Положительно и отрицательно заряженные частицы. Электрический заряд и элементарные частицы. Закон сохранения заряда

Слово электричество происходит от греческого названия янтаря - ελεκτρον .
Янтарь - это окаменевшая смола хвойных деревьев. Древние заметили, что если потереть янтарь куском ткани, то он будет притягивать легкие предметы или пыль. Это явление, которое мы сегодня называем статическим электричеством, можно наблюдать, и натерев тканью эбонитовую или стеклянную палочку или же просто пластмассовую линейку.

Пластмассовая линейка, которую хорошенько потерли бумажной салфеткой, притягивает мелкие кусочки бумаги (рис. 22.1). Разряды статического электричества вы могли наблюдать, расчесывая волосы или снимая с себя нейлоновую блузку или рубашку. Не исключено, что вы ощущали электрический удар, прикоснувшись к металлической дверной ручке после того, как встали с сиденья автомобиля или прошлись по синтетическому ковру. Во всех этих случаях объект приобретает электрический заряд благодаря трению; говорят, что происходит электризация трением.

Все ли электрические заряды одинаковы или существуют различные их виды? Оказывается, существует два вида электрических зарядов, что можно доказать следующим простым опытом. Подвесим пластмассовую линейку за середину на нитке и хорошенько потрем ее куском ткани. Если теперь поднести к ней другую наэлектризованную линейку, мы обнаружим, что линейки отталкивают друг друга (рис. 22.2, а).
Точно так же, поднеся к одной наэлектризованной стеклянной палочке другую, мы будем наблюдать их отталкивание (рис. 22.2,6). Если же заряженный стеклянный стержень поднести к наэлектризованной пластмассовой линейке, они притянутся (рис. 22.2, в). Линейка, по-видимому, обладает зарядом иного вида, нежели стеклянная палочка.
Экспериментально установлено, что все заряженные объекты делятся на две категории: либо они притягиваются пластмассой и отталкиваются стеклом, либо, наоборот, отталкиваются пластмассой и притягиваются стеклом. Существуют, по-видимому, два вида зарядов, причем заряды одного и того же вида отталкиваются, а заряды разных видов притягиваются. Мы говорим, что одноименные заряды отталкиваются, а, разноименные притягиваются.

Американский государственный деятель, философ и ученый Бенджамин Франклин (1706-1790) назвал эти два вида зарядов положительным и отрицательным. Какой заряд как назвать, было совершенно безразлично;
Франклин предложил считать заряд наэлектризованной стеклянной палочки положительным. В таком случае заряд, появляющийся на пластмассовой линейке (или янтаре), будет отрицательным. Этого соглашения придерживаются и по сей день.

Разработанная Франклином теория электричества в действительности представляла собой концепцию "одной жидкости": положительный заряд рассматривался как избыток «электрической жидкости» против ее нормального содержания в данном объекте, а отрицательный - как ее недостаток. Франклин утверждал, что, когда в результате какого-либо процесса в одном теле возникает некоторый заряд, в другом теле одновременно возникает такое же количество заряда противоположного вида. Названия "положительный" и "отрицательный" следует поэтому понимать в алгебраическом смысле, так что суммарный заряд, приобретаемый телами в каком-либо процессе, всегда равен нулю.

Например, когда пластмассовую линейку натирают бумажной салфеткой, линейка приобретает отрицательный заряд, а салфетка-равный по величине положительный заряд. Происходит разделение зарядов, но их сумма равна нулю.
Этим примером иллюстрируется твердо установленный закон сохранения электрического заряда , который гласит:

Суммарный электрический заряд, образующийся в результате любого процесса, равен нулю.

Отклонений от этого закона никогда не наблюдалось, поэтому можно считать, что он столь же твердо установлен, как и законы сохранения энергии и импульса.

Электрические заряды в атомах

Лишь в прошлом столетии стало ясно, что причина существования электрического заряда кроется в самих атомах. Позднее мы обсудим строение атома и развитие представлений о нем более подробно. Здесь же кратко остановимся на основных идеях, которые помогут нам лучше понять природу электричества.

По современным представлениям атом (несколько упрощенно) состоит из тяжелого положительно заряженного ядра, окруженного одним или несколькими отрицательно заряженными электронами.
В нормальном состоянии положительный и отрицательный заряды в атоме равны по величине, и атом в целом электрически нейтрален. Однако атом может терять или приобретать один или несколько электронов. Тогда его заряд будет положительным или отрицательным, и такой атом называют ионом.

В твердом теле ядра могут колебаться, оставаясь вблизи фиксированных положений, в то время как часть электронов движется совершенно свободно. Электризацию трением можно объяснить тем, что в различных веществах ядра удерживают электроны с различной силой.
Когда пластмассовая линейка, которую натирают бумажной салфеткой, приобретает отрицательный заряд, это означает, что электроны в бумажной салфетке удерживаются слабее, чем в пластмассе, и часть их переходит с салфетки на линейку. Положительный заряд салфетки равен по величине отрицательному заряду, приобретенному линейкой.

Обычно предметы, наэлектризованные трением, лишь некоторое время удерживают заряд и, в конечном итоге, возвращаются в электрически нейтральное состояние. Куда исчезает заряд? Он «стекает» на содержащиеся в воздухе молекулы воды.
Дело в том, что молекулы воды полярны: хотя в целом они электрически нейтральны, заряд в них распределен неоднородно (рис. 22.3). Поэтому лишние электроны с наэлектризованной линейки будут «стекать» в воздух, притягиваясь к положительно заряженной области молекулы воды.
С другой стороны, положительный заряд предмета будет нейтрализоваться электронами, которые слабо удерживаются молекулами воды в воздухе. В сухую погоду влияние статического электричества гораздо заметнее: в воздухе содержится меньше молекул воды и заряд стекает не так быстро. В сырую дождливую погоду предмет не в состоянии надолго удержать свой заряд.

Изоляторы и проводники

Пусть имеются два металлических шара, один из которых сильно заряжен, а другой электрически нейтрален. Если мы соединим их, скажем, железным гвоздем, то незаряженный шар быстро приобретет электрический заряд. Если же мы одновременно коснемся обоих шаров деревянной палочкой или куском резины, то шар, не имевший заряда, останется незаряженным. Такие вещества, как железо, называют проводниками электричества; дерево же и резину называют непроводниками, или изоляторами.

Металлы обычно являются хорошими проводниками; большинство других веществ изоляторы (впрочем, и изоляторы чуть-чуть проводят электричество). Любопытно, что почти все природные материалы попадают в одну из этих двух резко различных категорий.
Есть, однако, вещества (среди которых следует назвать кремний, германий и углерод), принадлежащие к промежуточной (но тоже резко обособленной) категории. Их называют полупроводниками.

С точки зрения атомной теории электроны в изоляторах связаны с ядрами очень прочно, в то время как в проводниках многие электроны связаны очень слабо и могут свободно перемещаться внутри вещества.
Когда положительно заряженный предмет подносится вплотную к проводнику или соприкасается с ним, свободные электроны быстро перемещаются к положительному заряду. Если же предмет заряжен отрицательно, то электроны, наоборот, стремятся удалиться от него. В полупроводниках свободных электронов очень мало, а в изоляторах они практически отсутствуют.

Индуцированный заряд. Электроскоп

Поднесем положительно заряженный металлический предмет к другому (нейтральному) металлическому предмету.



При соприкосновении свободные электроны нейтрального предмета притянутся к положительно заряженному и часть их перейдет на него. Поскольку теперь у второго предмета недостает некоторого числа электронов, заряженных отрицательно, он приобретает положительный заряд. Этот процесс называется электризацией за счет электропроводности.

Приблизим теперь положительно заряженный предмет к нейтральному металлическому стержню, но так, чтобы они не соприкасались. Хотя электроны не покинут металлического стержня, они тем не менее переместятся в направлении заряженного предмета; на противоположном конце стержня возникнет положительный заряд (рис. 22.4). В таком случае говорят, что на концах металлического стержня индуцируется (или наводится) заряд. Разумеется, никаких новых зарядов не возникает: произошло просто разделение зарядов, в целом же стержень остался электрически нейтральным. Однако если бы мы теперь разрезали стержень поперек посредине, то получили бы два заряженных предмета - один с отрицательным зарядом, другой с положительным.

Сообщить металлическому предмету заряд можно также, соединив его проводом с землей (или, например, с водопроводной трубой, уходящей в землю), как показано на рис. 22.5, а. Предмет, как говорят, заземлен. Благодаря своим огромным размерам земля принимает и отдает электроны; она действует как резервуар заряда. Если поднести близко к металлу заряженный, скажем, отрицательно предмет, то свободные электроны металла будут отталкиваться и многие уйдут по проводу в землю (рис. 22.5,6). Металл окажется заряженным положительно. Если теперь отсоединить провод, на металле останется положительный наведенный заряд. Но если сделать это после того, как отрицательно заряженный предмет удален от металла, то все электроны успеют вернуться назад и металл останется электрически нейтральным.

Для обнаружения электрического заряда используется электроскоп (или простой электрометр).

Как видно из рис. 22.6, он состоит из корпуса, внутри которого находятся два подвижных листочка, сделанных нередко из золота. (Иногда подвижным делается только один листочек.) Листочки укреплены на металлическом стержне, который изолирован от корпуса и заканчивается снаружи металлическим шариком. Если поднести заряженный предмет близко к шарику, в стержне происходит разделение зарядов (рис. 22.7, а), листочки оказываются одноименно заряженными и отталкиваются друг от друга, как показано на рисунке.

Можно целиком зарядить стержень за счет электропроводности (рис. 22.7, б). В любом случае, чем больше заряд, тем сильнее расходятся листочки.

Заметим, однако, что знак заряда таким способом определить невозможно: отрицательный заряд разведет листочки точно на такое же расстояние, как и равный ему по величине положительный заряд. И все же электроскоп можно использовать для определения знака заряда-для этого стержню надо сообщить предварительно, скажем, отрицательный заряд (рис. 22.8, а). Если теперь к шарику электроскопа поднести отрицательно заряженный предмет (рис. 22.8,6), то дополнительные электроны переместятся к листочкам и они раздвинутся сильнее. Наоборот, если к шарику поднести положительный заряд, то электроны переместятся от листочков и они сблизятся (рис. 22.8, в), так как их отрицательный заряд уменьшится.

Электроскоп широко применялся на заре электротехники. На том же принципе при использовании электронных схем работают весьма чувствительные современные электрометры.

Данная публикация составлена по материалам книги Д. Джанколи. "Физика в двух томах" 1984 г. Том 2 .

Продолжение следует. Коротко о следующей публикации:

Сила F , с которой одно заряженное тело действует на другое заряженное тело, пропорциональна произведению их зарядов Q 1 и Q 2 и обратно пропорциональна квадрату расстояния r между ними.

Замечания и предложения принимаются и приветствуются!

То, что отрицательные заряды помогают и дают хорошие результаты при разных заболеваниях показывают не только современные исследования, но и ряд исторических документов, собранных на протяжении столетий.

Все живые организмы, в том числе и человек, рождаются и развиваются в естественных условиях планеты Земля, которая имеет одну важную особенность - наша планета представляет собой постоянно отрицательно заряженное поле, а атмосфера вокруг земли имеет положительный заряд. Это означает, что каждый организм "запрограммирован" рождаться и развиваться в условиях постоянного электрического поля, существующего между отрицательно заряженной землёй и положительно заряженной атмосферой, которое играет очень существенную роль для всех биохимических процессов в организме.

  • острые пневмонии;
  • хронический бронхит;
  • бронхиальная астма (кроме гормонозависимой);
  • туберкулез (неактивная форма);

Заболевания желудочно-кишечного тракта:

  • ожоги;
  • обморожения;
  • пролежни;
  • экзема;
  • Предоперационная подготовка и послеоперационная реабилитация:

    • спаечная болезнь;
    • повышение иммунного статуса.

    Инфракрасное излучение

    Источником инфракрасного излучения является колебание атомов вокруг своего состояния равновесия у живых и не живых элементов.

    Микросферы в составе Активатора «На здоровье!» имеют уникальное свойство накапливать инфракрасное излучение и тепло тела человека и возвращать его обратно.

    Все виды волн короткого спектра после видимого света, жестко влияют на все живые организмы и потому опасны, и вредны. Чем короче длинна волны, тем жестче излучение. Эти волны, попадая на живую ткань, выбивают на своём уровне, электроны в молекулах, а позже и разрушают и сам атом. В результате образуются свободные радикалы, которые приводят к онкологическим, и радиационной болезни.

    Волны по другую сторону видимого спектра не вредны из-за более длинной волны. Весь инфракрасный спектр занимает от 0,7 – 1000 мкм (микрометров). Диапазон человека составляет от 6 – 12 мкм. Для сравнения, вода имеет 3 мкм и потому человек не может долго находится в горячей воде. Даже при 55 градусах, не более 1-го часа. Клетки организма при такой длине волны не чувствуют себя комфортно и работать хорошо не могут, в результате сопротивляются и дают сбои в работе. Воздействуя на клетки теплом, с длинной волны соответствующим теплу клетки, клетка получая родное тепло работает лучше. Инфракрасные лучи её подогревают.

    Нормальная температура для прохождения окислительно-востановительных реакций в нутрии клетки, составляет 38-39 градусов Цельсия, и если температура понижается, то процесс метаболизма замедляется или останавливается.

    Что происходит при воздействии инфракрасного тепла? Механизм спасения от перегревания:

    • Потоотделение.
    • Усиленная циркуляция крови.
    • Потоотделение.
    • Потовые железы на коже выделяют жидкость. Жидкость испаряется и охлаждает тело от перегревания.
    • Усиленная циркуляция крови.

    Артериальная кровь поступает к нагретому участку тела. Венозная - отводится, забирая часть тепла. Тем самым охлаждая участок от перегрева. Эта система похожа на радиатор. Кровь к участку перегрева поступает через капилляры. И чем больше капилляров тем лучше будет происходить отток крови. Допустим, что мы имеем 5-ть капилляров, а для того чтобы спасти от перегрева нам необходимо 50. Перед организмом стоит задача не допустить перегрев. И если мы будем прогревать этот участок регулярно, то он нарастит (увеличит) количество капилляров, в прогреваемом участке. Научно доказано, что организм человека может увеличивать количество капилляров в 10-ть раз! Учёные доказали. Что процесс старения у человека зависит от уменьшения капилляров. В пожилом возрасте количество капилляров уменьшается, особенно в ногах и венах ног. Даже в 120-ем возрасте восстановление капилляров – возможно.

    Итак: если прогревать определённый участок тела, регулярно, то организм нарастит в прогреваемом месте количество капилляров. Избавляя участок от постоянного перегрева. В добавок, тепло будет способствовать нормальной работе клеток, потому, что мы подогревая клетки улучшаем процесс метаболизма (обмена веществ). Это будет способствовать, восстановлению прогреваемых тканей и к ним будет возвращаться эластичность и упругость. Если есть проблемы такие как мозоль, натоптыши, шипы, шпоры, отложение солей, кожные заболевания, грибки на стопах инфракрасное тепло будет приводить ускоренному процессу регенерации (восстановления).

    Лимфо-дренажный эффект.

    Клетки со всех сторон омываются межклеточной жидкостью. Межклеточная жидкость собираясь отводится от тканей с помощью лимфатической системы. С помощью капилляров к каждой клетке приходит артериальная кровь. Отводится от клетки, венозная кровь. В процессе жизнедеятельности отработанные вещества, частично попадают в венозную кровь и частично в межклеточную жидкость. В случае наступления, какой либо болезни или стресса, механического воздействия, травм, может произойти такая ситуация, как - межклеточное вещество не успевает выносить шлаки (отработанные материалы в процессе жизнедеятельности клетки). Это известный термин – зашлакованость. Зашлакованость напрямую, связана с плохим оттоком лимфы. К шлакам путем диффузии подтягивается лишняя или неактивная вода, что приводит к отеку органа или тканей. Инфракрасное тепло улучшает отток лимфы, что приводит к выводу шлаков и избыточной воды (удаляет отечность). Снижается угроза заболевания раком, улучшается трофика тканей (питание клеток), где каждая клетка может обновляться. Межклеточное вещество, подымаясь по лимфотоку попадает в лимфоузел, который является фильтром.

    В лимфоузлах присутствуют белые клетки крови – лимфоциты (они выполняют роль стражей), они борются с инфекциями, вирусами и с онкологическими клетками в том числе. Клетки крови образуются в костном мозге.

    Воздействие инфракрасного тепла на вены и сосуды.

    Сосуды имеют внутри гладкую поверхность, чтобы эритроциты могли скользить по внутреннему руслу. Качество внутренней поверхности зависит, от количества капилляров внутри стенки сосуда. В следствии стресса, в пожилом возрасте, в результате табакокурения, внутри крупного сосуда нарушается микроциркуляция, что приводит к ухудшению состояния стенки сосуда. Стенка сосуда перестаёт быть гладкой и эластичной. Холестерин и крупные фракции образуют остеросклеротическую бляшку, затрудняя поток крови по данному руслу. По суженному руслу ухудшается поток крови, что способствует повышению давления. Инфракрасное тепло возобновляет ток по капиллярам внутри стенки сосуда, после чего внутренняя стенка приобретает гладкость и эластичность, а специальные системы в самой крови разъедают тромб (бляшку).

    Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

    Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

    Тело имеет заряд , значит имеет лишние или недостающий электроны. Такой заряд обозначаетсяq =ne . (он равен числу элементарных зарядов).

    Наэлектризовать тело – создать избыток и недостаток электронов. Способы:электризация трением иэлектризация соприкосновением .

    Точечный заря д – заряд тела, которое можно принять за материальную точку.

    Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

    Закон сохранения заряда :в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой .

    Закон Кулона :силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры .

    , где
    Ф/м, Кл 2 /нм 2 – диэлектр. пост. вакуума

    - относит. диэлектрическая проницаемость (>1)

    - абсолютная диэлектрическая прониц. среды

    Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

    Свойства электрического поля:


    Характеристики электрического поля:

      Напряжённость (E ) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

    Измеряется в Н/Кл.

    Направление – такое же, как и у действующей силы.

    Напряжённость не зависит ни от силы, ни от величины пробного заряда.

    Суперпозиция электрических полей : напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

    Графически электронное поле изображают с помощью линий напряжённости.

    Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

    Свойства линий напряжённости : они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

    Виды полей:

      Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

      Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

      Постоянное электрическое поле – вектор напряжённости не изменяется.

      Непостоянное электрическое поле – вектор напряжённости изменяется.

      Работа электрического поля по перемещению заряда .

    , гдеF– сила,S– перемещение,- угол междуFиS.

    Для однородного поля: сила постоянна.

    Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

    Для неоднородного поля:

      Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

    -потенциал – энергетическая характеристика поля. Измеряется в Вольтах

    Разность потенциалов :

    Если
    , то

    , значит

    -градиент потенциала.

    Для однородного поля: разность потенциалов – напряжение :

    . Измеряется в Вольтах, приборы – вольтметры.

    Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

    .

    Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

    , гдеr– размер,
    - проницаемость среды вокруг тела.

    Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

    Конденсатор – устройство для накопления заряда. Электроёмкость:

    Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

    , гдеS– площадь пластин,d– расстояние между пластинами.

    Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

    Перенос малого заряда
    , напряжение измениться на
    , совершится работа
    . Так как
    , а С =const,
    . Тогда
    . Интегрируем:

    Энергия электрического поля :
    , гдеV=Sl– объём, занимаемый электрическим полем

    Для неоднородного поля :
    .

    Объёмная плотность электрического поля :
    . Измеряется в Дж/м 3 .

    Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя -l).

    Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается
    . Измеряется в Кулон-метрах.

    Диполь в однородном электрическом поле.

    На каждый из зарядов диполя действуют силы:
    и
    . Эти силы противоположно направлены и создают момент пары сил – вращающий момент:, где

    М – вращающий момент F– силы, действующие на диполь

    d– плечо силl– плечо диполя

    p– дипольный моментE– напряжённость

    - угол междуpи Еq– заряд

    Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы pи Е будут параллельны и однонаправлены.

    Диполь в неоднородном электрическом поле.

    Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

    -градиент напряжённости . Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

    Собственное поле диполя .

    Но . Тогда:

    .

    Пусть диполь находится в точке О, а его плечо мало. Тогда:

    .

    Формула получена с учётом:

    Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

    Диэлектрики в электрическом поле.

    Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

    Классы диэлектриков:

      с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

      с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

      кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

    Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

    Способы поляризации:

    1 способ – электрохимическая поляризация :

    На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10 -3 -10 -2 с.

    2 способ – ориентационная поляризация:

    На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10 -13 -10 -7 с. Частота 10 МГц.

    3 способ – электронная поляризация:

    Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10 -16 -10 -14 с. Частота 10 8 МГц.

    4 способ – ионная поляризация:

    Две решётки (NaиCl) смещаются относительно друг друга.

    Время релаксации:

    5 способ – микроструктурная поляризация:

    Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

    Время релаксации: =10 -8 -10 -3 с. Частота 1 КГц

    Числовые характеристики степени поляризации:


    Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

    Условия существования электрического тока :

      наличие свободных зарядов

      наличие электрического поля, т.е. сил, действующих на эти заряды

    Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

    Измеряется в Амперах.

    n– концентрация зарядов

    q– величина заряда

    S– площадь поперечного сечения проводника

    - скорость направленного движения частиц.

    Скорость движения заряженных частиц в электрическом поле небольшая – 7*10 -5 м/с, скорость распространения электрического поля 3*10 8 м/с.

    Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м 2 .

    . Измеряется в А/м 2 .

    - сила, действующая на ион со стороны эл поля равна силе трения

    - подвижность ионов

    - скорость направленного движения ионов =подвижность, напряжённость поля

    Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

    Простые опыты по электризации различных тел иллюстрируют следующие положения.

    1. Существуют заряды двух видов: положительные (+) и отрицательные (-). Положительный заряд возникает при трении стекла о кожу или шелк, а отрицательный — при трении янтаря (или эбонита) о шерсть.

    2. Заряды (или заряженные тела ) взаимодействуют друг с другом. Одноименные заряды оттал-киваются, а разноименные заряды притягиваются.

    3. Состояние электризации можно передать от одного тела к другому, что связано с переносом электрического заряда . При этом телу можно передать больший или меньший заряд, т. е. заряд имеет величину. При электризации трением заряд приобретают оба тела, причем одно — поло-жительный, а другое — отрицательный. Следует подчеркнуть, что абсолютные величины зарядов наэлектризованных трением тел равны, что подтверждается многочисленными измерениями заря-дов с помощью электрометров.

    Объяснить, почему тела электризуются (т. е. заряжаются) при трении, стало возможным после открытия электрона и изучения строения атома. Как известно, все вещества состоят из атомов; атомы , в свою очередь, состоят из элементарных частиц — отрицательно заряженных электронов , положительно заряженных протонов и нейтральных частиц - нейтронов . Электроны и протоны являются носителями элементарных (минимальных) электрических зарядов.

    Элементарный электрический заряд (е ) — это наименьший электрический заряд, положи-тельный или отрицательный, равный величине заряда электрона:

    е = 1,6021892(46) · 10 -19 Кл .

    Заряженных элементарных частиц существует много, и почти все они обладают зарядом +e или -e , однако эти частицы весьма недолговечны. Они живут меньше миллионной доли се-кунды. Только электроны и протоны существуют в свободном состоянии неограниченно долго.

    Протоны и нейтроны (нуклоны) составляют положительно заряженное ядро атома , вокруг которого вращаются отрицательно заряженные электроны, число которых равно числу протонов, так что атом в целом электроцентралей.

    В обычных условиях тела, состоящие из атомов (или молекул), электрически нейтральны. Однако в процессе трения часть электронов, покинувших свои атомы, может перейти с одного тела на другое. Перемещения электронов при этом не превышают размеров межатомных расстояний. Но если тела после трения разъединить, то они окажутся заряженными; тело, которое отдало часть своих электронов, будет заряжено положительно, а тело, которое их приобрело, — отрицательно.

    Итак, тела электризуются, т. е. получают электрический заряд, когда они теряют или приоб-ретают электроны. В некоторых случаях электризация обусловлена перемещением ионов. Новые электрические заряды при этом не возникают. Происходит лишь разделение имеющихся заря-дов между электризующимися телами: часть отрицательных зарядов переходит с одного тела на другое.

    Определение заряда.

    Следует особо подчеркнуть, что заряд является неотъемлемым свойством частицы. Частицу без заряда представить себе можно, но заряд без частицы — нельзя.

    Проявляют себя заряженные частицы в притяжении (разноименные заряды) либо в отталкивании (одноименные заряды) с силами, на много порядков превышающими гравитационные. Так, сила электрического притяжения электрона к ядру в атоме водорода в 10 39 раз больше силы гра-витационного притяжения этих частиц. Взаимодействие между заряженными частицами называется электромагнитным взаимодействием , а электрический заряд определяет интенсивность электромагнитных взаимодействий.

    В современной физике так определяют заряд:

    Электрический заряд — это физическая величина , являющаяся источником электрического поля, посредством которого осуществляется взаимодействие частиц, обладающих зарядом.

    Электрический заряд – физическая величина, характеризующая способность тел вступать в электромагнитные взаимодействия. Измеряется в Кулонах.

    Элементарный электрический заряд – минимальный заряд, который имеют элементарные частицы (заряд протона и электрона).

    Тело имеет заряд , значит имеет лишние или недостающий электроны. Такой заряд обозначаетсяq =ne . (он равен числу элементарных зарядов).

    Наэлектризовать тело – создать избыток и недостаток электронов. Способы:электризация трением иэлектризация соприкосновением .

    Точечный заря д – заряд тела, которое можно принять за материальную точку.

    Пробный заряд () – точечный, малый по величине заряд, обязательно положительный – используется для исследования электрического поля.

    Закон сохранения заряда :в изолированной системе алгебраическая сумма зарядов всех тел сохраняется постоянной при любых взаимодействиях этих тел между собой .

    Закон Кулона :силы взаимодействия двух точечных зарядов пропорциональны произведению этих зарядов, обратно пропорциональны квадрату расстояния между ними, зависят от свойств среды и направлены вдоль прямой, соединяющей их центры .

    , где
    Ф/м, Кл 2 /нм 2 – диэлектр. пост. вакуума

    - относит. диэлектрическая проницаемость (>1)

    - абсолютная диэлектрическая прониц. среды

    Электрическое поле – материальная среда, через которую происходит взаимодействие электрических зарядов.

    Свойства электрического поля:


    Характеристики электрического поля:

      Напряжённость (E ) – векторная величина, равная силе, действующей на единичный пробный заряд, помещённый в данную точку.

    Измеряется в Н/Кл.

    Направление – такое же, как и у действующей силы.

    Напряжённость не зависит ни от силы, ни от величины пробного заряда.

    Суперпозиция электрических полей : напряжённость поля, созданного несколькими зарядами, равна векторной сумме напряжённостей полей каждого заряда:

    Графически электронное поле изображают с помощью линий напряжённости.

    Линия напряжённости – линия, касательная к которой в каждой точке совпадает с направлением вектора напряжённости.

    Свойства линий напряжённости : они не пересекаются, через каждую точку можно провести лишь одну линию; они не замкнуты, выходят из положительного заряда и входят в отрицательный, либо рассеиваются в бесконечность.

    Виды полей:

      Однородное электрическое поле – поле, вектор напряжённости которого в каждой точке одинаков по модулю и направлению.

      Неоднородное электрическое поле – поле, вектор напряжённости которого в каждой точке неодинаков по модулю и направлению.

      Постоянное электрическое поле – вектор напряжённости не изменяется.

      Непостоянное электрическое поле – вектор напряжённости изменяется.

      Работа электрического поля по перемещению заряда .

    , гдеF– сила,S– перемещение,- угол междуFиS.

    Для однородного поля: сила постоянна.

    Работа не зависит от формы траектории; работа по перемещению по замкнутой траектории равна нулю.

    Для неоднородного поля:

      Потенциал электрического поля – отношение работы, которое совершает поле, перемещая пробный электрический заряд в бесконечность, к величине этого заряда.

    -потенциал – энергетическая характеристика поля. Измеряется в Вольтах

    Разность потенциалов :

    Если
    , то

    , значит

    -градиент потенциала.

    Для однородного поля: разность потенциалов – напряжение :

    . Измеряется в Вольтах, приборы – вольтметры.

    Электроёмкость – способность тел накапливать электрический заряд; отношение заряда к потенциалу, которое для данного проводника всегда постоянно.

    .

    Не зависит от заряда и не зависит от потенциала. Но зависит от размеров и формы проводника; от диэлектрических свойств среды.

    , гдеr– размер,
    - проницаемость среды вокруг тела.

    Электроёмкость увеличивается, если рядом находятся любые тела – проводники или диэлектрики.

    Конденсатор – устройство для накопления заряда. Электроёмкость:

    Плоский конденсатор – две металлические пластины, между которыми находится диэлектрик. Электроёмкость плоского конденсатора:

    , гдеS– площадь пластин,d– расстояние между пластинами.

    Энергия заряженного конденсатора равна работе, которую совершает электрическое поле при переносе заряда с одной пластины на другую.

    Перенос малого заряда
    , напряжение измениться на
    , совершится работа
    . Так как
    , а С =const,
    . Тогда
    . Интегрируем:

    Энергия электрического поля :
    , гдеV=Sl– объём, занимаемый электрическим полем

    Для неоднородного поля :
    .

    Объёмная плотность электрического поля :
    . Измеряется в Дж/м 3 .

    Электрический диполь – система, состоящая из двух равных, но противоположных по знаку точечных электрических зарядов, расположенных на некотором расстоянии друг от друга (плечо диполя -l).

    Основная характеристика диполя – дипольный момент – вектор, равный произведению заряда на плечо диполя, направленный от отрицательного заряда к положительному. Обозначается
    . Измеряется в Кулон-метрах.

    Диполь в однородном электрическом поле.

    На каждый из зарядов диполя действуют силы:
    и
    . Эти силы противоположно направлены и создают момент пары сил – вращающий момент:, где

    М – вращающий момент F– силы, действующие на диполь

    d– плечо силl– плечо диполя

    p– дипольный моментE– напряжённость

    - угол междуpи Еq– заряд

    Под действием вращающего момента, диполь повернётся и установится по направлению линий напряжённости. Векторы pи Е будут параллельны и однонаправлены.

    Диполь в неоднородном электрическом поле.

    Вращающий момент есть, значит диполь повернётся. Но силы будут неравны, и диполь будет двигаться туда, где сила больше.

    -градиент напряжённости . Чем выше градиент напряжённости, тем выше боковая сила, которая стаскивает диполь. Диполь ориентируется вдоль силовых линий.

    Собственное поле диполя .

    Но . Тогда:

    .

    Пусть диполь находится в точке О, а его плечо мало. Тогда:

    .

    Формула получена с учётом:

    Таким образом разность потенциалов зависит от синуса половинного угла, под которым видны точки диполя, и проекции дипольного момента на прямую, соединяющие эти точки.

    Диэлектрики в электрическом поле.

    Диэлектрик – вещество, не имеющее свободных зарядов, а значит и не проводящее электрический ток. Однако на самом же деле проводимость существует, но она ничтожно мала.

    Классы диэлектриков:

      с полярными молекулами (вода, нитробензол): молекулы не симметричны, центры масс положительных и отрицательных зарядов не совпадают, а значит, они обладают дипольным моментом даже в случае, когда электрического поля нет.

      с неполярными молекулами (водород, кислород): молекулы симметричны, центры масс положительных и отрицательных зарядов совпадают, а значит, они не имеют дипольного момента при отсутствии электрического поля.

      кристаллические (хлорид натрия): совокупность двух подрешёток, одна из которых заряжен положительно, а другая – отрицательно; в отсутствии электрического поля суммарный дипольный момент равен нулю.

    Поляризация – процесс пространственного разделения зарядов, появления связанных зарядов на поверхности диэлектрика, что приводит к ослаблению поля внутри диэлектрика.

    Способы поляризации:

    1 способ – электрохимическая поляризация :

    На электродах – движение к ним катионов и анионов, нейтрализация веществ; образуются области положительных и отрицательных зарядов. Ток постепенно уменьшается. Скорость установления механизма нейтрализации характеризуется временем релаксации – это время, в течение которого ЭДС поляризации увеличится от 0 до максимума от момента наложения поля. = 10 -3 -10 -2 с.

    2 способ – ориентационная поляризация:

    На поверхности диэлектрика образуются некомпенсированные полярные, т.е. происходит явление поляризации. Напряжённость внутри диэлектрика меньше внешней напряжённости. Время релаксации: = 10 -13 -10 -7 с. Частота 10 МГц.

    3 способ – электронная поляризация:

    Характерна для неполярных молекул, которые становятся диполями. Время релаксации: = 10 -16 -10 -14 с. Частота 10 8 МГц.

    4 способ – ионная поляризация:

    Две решётки (NaиCl) смещаются относительно друг друга.

    Время релаксации:

    5 способ – микроструктурная поляризация:

    Характерен для биологических структур, когда чередуются заряженные и незаряженные слои. Происходит перераспределение ионов на полупроницаемых или непроницаемых для ионов перегородках.

    Время релаксации: =10 -8 -10 -3 с. Частота 1 КГц

    Числовые характеристики степени поляризации:


    Электрический ток – это упорядоченное движение свободных зарядов в веществе или в вакууме.

    Условия существования электрического тока :

      наличие свободных зарядов

      наличие электрического поля, т.е. сил, действующих на эти заряды

    Сила тока – величина, равная заряду, который проходит через любое поперечное сечение проводника за единицу времени (1 секунду)

    Измеряется в Амперах.

    n– концентрация зарядов

    q– величина заряда

    S– площадь поперечного сечения проводника

    - скорость направленного движения частиц.

    Скорость движения заряженных частиц в электрическом поле небольшая – 7*10 -5 м/с, скорость распространения электрического поля 3*10 8 м/с.

    Плотность тока – величина заряда, проходящего за 1 секунду через сечение в 1 м 2 .

    . Измеряется в А/м 2 .

    - сила, действующая на ион со стороны эл поля равна силе трения

    - подвижность ионов

    - скорость направленного движения ионов =подвижность, напряжённость поля

    Удельная проводимость электролита тем больше, чем больше концентрация ионов, их заряд и подвижность. При повышении температуры возрастает подвижность ионов и увеличивается электропроводность.

     
    Статьи по теме:
    Иоакимо — Анновский храм Можайска Французский блюда из мясо в духовке
    Сегодня мясо по-французски в духовке стоит особняком в нашей кухне и занимает главенствующую позицию на столе. Существует до десятка, а то и больше, разновидностей этого блюда. Но непременно во всех рецептах присутствует три ингредиента - мясо, репчатый л
    Пошаговый фото рецепт засолки хрустящих огурцов на зиму холодным способом без стерилизации
    Ирина КамшилинаГотовить для кого-то гораздо приятней, чем для себя)) Содержание Традиционной зимней русской закуской являются консервированные огурчики. Пряные и вкусные зеленые плоды подают к отварному или жареному картофелю, кашам и супам, их режут в
    Какие планеты видны с земли Великое противостояние Марса
    Пик великого противостояния Красной планеты приходится на 27 июля, когда Марс будет находиться к Земле максимально близко. Sputnik Грузия расскажет, что за явление великое противостояние Марса и какое значение оно имеет в астрологии. Великое противостояни
    Лексические особенности научного стиля речи
    Лексика научного стиля речиТак как ведущей формой научного мышления является понятие, почти каждая лексическая единица в научном стиле обозначает понятие или абстрактный предмет. Точно и однозначно называют специальные понятия научной сферы общения и рас