Определение разности двух векторов. Векторы: правила сложения и вычитания

Определение

Сложение векторов иосуществляется поправилу треугольника .

Суммой двух векторов иназывают такой третий вектор, начало которого совпадает с началом, а конец - с концомпри условии, что конец вектораи начало векторасовпадают (рис. 1).

Для сложения векторов применяется также правило параллелограмма.

Определение

Правило параллелограмма - если два неколлинеарных вектора ипривести к общему началу, то векторсовпадает с диагональю параллелограмма, построенного на векторахи(рис. 2). Причем начало векторасовпадает с началом заданных векторов.

Определение

Вектор называетсяпротивоположным вектором к вектору , если онколлинеарен вектору , равен ему по длине, но направлен в противоположную сторону вектору.

Операция сложения векторов обладает следующими свойствами:

Определение

Разностью векторов иназывается вектортакой, что выполняется условие:(рис. 3).

Умножение вектора на число

Определение

Произведением вектора на число называется вектор, удовлетворяющий условиям:

Свойства умножения вектора на число:

Здесь и- произвольные векторы,,- произвольные числа.

Евкли́дово простра́нство (также Эвкли́дово простра́нство ) - в изначальном смысле, пространство, свойства которого описываются аксиомами евклидовой геометрии . В этом случае предполагается, что пространство имеет размерность равную 3.

В современном понимании, в более общем смысле, может обозначать один из сходных и тесно связанных объектов: конечномерное вещественное векторное пространство с введённым на нём положительно определённымскалярным произведением , либо метрическое пространство , соответствующее такому векторному пространству. В этой статье за исходное будет взято первое определение.

Мерное евклидово пространство обозначается также часто используется обозначение(если из контекста ясно, что пространство обладает евклидовой структурой).

Для определения евклидова пространства проще всего взять в качестве основного понятие скалярного произведения . Евклидово векторное пространство определяется как конечномерное векторное пространство над полем вещественных чисел , на векторах которого задана вещественнозначная функция обладающая следующими тремя свойствами:

Аффинное пространство , соответствующее такому векторному пространству, называется евклидовым аффинным пространством, или просто евклидовым пространством .

Пример евклидова пространства - координатное пространство состоящее из всевозможныхn -ок вещественных чисел скалярное произведение в котором определяется формулой

    Базис и координаты вектора

Ба́зис (др.-греч. βασις, основа) - множество таких векторов в векторном пространстве , что любой вектор этого пространства может быть единственным образом представлен в виде линейной комбинации векторов из этого множества - базисных векторов .

В случае, когда базис бесконечен, понятие «линейная комбинация» требует уточнения. Это ведёт к двум основным разновидностям определения:

    Базис Га́меля , в определении которого рассматриваются только конечные линейные комбинации. Базис Гамеля применяется в основном в абстрактной алгебре (в частности в линейной алгебре).

    Базис Ша́удера , в определении которого рассматриваются и бесконечные линейные комбинации, а именно - разложение в ряды . Это определение применяется в основном в функциональном анализе, в частности для гильбертова пространства ,

В конечномерных пространствах обе разновидности базиса совпадают.

Координа́ты ве́ктора ― коэффициенты единственно возможной линейной комбинации базисных векторов в выбранной системе координат , равной данному вектору.

где - координаты вектора.

    Скалярное произведение.

операция над двумя векторами , результатом которой является число [когда рассматриваются векторы, числа часто называют скалярами ], не зависящее от системы координат и характеризующее длины векторов-сомножителей и угол между ними. Данной операции соответствует умножение длины вектора x на проекцию вектора y на вектор x . Эта операция обычно рассматривается как коммутативная и линейная по каждому сомножителю.

Скалярное произведение двух векторов равно сумме произведений их соответствующих координат:

    Векторное произведение

это псевдовектор , перпендикулярный плоскости, построенной по двум сомножителям, являющийся результатом бинарной операции «векторное умножение» над векторами в трёхмерном евклидовом пространстве . Векторное произведение не обладает свойствами коммутативности и ассоциативности (является антикоммутативным ) и, в отличие от скалярного произведения векторов , является вектором. Широко используется во многих технических и физических приложениях. Например, момент импульса и сила Лоренца математически записываются в виде векторного произведения. Векторное произведение полезно для «измерения» перпендикулярности векторов - модуль векторного произведения двух векторов равен произведению их модулей, если они перпендикулярны, и уменьшается до нуля, если векторы параллельны либо антипараллельны.

    Векторное произведение двух векторов можно вычислить с помощью определителя матрицы

    Смешанное произведение

Сме́шанное произведе́ние векторов -скалярное произведение вектора навекторное произведение векторов и:

Иногда его называют тройным скалярным произведением векторов, по всей видимости из-за того, что результатом является скаляр (точнее - псевдоскаляр ).

Геометрический смысл: Модуль смешанного произведения численно равен объёму параллелепипеда , образованного векторами .смешанное произведение трех векторов можно найти через определитель

    Плоскость в пространстве

Плоскость - алгебраическая поверхность первого порядка: в декартовой системе координат плоскость может быть задана уравнением первой степени.

Некоторые характеристические свойства плоскости

    Плоскость - поверхность , содержащая полностью каждую прямую , соединяющую любые её точки ;

    Две плоскости являются либо параллельными, либо пересекаются по прямой.

    Прямая либо параллельна плоскости, либо пересекает ее в одной точке, либо находится на плоскости.

    Две прямые, перпендикулярные одной и той же плоскости, параллельны друг другу.

    Две плоскости, перпендикулярные одной и той же прямой, параллельны друг другу.

Аналогично отрезку и интервалу , плоскость, не включающую крайние точки, можно назвать интервальной плоскостью, или открытой плоскостью.

    Общее уравнение (полное) плоскости

где и- постоянные, причёмиодновременно не равны нулю; ввекторной форме:

где - радиус-вектор точки, векторперпендикулярен к плоскости (нормальный вектор).Направляющие косинусы вектора :

Скаляры можно складывать, умножать и делить так же, как обычные числа.

Поскольку вектор характеризуется не только числовым значение, но и направлением, сложение векторов не подчиняется правилам сложения чисел. Например, пусть длины векторов a = 3 м, b = 4 м, тогда a + b = 3 м + 4 м = 7 м. Но длина вектора \(\vec c = \vec a + \vec b\) не будет равна 7 м (рис. 1).

Рис. 1.

Для того, чтобы построить вектор \(\vec c = \vec a + \vec b\) (рис. 2), применяются специальные правила сложения векторов.

Рис. 2.

А длину вектора суммы \(\vec c = \vec a + \vec b\) определяют по теореме косинусов \(c = \sqrt{a^2+b^2-2a\cdot b\cdot \cos \alpha}\), где \(\alpha\,\) – угол между векторами \(\vec a\) и \(\vec b\).

Правило треугольника

В зарубежной литературе этот метод называют «хвост к голове».

Для того чтобы сложить два вектора \(\vec a\) и \(\vec b\) (рис. 3, а) нужно переместить вектор \(\vec b\) параллельно самому себе так, чтобы его начало совпадало с концом вектора \(\vec a\) (рис. 3, б). Тогда их суммой будет вектор \(\vec c\), начало которого совпадает с началом вектора \(\vec a\), а конец - с концом вектора \(\vec b\) (рис. 3, в).

а б в Рис. 3.

Результат не поменяется, если перемещать вместо вектора \(\vec b\) вектор \(\vec a\) (рис. 4), т.е. \(\vec b + \vec a = \vec a + \vec b\) (свойство коммутативности векторов ).

а б в Рис. 4. vector-treug-1.swf "Правило треугольников" Пример 1 Увеличить Flash vector-treug-2.swf "Правило треугольников" Пример 2 Увеличить Flash Рис. 5.

При помощи правила треугольника можно сложить два параллельных вектора \(\vec a\) и \(\vec b\) (рис. 6, а) и \(\vec a\) и \(\vec d\) (рис. 7, а). Суммы этих векторов \(\vec c = \vec a + \vec b\) и \(\vec f = \vec a + \vec d\) изображены на рис. 6, б и 7, б. Причем, модули векторов \(c = a + b\) и \(f=\left|a-d\right|\).

а б Рис. 6. а б Рис. 7.

Правило треугольника можно применять при сложении трех и более векторов. Например, \(\vec c = \vec a_1 + \vec a_2 +\vec a_3 +\vec a_4\) (рис. 8).

Рис. 8.

Правило параллелограмма

Для того чтобы сложить два вектора \(\vec a\) и \(\vec b\) (рис. 9, а) нужно переместить их параллельно самим себе так, чтобы начала векторов \(\vec a\) и \(\vec b\) находились в одной точке (рис. 9, б). Затем построить параллелограмм, сторонами которого будут эти вектора (рис. 9, в). Тогда суммой \(\vec a+ \vec b\) будет вектор \(\vec c\), начало которого совпадает с общим началом векторов, а конец - с противоположной вершиной параллелограмма (рис. 9, г).

а б в г Рис. 9. vector-paral-1.swf "Правило параллепипеда" Увеличить Flash Рис. 10.

Вычитание векторов

Для того чтобы найти разность двух векторов \(\vec a\) и \(\vec b\) (рис. 11) нужно найти вектор \(\vec c = \vec a + \left(-\vec b \right)\) (см.

ов, сначала необходимо разобраться в таком понятии, как откладывание вектора от данной точки.

Определение 1

Если точка $A$ начала какого-либо вектора $\overrightarrow{a}$, то говорят, что вектор $\overrightarrow{a}$ отложен от точки $A$ (рис. 1).

Рисунок 1. $\overrightarrow{a}$ отложенный от точки $A$

Введем следующую теорему:

Теорема 1

От любой точки $K$ можно отложить вектор $\overrightarrow{a}$ и притом только один.

Доказательство.

Существование: Здесь нужно рассмотреть два случая:

    Вектор $\overrightarrow{a}$ - нулевой.

    В этом случае, очевидно, что искомый вектор -- вектор $\overrightarrow{KK}$.

    Вектор $\overrightarrow{a}$ -- ненулевой.

    Обозначим точкой $A$ -- начало вектора $\overrightarrow{a}$, а точкой $B$ - конец вектора $\overrightarrow{a}$. Проведем через точку $K$ прямую $b$ параллельную вектору $\overrightarrow{a}$. Отложим на этой прямой отрезки $\left|KL\right|=|AB|$ и $\left|KM\right|=|AB|$. Рассмотрим векторы $\overrightarrow{KL}$ и $\overrightarrow{KM}$. Из этих двух векторов искомым будет тот, который будет сонаправлен с вектором $\overrightarrow{a}$ (рис. 2)

Рисунок 2. Иллюстрация теоремы 1

Единственность: единственность сразу следует из построения, проведенного в пункте «существование».

Теорема доказана.

Вычитание векторов. Правило первое

Пусть нам даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$.

Определение 2

Разностью двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ называется такой вектор $\overrightarrow{c}$, который при сложении с вектором $\overrightarrow{b}$ дает вектор $\overrightarrow{a}$, то есть

\[\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{a}\]

Обозначение: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{c}$.

Построение разности двух векторов рассмотрим с помощью задачи.

Пример 1

Пусть даны векторы $\overrightarrow{a}$ и $\overrightarrow{b}$. Построить вектор $\overrightarrow{a}-\overrightarrow{b}$.

Решение.

Построим произвольную точку $O$ и отложим от нее векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$. Соединив точку $B$ с точкой $A$, получим вектор $\overrightarrow{BA}$ (рис. 3).

Рисунок 3. Разность двух векторов

По правилу треугольника для построения суммы двух векторов видим, что

\[\overrightarrow{OB}+\overrightarrow{BA}=\overrightarrow{OA}\]

\[\overrightarrow{b}+\overrightarrow{BA}=\overrightarrow{a}\]

Из определения 2, получаем, что

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}\]

Ответ: $\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{BA}$.

Из этой задачи получаем следующее правило для нахождения разности двух векторов. Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить векторы $\overrightarrow{OA}=\overrightarrow{a}$ и $\overrightarrow{OB}=\overrightarrow{b}$ и соединить конец второго вектор с концом первого вектора.

Вычитание векторов. Правило второе

Вспомним следующее необходимое нам понятие.

Определение 3

Вектор $\overrightarrow{a_1}$ называется произвольным для вектора $\overrightarrow{a}$, если эти векторы противоположно направлены и имеют равную длину.

Обозначение: Вектор $(-\overrightarrow{a})$ противоположный для вектора $\overrightarrow{a}$.

Для того чтобы ввести второе правило для разности двух векторов, нам необходимо в начале ввести и доказать следующую теорему.

Теорема 2

Для любых двух векторов $\overrightarrow{a}$ и $\overrightarrow{b}$ справедливо следующее равенство:

\[\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\]

Доказательство.

По определению 2, имеем

Прибавим к обеим частям вектор $\left(-\overrightarrow{b}\right)$, получим

Так как векторы $\overrightarrow{b}$ и $\left(-\overrightarrow{b}\right)$ противоположны, то $\overrightarrow{b}+\left(-\overrightarrow{b}\right)=\overrightarrow{0}$. Имеем

Теорема доказана.

Из этой теоремы получаем следующее правило для разности двух векторов: Чтобы найти разность $\overrightarrow{a}-\overrightarrow{b}$ нужно от произвольной точки $O$ отложить вектор $\overrightarrow{OA}=\overrightarrow{a}$, затем от полученной точки $A$ отложить вектор $\overrightarrow{AB}=-\overrightarrow{b}$ и соединить начало первого вектора с концом второго вектора.

Пример задачи на понятие разности векторов

Пример 2

Пусть дан параллелограмм $ADCD$, диагонали которого пересекаются в точке $O$. $\overrightarrow{AB}=\overrightarrow{a}$, $\overrightarrow{AD}=\overrightarrow{b}$ (рис. 4). Выразить через векторы $\overrightarrow{a}$ и $\overrightarrow{b}$ следующие векторы:

а) $\overrightarrow{DC}+\overrightarrow{CB}$

б) $\overrightarrow{BO}-\overrightarrow{OC}$

Рисунок 4. Параллелограмм

Решение.

а) Произведем сложение по правилу треугольника, получим

\[\overrightarrow{DC}+\overrightarrow{CB}=\overrightarrow{DB}\]

Из первого правила разности двух векторов, получаем

\[\overrightarrow{DB}=\overrightarrow{a}-\overrightarrow{b}\]

б) Так как $\overrightarrow{OC}=\overrightarrow{AO}$, получим

\[\overrightarrow{BO}-\overrightarrow{OC}=\overrightarrow{BO}-\overrightarrow{AO}\]

По теореме 2, имеем

\[\overrightarrow{BO}-\overrightarrow{AO}=\overrightarrow{BO}+\left(-\overrightarrow{AO}\right)=\overrightarrow{BO}+\overrightarrow{OA}\]

Используя правило треугольника, окончательно имеем

\[\overrightarrow{BO}+\overrightarrow{OA}=\overrightarrow{BA}=-\overrightarrow{AB}=-\overrightarrow{a}\]

Вектор \(\overrightarrow{AB}\) можно рассматривать как перемещение точки из положения \(A\) (начало движения) в положение \(B\) (конец движения). То есть траектория движения в этом случае не важна, важны только начало и конец!

\(\blacktriangleright\) Два вектора коллинеарны, если они лежат на одной прямой или на двух параллельных прямых.
В противном случае векторы называются неколлинеарными.

\(\blacktriangleright\) Два коллинеарных вектора называются сонаправленными, если их направления совпадают.
Если их направления противоположны, то они называются противоположно направленными.

Правила сложения коллинеарных векторов:

сонаправленных конца первого. Тогда их сумма – вектор, начало которого совпадает с началом первого вектора, а конец – с концом второго (рис. 1).

\(\blacktriangleright\) Для того, чтобы сложить два противоположно направленных вектора, можно отложить второй вектор от начала первого. Тогда их сумма – вектор, начало которого совпадает с началом обоих векторов, длина равна разности длин векторов, направление совпадает с направлением большего по длине вектора (рис. 2).


Правила сложения неколлинеарных векторов \(\overrightarrow {a}\) и \(\overrightarrow{b}\) :

\(\blacktriangleright\) Правило треугольника (рис. 3).

Нужно от конца вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма – это вектор, начало которого совпадает с началом вектора \(\overrightarrow {a}\) , а конец – с концом вектора \(\overrightarrow {b}\) .

\(\blacktriangleright\) Правило параллелограмма (рис. 4).

Нужно от начала вектора \(\overrightarrow {a}\) отложить вектор \(\overrightarrow {b}\) . Тогда сумма \(\overrightarrow {a}+\overrightarrow {b}\) – вектор, совпадающей с диагональю параллелограмма, построенного на векторах \(\overrightarrow {a}\) и \(\overrightarrow {b}\) (начало которого совпадает с началом обоих векторов).

\(\blacktriangleright\) Для того, чтобы найти разность двух векторов \(\overrightarrow {a}-\overrightarrow{b}\) , нужно найти сумму векторов \(\overrightarrow {a}\) и \(-\overrightarrow{b}\) : \(\overrightarrow{a}-\overrightarrow{b}=\overrightarrow{a}+(-\overrightarrow{b})\) (рис. 5).

Задание 1 #2638

Уровень задания: Сложнее ЕГЭ

Дан прямоугольный треугольник \(ABC\) с прямым углом \(A\) , точка \(O\) – центр описанной около данного треугольника окружности. Координаты вектора \(\overrightarrow{AB}=\{1;1\}\) , \(\overrightarrow{AC}=\{-1;1\}\) . Найдите сумму координат вектора \(\overrightarrow{OC}\) .

Т.к. треугольник \(ABC\) - прямоугольный, то центр описанной окружности лежит на середине гипотенузы, т.е. \(O\) - середина \(BC\) .


Заметим, что \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) , следовательно, \(\overrightarrow{BC}=\{-1-1;1-1\}=\{-2;0\}\) .

Т.к. \(\overrightarrow{OC}=\dfrac12 \overrightarrow{BC}\) , то \(\overrightarrow{OC}=\{-1;0\}\) .

Значит, сумма координат вектора \(\overrightarrow{OC}\) равна \(-1+0=-1\) .

Ответ: -1

Задание 2 #674

Уровень задания: Сложнее ЕГЭ

\(ABCD\) – четырёхугольник, на сторонах которого отложены векторы \(\overrightarrow{AB}\) , \(\overrightarrow{BC}\) , \(\overrightarrow{CD}\) , \(\overrightarrow{DA}\) . Найдите длину вектора \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA}\) .

\(\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}\) , \(\overrightarrow{AC} + \overrightarrow{CD} = \overrightarrow{AD}\) , тогда
\(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \overrightarrow{AC} + \overrightarrow{CD} + \overrightarrow{DA}= \overrightarrow{AD} + \overrightarrow{DA} = \overrightarrow{AD} - \overrightarrow{AD} = \vec{0}\) .
Нулевой вектор имеет длину, равную \(0\) .

Вектор можно воспринимать как перемещение, тогда \(\overrightarrow{AB} + \overrightarrow{BC}\) – перемещение из \(A\) в \(B\) , а затем из \(B\) в \(C\) – в итоге это перемещение из \(A\) в \(C\) .

При такой трактовке становится очевидным, что \(\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{CD} + \overrightarrow{DA} = \vec{0}\) , ведь в итоге здесь из точки \(A\) переместились в точку \(A\) , то есть длина такого перемещения равна \(0\) , значит, и сам вектор такого перемещения есть \(\vec{0}\) .

Ответ: 0

Задание 3 #1805

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Диагонали \(AC\) и \(BD\) пересекаются в точке \(O\) . Пусть , , тогда \(\overrightarrow{OA} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{OA} = \frac{1}{2}\overrightarrow{CA} = \frac{1}{2}(\overrightarrow{CB} + \overrightarrow{BA}) = \frac{1}{2}(\overrightarrow{DA} + \overrightarrow{BA}) = \frac{1}{2}(-\vec{b} - \vec{a}) = - \frac{1}{2}\vec{a} - \frac{1}{2}\vec{b}\] \(\Rightarrow\) \(x = - \frac{1}{2}\) , \(y = - \frac{1}{2}\) \(\Rightarrow\) \(x + y = -1\) .

Ответ: -1

Задание 4 #1806

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(K\) и \(L\) лежат на сторонах \(BC\) и \(CD\) соответственно, причем \(BK:KC = 3:1\) , а \(L\) – середина \(CD\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{KL} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x + y\) .

\[\overrightarrow{KL} = \overrightarrow{KC} + \overrightarrow{CL} = \frac{1}{4}\overrightarrow{BC} + \frac{1}{2}\overrightarrow{CD} = \frac{1}{4}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{BA} = \frac{1}{4}\vec{b} - \frac{1}{2}\vec{a}\] \(\Rightarrow\) \(x = -\frac{1}{2}\) , \(y = \frac{1}{4}\) \(\Rightarrow\) \(x + y = -0,25\) .

Ответ: -0,25

Задание 5 #1807

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(M\) и \(N\) лежат на сторонах \(AD\) и \(BC\) соответственно, причем \(AM:MD = 2:3\) , а \(BN:NC = 3:1\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{MN} = x\cdot\vec{a} + y\cdot\vec{b}\)

\[\overrightarrow{MN} = \overrightarrow{MA} + \overrightarrow{AB} + \overrightarrow{BN} = \frac{2}{5}\overrightarrow{DA} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = - \frac{2}{5}\overrightarrow{AD} + \overrightarrow{AB} + \frac{3}{4}\overrightarrow{BC} = -\frac{2}{5}\vec{b} + \vec{a} + \frac{3}{4}\vec{b} = \vec{a} + \frac{7}{20}\vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = \frac{7}{20}\) \(\Rightarrow\) \(x\cdot y = 0,35\) .

Ответ: 0,35

Задание 6 #1808

Уровень задания: Сложнее ЕГЭ

Дан параллелограмм \(ABCD\) . Точки \(P\) лежит на диагонали \(BD\) , точка \(Q\) лежит на стороне \(CD\) , причем \(BP:PD = 4:1\) , а \(CQ:QD = 1:9\) . Пусть \(\overrightarrow{AB} = \vec{a}\) , \(\overrightarrow{AD} = \vec{b}\) , тогда \(\overrightarrow{PQ} = x\cdot\vec{a} + y\cdot\vec{b}\) , где \(x\) и \(y\) – некоторые числа. Найдите число, равное \(x\cdot y\) .

\[\begin{gathered} \overrightarrow{PQ} = \overrightarrow{PD} + \overrightarrow{DQ} = \frac{1}{5}\overrightarrow{BD} + \frac{9}{10}\overrightarrow{DC} = \frac{1}{5}(\overrightarrow{BC} + \overrightarrow{CD}) + \frac{9}{10}\overrightarrow{AB} =\\ = \frac{1}{5}(\overrightarrow{AD} + \overrightarrow{BA}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}(\overrightarrow{AD} - \overrightarrow{AB}) + \frac{9}{10}\overrightarrow{AB} = \frac{1}{5}\overrightarrow{AD} + \frac{7}{10}\overrightarrow{AB} = \frac{1}{5}\vec{b} + \frac{7}{10}\vec{a}\end{gathered}\]

\(\Rightarrow\) \(x = \frac{7}{10}\) , \(y = \frac{1}{5}\) \(\Rightarrow\) \(x\cdot y = 0,14\) . и \(ABCO\) – параллелограмм; \(AF \parallel BE\) и \(ABOF\) – параллелограмм \(\Rightarrow\) \[\overrightarrow{BC} = \overrightarrow{AO} = \overrightarrow{AB} + \overrightarrow{BO} = \overrightarrow{AB} + \overrightarrow{AF} = \vec{a} + \vec{b}\] \(\Rightarrow\) \(x = 1\) , \(y = 1\) \(\Rightarrow\) \(x + y = 2\) .

Ответ: 2

Старшеклассники, которые готовятся к сдаче ЕГЭ по математике и при этом рассчитывают на получение достойных баллов, обязательно должны повторить тему «Правила сложения и вычитания нескольких векторов». Как видно из многолетней практики, подобные задания каждый год включаются в аттестационное испытание. Если у выпускника вызывают трудности задачи из раздела «Геометрия на плоскости», к примеру, в которых требуется применить правила сложения и вычитания векторов, ему обязательно стоит повторить или вновь разобраться в материале, чтобы успешно сдать ЕГЭ.

Образовательный проект «Школково» предлагает новый подход в подготовке к аттестационному испытанию. Наш ресурс выстроен таким образом, чтобы учащиеся смогли выявить наиболее сложные для себя разделы и восполнить пробелы в знаниях. Специалисты «Школково» подготовили и систематизировали весь необходимый материал для подготовки к сдаче аттестационного испытания.

Для того чтобы задачи ЕГЭ, в которых необходимо применить правила сложения и вычитания двух векторов, не вызывали затруднений, мы рекомендуем прежде всего освежить в памяти базовые понятия. Найти этот материал учащиеся смогут в разделе «Теоретическая справка».

Если вы уже вспомнили правило вычитания векторов и основные определения по данной теме, предлагаем закрепить полученные знания, выполнив соответствующие упражнения, которые подобрали специалисты образовательного портала «Школково». Для каждой задачи на сайте представлен алгоритм решения и дан правильный ответ. В теме «Правила сложения векторов» представлены различные упражнения; выполнив два-три сравнительно легких задания, учащиеся могут последовательно переходить к более сложным.

Оттачивать собственные навыки по таким, например, заданиям, как школьники имеют возможность в режиме онлайн, находясь в Москве или любом другом городе России. При необходимости задание можно сохранить в разделе «Избранное». Благодаря этому вы сможете быстро найти интересующие примеры и обсудить алгоритмы нахождения правильного ответа с преподавателем.

 
Статьи по теме:
Сонник: к чему снится океан
Каждую ночь человеку снится около 5-8 снов. Обычно утром, проснувшись, мы не помним ничего из приснившегося. Нам кажется, что и видений не было. Но бывают такие сны, которые потрясают своей масштабностью или силой вызванных чувств, необычной эмоциональной
Cонник киви, к чему снится киви во сне видеть
Если вам приснился сочный киви, то вероятно подсознание сигнализирует, что нужно побольше кушать свежих фруктов. К чему еще снится этот образ? Сонник поведает о самых актуальных интерпретациях того, что случилось видеть во сне. На зависть всем! Экзотиче
К чему снится пруд с рыбами, что ждет наяву?
На вещи. Если пруд во сне грязный - вас ожидают домашние размолвки или чья-то болезнь. Если вам снится чистым пруд, полный «играющей» рыбы - то наяву дела ваши пойдут успешнее, чем прежде, и вас ждут развлечения. Если человек видит пруд с мутной водо
Александр толстой произведение петр 1 краткое содержание
«Петр Первый» — исторический роман. Жанровая специфика исторического романа предопределена временной дистанцией между моментом создания произведения и тем, к которому обращается автор. В отличие от романа о современности, обращенного к реалиям сегодняшнег