссе, чтобы транспортировка груза из А в С была наиболее экономичной (участок АВ железной дороги предполагается прямолинейным)?

Миниатюрная и довольно простая задача из разряда тех, которые служат спасательным кругом плавающему студенту. На природе сонное царство середины июля, поэтому самое время устроиться с ноутбуком на пляже. Ранним утром заиграл солнечный зайчик теории, чтобы в скором времени сфокусироваться на практике, которая, несмотря на заявленную лёгкость, содержит осколки стекла в песке. В этой связи рекомендую добросовестно рассмотреть немногочисленные примеры этой странички. Для решения практических заданий необходимо уметь находить производные и понимать материал статьи Интервалы монотонности и экстремумы функции .

Сначала коротко о главном. На уроке о непрерывности функции я приводил определение непрерывности в точке и непрерывности на интервале. Образцово-показательное поведение функции на отрезке формулируется похожим образом. Функция непрерывна на отрезке если:

1) она непрерывна на интервале ;
2) непрерывна в точке справа и в точке слева .

Во втором пункте речь зашла о так называемой односторонней непрерывности функции в точке. Существует несколько подходов к её определению, но я буду придерживаться начатой ранее линии:

Функция непрерывна в точке справа , если она определена в данной точке и её правосторонний предел совпадает со значением функции в данной точке: . Она же непрерывна в точке слева , если определена в данной точке и её левосторонний предел равен значению в этой точке:

Представьте, что зелёные точки – это гвозди, на которых закреплена волшебная резинка:

Мысленно возьмите красную линию в руки. Очевидно, что как бы далеко мы не растягивали график вверх и вниз (вдоль оси ), функция всё равно останется ограниченной – изгородь сверху, изгородь снизу, и наше изделие пасётся в загоне. Таким образом, непрерывная на отрезке функция ограничена на нём . В курсе матанализа этот вроде бы простой факт констатируется и строго доказывается первой теоремой Вейерштрасса. …Многих раздражает, что в математике нудно обосновываются элементарные утверждения, однако в этом есть важный смысл. Предположим, некий житель махрового средневековья вытягивал график в небо за пределы видимости вот это вставляло. До изобретения телескопа ограниченность функции в космосе была вовсе не очевидна! Действительно, откуда вы знаете, что нас ждёт за горизонтом? Ведь когда-то и Земля считалась плоской, поэтому сегодня даже обыденная телепортация требует доказательства =)

Согласно второй теореме Вейерштрасса , непрерывная на отрезке функция достигает своей точной верхней грани и своей точной нижней грани .

Число также называют максимальным значением функции на отрезке и обозначают через , а число – минимальным значением функции на отрезке с пометкой .

В нашем случае:

Примечание : в теории распространены записи .

Грубо говоря, наибольшее значение находится там, где самая высокая точка графика, а наименьшее – где самая низкая точка.

Важно! Как уже заострялось внимание в статье об экстремумах функции , наибольшее значение функции и наименьшее значение функции НЕ ТО ЖЕ САМОЕ , что максимум функции и минимум функции . Так, в рассматриваемом примере число является минимумом функции, но не минимальным значением.

Кстати, а что происходит вне отрезка ? Да хоть потоп, в контексте рассматриваемой задачи это нас совершенно не интересует. Задание предполагает лишь нахождение двух чисел и всё!

Более того, решение чисто аналитическое, следовательно, чертежа делать не надо !

Алгоритм лежит на поверхности и напрашивается из приведённого рисунка:

1) Находим значения функции в критических точках , которые принадлежат данному отрезку .

Ловите ещё одну плюшку: здесь отпадает необходимость проверять достаточное условие экстремума, поскольку, как только что было показано, наличие минимума или максимума ещё не гарантирует , что там минимальное или максимальное значение. Демонстрационная функция достигает максимума и волей судьбы это же число является наибольшим значением функции на отрезке . Но, понятно, такое совпадение имеет место далеко не всегда.

Итак, на первом шаге быстрее и проще вычислить значения функции в критических точках, принадлежащих отрезку, не заморачиваясь есть в них экстремумы или нет.

2) Вычисляем значения функции на концах отрезка.

3) Среди найденных в 1-м и 2-м пунктах значений функции выбираем самое маленькое и самое большое число, записываем ответ.

Садимся на берег синего моря и бьём пятками по мелководью:

Пример 1

Найти наибольшее и наименьшее значения функции на отрезке

Решение :
1) Вычислим значения функции в критических точках, принадлежащих данному отрезку:

Вычислим значение функции во второй критической точке:

2) Вычислим значения функции на концах отрезка:

3) «Жирные» результаты получены с экспонентами и логарифмами, что существенно затрудняет их сравнение. По сей причине вооружимся калькулятором либо Экселем и вычислим приближённые значения, не забывая, что :

Вот теперь всё понятно.

Ответ :

Дробно-рациональный экземпляр для самостоятельного решения:

Пример 6

Найти максимальное и минимальное значения функции на отрезке

 
Статьи по теме:
Волошин Александр Стальевич
Председатель советов директоров ОАО "Уралкалий" и ОАО "Первая грузовая компания"Председатель советов директоров ОАО "Уралкалий" (с сентября 2010 года), ОАО "Первая грузовая компания" (с февраля 2012 года). Ранее - председатель совета директоров РАО "ЕЭС Р
Аншлюс австрии - презентация
13 марта 1938 года Австрия была присоединена к Германии. Для Гитлера аншлюс не только создал плацдарм для наступления на Чехословакию, но и стал личной местью Родине за непризнание в молодые годы.Блеф в Берхтесгадене Разбитая после Первой мировой войны Ав
Приснился цветущий сад. Магия чисел. Современный универсальный сонник
Сны – это бездонная шкатулка с образами, которые каждую ночь оживают в нашем сознании. Иногда сновидения бывают всего лишь ответом на утомительный долгий день, который был наполнен размышлениями и разговорами.А некоторые из них могут быть глашатаями перем
Маршрут первой камчатской экспедиции
Первая Камчатская экспедицияБудучи любознательным по природе и, как просвещённый монарх, озабоченным выгодами для страны, первый русский император живо интересовался описаниями путешествий. Царь и его советники знали о существовании Аниана – так назывался
 
 
Рекламодателям | Контакты