Инфракрасное и ультрафиолетовое излучение. Урок "инфракрасное, ультрафиолетовое, рентгеновское излучения" для специальности "сварщик"

Теоретически вопрос «Чем инфракрасные лучи отличаются от ультрафиолетовых? » мог бы заинтересовать любого человека. Ведь и те, и другие лучи входят в состав солнечного спектра – а воздействию Солнца мы подвергаемся ежедневно. На практике же его чаще всего задают себе те, кто собирается приобрести устройства, известные как инфракрасные обогреватели, и хотел бы убедиться в том, что подобные приборы абсолютно безопасны для здоровья человека.

Чем инфракрасные лучи отличаются от ультрафиолетовых с точки зрения физики

Как известно, кроме семи видимых цветов спектра за его пределами имеются и невидимые глазу излучения. Помимо инфракрасных и ультрафиолетовых, к ним относятся рентгеновские лучи, гамма-лучи и микроволны.

Инфракрасные и УФ-лучи сходны в одном: и те, и другие относятся к той части спектра, который не видим невооруженному глазу человека. Но этим и ограничивается их сходство.

Инфракрасное излучение

Инфракрасные лучи были обнаружены за пределами красной границы, между длинноволновым и коротковолновым участками этой части спектра. Стоит отметить, что почти половина солнечной радиации – это именно инфракрасное излучение. Основная характеристика этих не видимых глазу лучей – сильная тепловая энергия: ее непрерывно излучают все нагретые тела.
Излучение этого вида подразделяется на три области по такому параметру, как длина волны:

  • от 0,75 до 1,5 мкм – ближняя область;
  • от 1,5 до 5,6 мкм – средняя;
  • от 5,6 до 100 мкм – дальняя.

Нужно понимать, что инфракрасное излучение является не продуктом всевозможных современных технических устройств, к примеру, ИК-обогревателей. Это фактор природной окружающей среды, который постоянно действует на человека. Наше тело непрерывно поглощает и отдает инфракрасные лучи.

Ультрафиолетовое излучение


Существование лучей за фиолетовой границей спектра было доказано в 1801 году. Диапазон ультрафиолетовых лучей, испускаемых Солнцем, составляет от 400 до 20 нм, однако до земной поверхности доходят только незначительная часть коротковолнового спектра – до 290 нм.
Ученые считают, что ультрафиолету принадлежит значительная роль в образовании первых на Земле органических соединений. Однако воздействие этого излучения носит и отрицательный характер, приводя к распаду органических веществ.
При ответе на вопрос, чем инфракрасное излучение отличается от ультрафиолетового , необходимо обязательно рассмотреть воздействие на организм человека. И здесь основное отличие заключается в том, что эффект инфракрасных лучей ограничивается преимущественно тепловым действием, в то время как ультрафиолетовые лучи способны оказывать еще и фотохимическое воздействие.
УФ-излучение активно поглощается нуклеиновыми кислотами, следствием чего являются изменения важнейших показателей жизнедеятельности клеток – способности к росту и делению. Именно повреждение ДНК является главным компонентом механизма воздействия на организмы ультрафиолетовых лучей.
Основной орган нашего тела, на который действует ультрафиолетовое излучение – это кожа. Известно, что благодаря УФ-лучам запускается процесс образования витамина Д, который необходим для нормального усвоения кальция, а также синтезируются серотонин и мелатонин – важные гормоны, оказывающие влияние на суточные ритмы и настроение человека.

Воздействие ИК и УФ-излучения на кожу

Когда человек подвергается воздействию солнечных лучей, на поверхность его тела оказывают влияние и инфракрасные, ультрафиолетовые лучи. Но результат этого воздействия будет различным:

  • ИК-лучи вызывают прилив крови к поверхностным слоям кожи, повышение ее температуры и покраснение (калорическая эритема). Этот эффект исчезает сразу же, как только действие облучения прекращается.
  • Воздействие УФ-излучения имеет скрытый период и может проявляться через несколько часов после облучения. Длительность ультрафиолетовой эритемы составляет от 10 часов до 3-4 дней. Кожа краснеет, может шелушиться, затем окраска ее становится более темной (загар).


Доказано, что избыточное воздействие ультрафиолета может привести к возникновению злокачественных заболеваний кожи. В то же время в определенных дозах УФ-излучение полезно для организма, что позволяет применять его для профилактики и лечения, а также для уничтожения бактерий в воздухе помещений.

Безопасно ли инфракрасное излучение?

Опасения людей по отношению к такому виду устройств, как инфракрасные обогреватели, вполне понятно. В современном обществе уже сформировалась устойчивая тенденция с изрядной долей опасения относиться ко многим видам излучения: радиация, рентгеновские лучи и др.
Рядовым потребителям, которые собираются приобрести устройства, основанные на использовании инфракрасного излучения, важнее всего знать следующее: инфракрасные лучи совершенно безопасны для здоровья человека. Именно это стоит подчеркнуть, рассматривая вопрос, чем инфракрасные лучи отличаются от ультрафиолетовых .
Исследованиями доказано: длинноволновое ИК-излучение не только полезно для нашего тела – оно ему совершенно необходимо. При недостатке ИК-лучей страдает иммунитет организма, а также проявляется эффект его ускоренного старения.


Положительное воздействие инфракрасного излучения уже не вызывает сомнений и проявляется в различных аспектах.

Усть-Каменогорский колледж строительства

Разработка урока по физике.

Тема: «Инфракрасное, ультрафиолетовое, рентгеновское излучения»

Преподаватель: О.Н.Чирцова

Усть-Каменогорск, 2014 г.

Урок по теме «Инфракрасное, ультрафиолетовое, рентгеновское излучения».

Цели :1)знать, что такое инфракрасное, ультрафиолетовое, рентгеновское излучения; уметь решать логические задачи на применение данных понятий.

2)развитие логического мышления, наблюдательности, ПМД (анализ, синтез, сравнение), навыков работы над понятием (его лексическое значение), речи, ОУУН (самостоятельная работа с источником информации, построение таблицы).

3)формирование научного мировоззрения (практическая значимость изучаемого материала, связь с профессией), ответственности, самостоятельности, необходимости вести здоровый образ жизни, соблюдать нормы ТБ в профессиональной деятельности.

Тип урока : изучение нового материала

Вид урока : теоретическое исследование

Оснащение: ноутбуки, проектор, презентация, спецодежда сварщика

Литература : Кронгарт Б.А. «Физика-11», материалы INTERNET

Ход урока.

    Организация студентов к занятию.

    Подготовка к восприятию.

    Обращаю внимание студентов на висящую перед ними спецодежду сварщика, строю беседу по вопросам:

1)Из какого материала сшита спецодежда?(прорезиненная ткань, замша)Почему именно из этих материалов?(Подвожу студентов к ответу «защита от теплового (инфракрасного излучения)»

2)Для чего необходима маска?(защита от ультрафиолетового излучения).

3)Главный результат в работе сварщика?(качество шва)Как можно исследовать качество сварного шва?(один из методов- рентгеновская дефектоскопия).На слайде показываю фото рентгенустановки и кратко поясняю метод.

    Объявляю тему урока (записывают в тетрадь).

    Студенты формулируют цель урока.

    Ставлю перед студентами задачи на урок:

1)Познакомиться с общей характеристикой излучений (по положению на шкале электромагнитных излучений).

2)Познакомиться с общей характеристикой каждого вида излучения.

3)Исследовать подробно каждый вид излучения.

    Изучение нового материала.

    1. Выполняем первую задачу урока –знакомимся с общей характеристикой излучений.

На слайде «Шкала электромагнитных излучений». Определяем положение каждого вида излучений на шкале, разбираем лексическое значение слов «инфракрасный», «ультрафиолетовый», «рентгеновский». Подкрепляю примерами.

    1. Итак, первую задачу урока мы выполнили, переходим ко второй задаче-знакомимся с общей характеристикой каждого вида излучения. (Демонстрирую видеоролики о каждом виде излучений. После просмотра строю краткую беседу по содержанию роликов).

      Итак, переходим к третьей задаче урока- исследованию каждого вида излучения.

Студенты самостоятельно выполняют исследовательскую работу (пользуясь цифровым источником информации, заполняют таблицу). Объявляю критерии оценки, регламент. Консультирую, поясняю возникшие в ходе работы вопросы.

По окончании работы заслушиваем ответы трех учащихся, рецензируем ответы.

    Закрепление .

Устно решаем логические задачи:

1. Почему высоко в горах необходимо надевать темные очки?

2. Какое излучение применяется для сушки фруктов, овощей?

    Для чего сварщик во время сварочных работ надевает маску? защитный костюм?

    Для чего перед обследованием рентгеновскими лучами больному дают бариевую кашу?

    Для чего врач-рентгенолог (а также больной) одевают свинцовые фартуки?

    Профессиональное заболевание сварщиков- катаракта (помутнение хрусталика глаза). Чем оно вызвано?(длительное тепловое ИК излучение) Как избежать?

    Электроофтальмия- заболевание глаз (сопровождается острой болью, резью в глазах, слезотечением, спазмами век). Причина этого заболевания? (действие УФ излучения). Как избежать?

    Рефлексия.

Студенты письменно отвечают на вопросы:

    1. Какова была цель урока?

      Где применяются изученные виды излучения?

      Какой вред они могут принести?

      Где пригодятся приобретенные на уроке знания в вашей профессии?

Устно обсуждаем ответы на данные вопросы, листочки сдают.

    Домашнее задание

Подготовить доклад о практическом применении ИК, УФ, рентгеновского излучений (на выбор).

    Итог урока.

Студенты сдают тетради.

Объявляю оценки за урок.

Раздаточный материал.

Инфракрасное излучение.

Инфракра́сное излуче́ние - электромагнитное излучение, занимающее спектральную область между красным концом видимого света и микроволновым излучением .

Оптические свойства веществ в инфракрасном излучении значительно отличаются от их свойств в видимом излучении. Например, слой воды в несколько сантиметров непрозрачен для инфракрасного излучения с λ = 1 мкм. Инфракрасное излучение составляет большую часть излучения ламп накаливания, газоразрядных ламп, около 50 % излучения Солнца; инфракрасное излучение испускают некоторые лазеры . Для его регистрации пользуются тепловыми и фотоэлектрическими приёмниками, а также специальными фотоматериалами.

Весь диапазон инфракрасного излучения делят на три составляющих:

коротковолновая область: λ = 0,74-2,5 мкм;

средневолновая область: λ = 2,5-50 мкм;

длинноволновая область: λ = 50-2000 мкм.

Длинноволновую окраину этого диапазона иногда выделяют в отдельный диапазон электромагнитных волн - терагерцевое излучение (субмиллиметровое излучение).

Инфракрасное излучение также называют «тепловым» излучением, так как инфракрасное излучение от нагретых предметов воспринимается кожей человека как ощущение тепла. При этом длины волн, излучаемые телом, зависят от температуры нагревания: чем выше температура, тем короче длина волны и выше интенсивность излучения. Спектр излучения абсолютно чёрного тела при относительно невысоких (до нескольких тысяч Кельвинов) температурах лежит в основном именно в этом диапазоне. Инфракрасное излучение испускают возбуждённые атомы или ионы.

Применение.

Прибор ночного видения.

Вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасном, ультрафиолетовом или рентгеновском спектре) в видимое либо для усиления яркости видимого изображения.

Термография.

Инфракрасная термография, тепловое изображение или тепловое видео - это научный способ получения термограммы - изображения в инфракрасных лучах, показывающего картину распределения температурных полей. Термографические камеры или тепловизоры обнаруживают излучение в инфракрасном диапазоне электромагнитного спектра (примерно 900-14000 нанометров или 0,9-14 µм) и на основе этого излучения создают изображения, позволяющие определить перегретые или переохлаждённые места. Так как инфракрасное излучение испускается всеми объектами, имеющими температуру, согласно формуле Планка для излучения чёрного тела, термография позволяет «видеть» окружающую среду с или без видимого света. Величина излучения, испускаемого объектом, увеличивается с повышением его температуры, поэтому термография позволяет нам видеть различия в температуре. Когда смотрим через тепловизор, то тёплые объекты видны лучше, чем охлаждённые до температуры окружающей среды; люди и теплокровные животные легче заметны в окружающей среде, как днём, так и ночью. Как результат, продвижение использования термографии может быть приписано военным и службам безопасности.

Инфракрасное самонаведение.

Инфракрасная головка самонаведения - головка самонаведения, работающая на принципе улавливания волн инфракрасного диапазона, излучаемых захватываемой целью. Представляет собой оптико-электронный прибор, предназначенный для идентификации цели на окружающем фоне и выдачи в автоматическое прицельное устройство (АПУ) сигнала захвата, а также для измерения и выдачи в автопилот сигнала угловой скорости линии визирования.

Инфракрасный обогреватель.

Отопительный прибор, отдающий тепло в окружающую среду посредством инфракрасного излучения. В быту иногда неточно называется рефлектором. Лучистая энергия поглощается окружающими поверхностями, превращаясь в тепловую энергию, нагревает их, которые в свою очередь отдают тепло воздуху. Это дает существенный экономический эффект по сравнению с конвекционным обогревом, где тепло существенно расходуется на обогрев неиспользуемого подпотолочного пространства. Кроме того, при помощи ИК обогревателей появляется возможность местного обогрева только тех площадей в помещении, в которых это необходимо без обогрева всего объёма помещения; тепловой эффект от инфракрасных обогревателей ощущается сразу после включения, что позволяет избежать предварительного нагрева помещения. Эти факторы снижают затраты энергии.

Инфракрасная астрономия.

Раздел астрономии и астрофизики, исследующий космические объекты, видимые в инфракрасном излучении. При этом под инфракрасным излучением подразумевают электромагнитные волны с длиной волны от 0,74 до 2000 мкм. Инфракрасное излучение находится в диапазоне между видимым излучением, длина волны которого колеблется от 380 до 750 нанометров, и субмиллиметровым излучением.

Инфракрасная астрономия начала развиваться в 1830-е годы, спустя несколько десятилетий после открытия инфракрасного излучения Уильямом Гершелем. Первоначально прогресс был незначительным и до начала 20 века отсутствовали открытия астрономических объектов в инфракрасном диапазоне помимо Солнца и Луны, однако после ряда открытий, сделанных в радиоастрономии в 1950-х и 1960-х годах, астрономы осознали наличие большого объёма информации, находящегося вне видимого диапазона волн. С тех пор была сформирована современная инфракрасная астрономия.

Инфракрасная спектроскопия.

Инфракрасная спектроскопия - раздел спектроскопии, охватывающий длинноволновую область спектра (>730 нм за красной границей видимого света). Инфракрасные спектры возникают в результате колебательного (отчасти вращательного) движения молекул, а именно - в результате переходов между колебательными уровнями основного электронного состояния молекул. ИК излучение поглощают многие газы, за исключением таких как О2, N2, H2, Cl2 и одноатомных газов. Поглощение происходит на длине волны, характерной для каждого определенного газа, для СО, например, таковой является длина волны 4,7 мкм.

По инфракрасным спектрам поглощения можно установить строение молекул различных органических (и неорганических) веществ с относительно короткими молекулами: антибиотиков, ферментов, алкалоидов, полимеров, комплексных соединений и др. Колебательные спектры молекул различных органических (и неорганических) веществ с относительно длинными молекулами (белки, жиры, углеводы, ДНК, РНК и др.) находятся в терагерцевом диапазоне, поэтому строение этих молекул можно установить с помощью радиочастотных спектрометров терагерцевого диапазона. По числу и положению пиков в ИК спектрах поглощения можно судить о природе вещества (качественный анализ), а по интенсивности полос поглощения - о количестве вещества (количественный анализ). Основные приборы - различного типа инфракрасные спектрометры.

Инфракрасный канал.

Инфракрасный канал - канал передачи данных, не требующий для своего функционирования проводных соединений. В компьютерной технике обычно используется для связи компьютеров с периферийными устройствами (интерфейс IrDA) В отличие от радиоканала инфракрасный канал нечувствителен к электромагнитным помехам, и это позволяет использовать его в производственных условиях. К недостаткам инфракрасного канала относятся высокая стоимость приемников и передатчиков, где требуется преобразование электрического сигнала в инфракрасный и обратно, а также низкие скорости передачи (обычно не превышает 5-10 Мбит/с, но при использовании инфракрасных лазеров возможны существенно более высокие скорости). Кроме этого, не обеспечивается секретность передаваемой информации. В условиях прямой видимости инфракрасный канал может обеспечить связь на расстояниях в несколько километров, но наиболее удобен он для связи компьютеров, находящихся в одной комнате, где отражения от стен комнаты дает устойчивую и надежную связь. Наиболее естественный тип топологии здесь - «шина» (то есть переданный сигнал одновременно получают все абоненты). Ясно, что имея такое количество недостатков, инфракрасный канал не смог получить широкого распространения.

Медицина

Инфракрасные лучи применяются в физиотерапии.

Дистанционное управление

Инфракрасные диоды и фотодиоды повсеместно применяются в пультах дистанционного управления, системах автоматики, охранных системах, некоторых мобильных телефонах (инфракрасный порт) и т. п. Инфракрасные лучи не отвлекают внимание человека в силу своей невидимости.

Интересно, что инфракрасное излучение бытового пульта дистанционного управления легко фиксируется с помощью цифрового фотоаппарата.

При покраске

Инфракрасные излучатели применяют в промышленности для сушки лакокрасочных поверхностей. Инфракрасный метод сушки имеет существенные преимущества перед традиционным, конвекционным методом. В первую очередь это, безусловно, экономический эффект. Скорость и затрачиваемая энергия при инфракрасной сушке меньше тех же показателей при традиционных методах.

Стерилизация пищевых продуктов

С помощью инфракрасного излучения стерилизируют пищевые продукты с целью дезинфекции.

Антикоррозийное средство

Инфракрасные лучи применяются с целью предотвращения коррозии поверхностей, покрываемых лаком.

Пищевая промышленность

Особенностью применения ИК-излучения в пищевой промышленности является возможность проникновения электромагнитной волны в такие капиллярно-пористые продукты, как зерно, крупа, мука и т. п. на глубину до 7 мм. Эта величина зависит от характера поверхности, структуры, свойств материала и частотной характеристики излучения. Электромагнитная волна определённого частотного диапазона оказывает не только термическое, но и биологическое воздействие на продукт, способствует ускорению биохимических превращений в биологических полимерах (крахмал, белок, липиды). Конвейерные сушильные транспортёры с успехом могут использоваться при закладке зерна в зернохранилища и в мукомольной промышленности.

Кроме того, инфракрасное излучение повсеместно применяют для обогрева помещений и уличных пространств . Инфракрасные обогреватели используются для организации дополнительного или основного отопления в помещениях (домах, квартирах, офисах и т. п.), а также для локального обогрева уличного пространства (уличные кафе, беседки, веранды).

Недостатком же является существенно большая неравномерность нагрева, что в ряде технологических процессов совершенно неприемлемо.

Проверка денег на подлинность

Инфракрасный излучатель применяется в приборах для проверки денег. Нанесённые на купюру как один из защитных элементов, специальные метамерные краски возможно увидеть исключительно в инфракрасном диапазоне. Инфракрасные детекторы валют являются самыми безошибочными приборами для проверки денег на подлинность. Нанесение на купюру инфракрасных меток, в отличие от ультрафиолетовых, фальшивомонетчикам обходится дорого и соответственно экономически невыгодно. Потому детекторы банкнот со встроенным ИК излучателем, на сегодняшний день, являются самой надёжной защитой от подделок.

Опасность для здоровья!!!

Очень сильное инфракрасное излучение в местах высокого нагрева может высушивать слизистую оболочку глаз. Наиболее опасно, когда излучение не сопровождается видимым светом. В таких ситуациях необходимо надевать специальные защитные очки для глаз.

Земля как инфракрасный излучатель

Поверхность Земли и облака поглощают видимое и невидимое излучение от солнца и переизлучают большую часть энергии в виде инфракрасного излучения обратно в атмосферу. Некоторые вещества в атмосфере, главным образом капли воды и водяной пар, а также диоксид углерода, метан, азот, гексафторид серы и хлорфторуглерод поглощают это инфракрасное излучение и вновь излучают его во всех направлениях, включая обратно на Землю. Таким образом, парниковый эффект удерживает атмосферу и поверхность в более нагретом состоянии, чем если бы инфракрасные поглотители отсутствовали в атмосфере.

Рентгеновское излучение

Рентге́новское излуче́ние - электромагнитные волны, энергия фотонов которых лежит на шкале электромагнитных волн между ультрафиолетовым излучением и гамма-излучением, что соответствует длинам волн от 10−2 до 102 Å (от 10−12 до 10−8 м)

Лабораторные источники

Рентгеновские трубки

Рентгеновские лучи возникают при сильном ускорении заряженных частиц (тормозное излучение), либо при высокоэнергетических переходах в электронных оболочках атомов или молекул. Оба эффекта используются в рентгеновских трубках. Основными конструктивными элементами таких трубок являются металлические катод и анод (ранее называвшийся также антикатодом). В рентгеновских трубках электроны, испущенные катодом, ускоряются под действием разности электрических потенциалов между анодом и катодом (при этом рентгеновские лучи не испускаются, так как ускорение слишком мало) и ударяются об анод, где происходит их резкое торможение. При этом за счёт тормозного излучения происходит генерация излучения рентгеновского диапазона, и одновременно выбиваются электроны из внутренних электронных оболочек атомов анода. Пустые места в оболочках занимаются другими электронами атома. При этом испускается рентгеновское излучение с характерным для материала анода спектром энергий (характеристическое излучение, частоты определяются законом Мозли: где Z - атомный номер элемента анода, A и B - константы для определённого значения главного квантового числа n электронной оболочки). В настоящее время аноды изготавливаются главным образом из керамики, причём та их часть, куда ударяют электроны, - из молибдена или меди.

Трубка Крукса

В процессе ускорения-торможения лишь около 1% кинетической энергии электрона идёт на рентгеновское излучение, 99% энергии превращается в тепло.

Ускорители частиц

Рентгеновское излучение можно получать также и на ускорителях заряженных частиц. Так называемое синхротронное излучение возникает при отклонении пучка частиц в магнитном поле, в результате чего они испытывают ускорение в направлении, перпендикулярном их движению. Синхротронное излучение имеет сплошной спектр с верхней границей. При соответствующим образом выбранных параметрах (величина магнитного поля и энергия частиц) в спектре синхротронного излучения можно получить и рентгеновские лучи.

Биологическое воздействие

Рентгеновское излучение является ионизирующим. Оно воздействует на ткани живых организмов и может быть причиной лучевой болезни, лучевых ожогов и злокачественных опухолей. По причине этого при работе с рентгеновским излучением необходимо соблюдать меры защиты. Считается, что поражение прямо пропорционально поглощённой дозе излучения. Рентгеновское излучение является мутагенным фактором.

Регистрация

Эффект люминесценции. Рентгеновские лучи способны вызывать у некоторых веществ свечение (флюоресценцию). Этот эффект используется в медицинской диагностике при рентгеноскопии (наблюдение изображения на флюоресцирующем экране) и рентгеновской съёмке (рентгенографии). Медицинские фотоплёнки, как правило, применяются в комбинации с усиливающими экранами, в состав которых входят рентгенолюминофоры, которые светятся под действием рентгеновского излучения и засвечивают светочувствительную фотоэмульсию. Метод получения изображения в натуральную величину называется рентгенографией. При флюорографии изображение получается в уменьшенном масштабе. Люминесцирующее вещество (сцинтиллятор) можно оптически соединить с электронным детектором светового излучения (фотоэлектронный умножитель, фотодиод и т. п.), полученный прибор называется сцинтилляционным детектором. Он позволяет регистрировать отдельные фотоны и измерять их энергию, поскольку энергия сцинтилляционной вспышки пропорциональна энергии поглощённого фотона.

Фотографический эффект. Рентгеновские лучи, также как и обычный свет, способны напрямую засвечивать фотографическую эмульсию. Однако без флюоресцирующего слоя для этого требуется в 30-100 раз большая экспозиция (то есть доза). Преимуществом этого метода (известного под названием безэкранная рентгенография) является бо́льшая резкость изображения.

В полупроводниковых детекторах рентгеновские лучи производят пары электрон-дырка в p-n-переходе диода, включённого в запирающем направлении. При этом протекает небольшой ток, амплитуда которого пропорциональна энергии и интенсивности падающего рентгеновского излучения. В импульсном режиме возможна регистрация отдельных рентгеновских фотонов и измерение их энергии.

Отдельные фотоны рентгеновского излучения могут быть также зарегистрированы при помощи газонаполненных детекторов ионизирующего излучения (счётчик Гейгера, пропорциональная камера и др.).

Применение

При помощи рентгеновских лучей можно «просветить» человеческое тело, в результате чего можно получить изображение костей, а в современных приборах и внутренних органов (см. также рентгенография и рентгеноскопия ). При этом используется тот факт, что у содержащегося преимущественно в костях элемента кальция (Z=20) атомный номер гораздо больше, чем атомные номера элементов, из которых состоят мягкие ткани, а именно водорода (Z=1), углерода (Z=6), азота (Z=7), кислорода (Z=8). Кроме обычных приборов, которые дают двумерную проекцию исследуемого объекта, существуют компьютерные томографы, которые позволяют получать объёмное изображение внутренних органов.

Выявление дефектов в изделиях (рельсах, сварочных швах и т. д.) с помощью рентгеновского излучения называется рентгеновской дефектоскопией .

В материаловедении, кристаллографии, химии и биохимии рентгеновские лучи используются для выяснения структуры веществ на атомном уровне при помощи дифракционного рассеяния рентгеновского излучения (рентгеноструктурный анализ ). Известным примером является определение структуры ДНК.

При помощи рентгеновских лучей может быть определён химический состав вещества. В электронно-лучевом микрозонде (либо же в электронном микроскопе) анализируемое вещество облучается электронами, при этом атомы ионизируются и излучают характеристическое рентгеновское излучение. Вместо электронов может использоваться рентгеновское излучение. Этот аналитический метод называется рентгенофлуоресцентным анализом.

В аэропортах активно применяются рентгенотелевизионные интроскопы , позволяющие просматривать содержимое ручной клади и багажа в целях визуального обнаружения на экране монитора предметов, представляющих опасность.

Рентгенотерапия - раздел лучевой терапии, охватывающий теорию и практику лечебного применения рентгеновских лучей, генерируемых при напряжении на рентгеновской трубке 20-60 кв и кожно-фокусном расстоянии 3-7 см (короткодистанционная рентгенотерапия) или при напряжении 180-400 кв и кожно-фокусном расстоянии 30-150 см (дистанционная рентгенотерапия). Рентгенотерапию проводят преимущественно при поверхностно расположенных опухолях и при некоторых других заболеваниях, в том числе заболеваниях кожи (ультрамягкие рентгеновские лучи Букки).

Естественное рентгеновское излучение

На Земле электромагнитное излучение в рентгеновском диапазоне образуется в результате ионизации атомов излучением, которое возникает при радиоактивном распаде, в результате Комптон-эффекта гамма-излучения, возникающего при ядерных реакциях, а также космическим излучением. Радиоактивный распад также приводит к непосредственному излучению рентгеновских квантов, если вызывает перестройку электронной оболочки распадающегося атома (например, при электронном захвате). Рентгеновское излучение, которое возникает на других небесных телах, не достигает поверхности Земли, так как полностью поглощается атмосферой. Оно исследуется спутниковыми рентгеновскими телескопами, такими как Чандра и XMM-Ньютон.

Одним из основных методов неразрушающего контроля является радиографический метод контроля (РК) - рентгеновская дефектоскопия . Данный вид контроля широко используется для проверки качества технологических трубопроводов, металлоконструкций, технологического оборудования, композитных материалов в различных отраслях промышленности и строительного комплекса. Рентген контроль сегодня активно используется для выявления различных дефектов в сварных швах и соединениях. Радиографический метод контроля сварных соединений (или рентгеновская дефектоскопия) осуществляется в соответствии с требованиями ГОСТ 7512-86.

Метод основывается на различном поглощении материалами рентгеновских лучей, а степень поглощения напрямую зависит от атомного номера элементов и плотности среды конкретного материала. Наличие таких дефектов, как трещины, включения инородных материалов, шлаки и поры приводит к тому, что рентгеновские лучи ослабляются в той или иной степени. Регистрируя при помощи рентгенконтроля их интенсивность можно определить наличие, а также расположение различных неоднородностей материала.

Основные возможности рентгеновского контроля:

Возможность обнаружить такие дефекты, которые невозможно выявить любым другим методом - например, непропаев, раковин и других;

Возможность точной локализации обнаруженных дефектов, что дает возможность быстрого ремонта;

Возможность оценки величины выпуклости и вогнутости валиков усиления сварного шва.

Ультрафтолетовое излучение

Ультрафиоле́товое излуче́ние (ультрафиолетовые лучи, УФ-излучение) - электромагнитное излучение, занимающее спектральный диапазон между видимым и рентгеновским излучениями. Длины волн УФ-излучения лежат в интервале от 10 до 400 нм (7,5·1014-3·1016 Гц). Термин происходит от лат. ultra - сверх, за пределами и фиолетовый. В разговорной речи может использоваться также наименование «ультрафиолет».

Воздействие на здоровье человека .

Биологические эффекты ультрафиолетового излучения в трёх спектральных участках существенно различны, поэтому биологи иногда выделяют, как наиболее важные в их работе, следующие диапазоны:

Ближний ультрафиолет, УФ-A лучи (UVA, 315-400 нм)

УФ-B лучи (UVB, 280-315 нм)

Дальний ультрафиолет, УФ-C лучи (UVC, 100-280 нм)

Практически весь UVC и приблизительно 90 % UVB поглощаются озоном, а также водяным паром, кислородом и углекислым газом при прохождении солнечного света через земную атмосферу. Излучение из диапазона UVA достаточно слабо поглощается атмосферой. Поэтому радиация, достигающая поверхности Земли, в значительной степени содержит ближний ультрафиолет UVA и в небольшой доле - UVB.

Несколько позже в работах (О. Г. Газенко, Ю. Е. Нефёдов, Е. А. Шепелев, С. Н. Залогуев, Н. Е. Панфёрова, И. В. Анисимова) указанное специфическое действие излучения было подтверждено в космической медицине . Профилактическое УФ облучение было введено в практику космических полётов наряду с Методическими указаниями (МУ) 1989 г. «Профилактическое ультрафиолетовое облучение людей (с применением искусственных источников УФ излучения)» . Оба документа являются надёжной базой дальнейшего совершенствования УФ профилактики.

Действие на кожу

Воздействие ультрафиолетового излучения на кожу, превышающее естественную защитную способность кожи к загару, приводит к ожогам.

Ультрафиолетовое излучение может приводить к образованию мутаций (ультрафиолетовый мутагенез). Образование мутаций, в свою очередь, может вызывать рак кожи, меланому кожи и преждевременное старение.

Действие на глаза

Ультрафиолетовое излучение средневолнового диапазона (280-315 нм) практически неощутимо для глаз человека и в основном поглощается эпителием роговицы, что при интенсивном облучении вызывает радиационное поражение - ожог роговицы (электроофтальмия). Это проявляется усиленным слезотечением, светобоязнью, отёком эпителия роговицы, блефароспазмом. В результате выраженной реакции тканей глаза на ультрафиолет глубокие слои (строма роговицы) не поражаются т. к. человеческий организм рефлекторно устраняет воздействие ультрафиолета на органы зрения, поражённым оказывается только эпителий. После регенерации эпителия зрение, в большинстве случаев, восстанавливается полностью. Мягкий ультрафиолет длинноволнового диапазона (315-400 нм) воспринимается сетчаткой как слабый фиолетовый или серовато-синий свет, но почти полностью задерживается хрусталиком, особенно у людей среднего и пожилого возраста. Пациенты, которым имплантировали искусственный хрусталик ранних моделей, начинали видеть ультрафиолет; современные образцы искусственных хрусталиков ультрафиолет не пропускают. Ультрафиолет коротковолнового диапазона (100-280 нм) может проникать до сетчатки глаза. Так как ультрафиолетовое коротковолновое излучение обычно сопровождается ультрафиолетовым излучением других диапазонов, то при интенсивном воздействии на глаза гораздо ранее возникнет ожог роговицы (электроофтальмия), что исключит воздействие ультрафиолета на сетчатку по вышеуказанным причинам. В клинической офтальмологической практике основным видом поражения глаз ультрафиолетом является ожог роговицы (электроофтальмия).

Защита глаз

Для защиты глаз от вредного воздействия ультрафиолетового излучения используются специальные защитные очки, задерживающие до 100 % ультрафиолетового излучения и прозрачные в видимом спектре. Как правило, линзы таких очков изготавливаются из специальных пластмасс или поликарбоната.

Многие виды контактных линз также обеспечивают 100 % защиту от УФ-лучей (обратите внимание на маркировку упаковки).

Фильтры для ультрафиолетовых лучей бывают твердыми, жидкими и газообразными. Например, обычное стекло непрозрачно при λ < 320 нм; в более коротковолновой области прозрачны лишь специальные сорта стекол (до 300-230 нм), кварц прозрачен до 214 нм, флюорит - до 120 нм. Для еще более коротких волн нет подходящего по прозрачности материала для линз объектива и приходится применять отражательную оптику - вогнутые зеркала. Однако для столь короткого ультрафиолета непрозрачен уже и воздух, который заметно поглощает ультрафиолет, начиная с 180 нм.

Источники ультрафиолета

Природные источники

Основной источник ультрафиолетового излучения на Земле - Солнце. Соотношение интенсивности излучения УФ-А и УФ-Б, общее количество ультрафиолетовых лучей, достигающих поверхности Земли, зависит от следующих факторов:

от концентрации атмосферного озона над земной поверхностью (см. озоновые дыры)

от высоты Солнца над горизонтом

от высоты над уровнем моря

от атмосферного рассеивания

от состояния облачного покрова

от степени отражения УФ-лучей от поверхности (воды, почвы)

Две ультрафиолетовые люминесцентные лампы, обе лампы излучают «длинные волны» (УФ-А), длина которых находится в диапазоне от 350 до 370 нм

Лампа ДРЛ без колбы - мощный источник ультрафиолетового излучения. Во время работы представляет опасность для зрения и кожи.

Искусственные источники

Благодаря созданию и совершенствованию искусственных источников УФ излучения, шедшими параллельно с развитием электрических источников видимого света, сегодня специалистам, работающим с УФ излучением в медицине, профилактических, санитарных и гигиенических учреждениях, сельском хозяйстве и т. д., предоставляются существенно большие возможности, чем при использовании естественного УФ излучения. Разработкой и производством УФ ламп для установок фотобиологического действия (УФБД) в настоящее время занимаются ряд крупнейших электроламповых фирм и др. Номенклатура УФ ламп для УФБД весьма широка и разнообразна: так, например, у ведущего в мире производителя фирмы Philips она насчитывает более 80 типов. В отличие от осветительных, УФ источники излучения, как правило, имеют селективный спектр, рассчитанный на достижение максимально возможного эффекта для определенного ФБ процесса. Классификация искусственных УФ ИИ по областям применения, детерминированным через спектры действия соответствующих ФБ процессов с определенными УФ диапазонами спектра:

Эритемные лампы были разработаны в 60-х годах прошлого века для компенсации «УФ недостаточности» естественного излучения и, в частности, интенсификации процесса фотохимического синтеза витамина D3 в коже человека («антирахитное действие»).

В 70-80 годах эритемные ЛЛ, кроме медицинских учреждений, использовались в специальных «фотариях» (например, для шахтеров и горных рабочих), в отдельных ОУ общественных и производственных зданий северных регионов, а также для облучения молодняка сельскохозяйственных животных.

Спектр ЛЭ30 радикально отличается от солнечного; на область В приходится большая часть излучения в УФ области, излучение с длиной волны λ < 300нм, которое в естественных условиях вообще отсутствует, может достигать 20 % от общего УФ излучения. Обладая хорошим «антирахитным действием», излучение эритемных ламп с максимумом в диапазоне 305-315 нм оказывает одновременно сильное повреждающее воздействие на коньюктиву (слизистую оболочку глаза). Отметим, что в номенклатуре УФ ИИ фирмы Philips присутствуют ЛЛ типа TL12 с предельно близкими к ЛЭ30 спектральными характеристиками, которые наряду с более «жесткой» УФ ЛЛ типа TL01 используются в медицине для лечения фотодерматозов. Диапазон существующих УФ ИИ, которые используются в фототерапевтических установках, достаточно велик; наряду с указанными выше УФ ЛЛ, это лампы типа ДРТ или специальные МГЛ зарубежного производства, но с обязательной фильтрацией УФС излучения и ограничением доли УФВ либо путем легирования кварца, либо с помощью специальных светофильтров, входящих в комплект облучателя.

В странах Центральной и Северной Европы, а также в России достаточно широкое распространение получили УФ ОУ типа «Искусственный солярий», в которых используются УФ ЛЛ, вызывающие достаточно быстрое образование загара. В спектре «загарных» УФ ЛЛ преобладает «мягкое» излучение в зоне УФА Доля УФВ строго регламентируется, зависит от вида установок и типа кожи (в Европе различают 4 типа человеческой кожи от «кельтского» до «средиземноморского») и составляет 1-5 % от общего УФ излучения. ЛЛ для загара выпускаются в стандартном и компактном исполнении мощностью от 15 до 160 Вт и длиной от 30 до 180 см.

В 1980 г. американский психиатр Альфред Леви описал эффект «зимней депрессии», которую сейчас квалифицируют как заболевание и называют сокращенно SAD (Seasonal Affective Disorder - Сезонозависимое расстройство) Заболевание связано с недостаточной инсоляцией, то есть естественным освещением. По оценкам специалистов, синдрому SAD подвержено ~ 10-12 % населения земли и прежде всего жители стран Северного полушария. Известны данные по США: в Нью-Йорке - 17 %, на Аляске - 28 %, даже во Флориде - 4 %. По странам Северной Европы данные колеблются от 10 до 40 %.

В связи с тем, что SAD является, бесспорно, одним из проявлений «солнечной недостаточности», неизбежен возврат интереса к так называемым лампам «полного спектра», достаточно точно воспроизводящим спектр естественного света не только в видимой, но и в УФ области. Ряд зарубежных фирм включило ЛЛ полного спектра в свою номенклатуру, например, фирмы Osram и Radium выпускают подобные УФ ИИ мощностью 18, 36 и 58 Вт под названиями, соответственно, «Biolux» и «Biosun», спектральные характеристики которых практически совпадают. Эти лампы, естественно, не обладают «антирахитным эффектом», но помогают устранять у людей ряд неблагоприятных синдромов, связанных с ухудшением здоровья в осенне-зимний период и могут также использоваться в профилактических целях в ОУ школ, детских садов, предприятий и учреждений для компенсации «светового голодания». При этом необходимо напомнить, что ЛЛ «полного спектра» по сравнению c ЛЛ цветности ЛБ имеют световую отдачу примерно на 30 % меньше, что неизбежно приведет к увеличению энергетических и капитальных затрат в осветительно-облучательной установке. Проектирование и эксплуатация подобных установок должны осуществляться с учетом требований стандарта CTES 009/E:2002 «Фотобиологическая безопасность ламп и ламповых систем».

Весьма рациональное применение найдено УФЛЛ, спектр излучения которых совпадает со спектром действия фототаксиса некоторых видов летающих насекомых-вредителей (мух, комаров, моли и т. д.), которые могут являться переносчиками заболеваний и инфекций, приводить к порче продуктов и изделий.

Эти УФ ЛЛ используются в качестве ламп-аттрактантов в специальных устройствах-светоловушках, устанавливаемых в кафе, ресторанах, на предприятиях пищевой промышленности, в животноводческих и птицеводческих хозяйствах, складах одежды и пр.

Ртутно-кварцевая лампа

Люминесцентные лампы «дневного света» (имеют небольшую УФ-составляющую из ртутного спектра)

Эксилампа

Светодиод

Электродуговой процесс ионизации(В частности процесс сварки металлов)

Лазерные источники

Существует ряд лазеров, работающих в ультрафиолетовой области. Лазер позволяет получать когерентное излучение высокой интенсивности. Однако область ультрафиолета сложна для лазерной генерации, поэтому здесь не существует столь же мощных источников, как в видимом и инфракрасном диапазонах. Ультрафиолетовые лазеры находят своё применение в масс-спектрометрии, лазерной микродиссекции, биотехнологиях и других научных исследованиях, в микрохирургии глаза (LASIK), для лазерной абляции.

В качестве активной среды в ультрафиолетовых лазерах могут использоваться либо газы (например, аргонный лазер, азотный лазер, эксимерный лазер и др.), конденсированные инертные газы, специальные кристаллы, органические сцинтилляторы, либо свободные электроны, распространяющиеся в ондуляторе.

Также существуют ультрафиолетовые лазеры, использующие эффекты нелинейной оптики для генерации второй или третьей гармоники в ультрафиолетовом диапазоне.

В 2010 году был впервые продемонстрирован лазер на свободных электронах, генерирующий когерентные фотоны с энергией 10 эВ (соответствующая длина волны - 124 нм), то есть в диапазоне вакуумного ультрафиолета.

Деградация полимеров и красителей

Многие полимеры, используемые в товарах народного потребления, деградируют под действием УФ света. Для предотвращения деградации в такие полимеры добавляются специальные вещества, способные поглощать УФ, что особенно важно в тех случаях, когда продукт подвергается непосредственному воздействию солнечного света. Проблема проявляется в исчезновении цвета, потускнению поверхности, растрескиванию, а иногда и полному разрушению самого изделия. Скорость разрушения возрастает с ростом времени воздействия и интенсивности солнечного света.

Описанный эффект известен как УФ старение и является одной из разновидностей старения полимеров. К чувствительным полимерам относятся термопластики, такие как, полипропилен, полиэтилен, полиметилметакрилат (органическое стекло), а также специальные волокна, например, арамидное волокно. Поглощение УФ приводит к разрушению полимерной цепи и потере прочности в ряде точек структуры. Воздействие УФ на полимеры используется в нанотехнологиях, трансплантологии, рентгенолитографии и др. областях для модификации свойств (шероховатость, гидрофобность) поверхности полимеров. Например, известно сглаживающее действие вакуумного ультрафиолета (ВУФ) на поверхность полиметилметакрилата.

Сфера применения

Чёрный свет

На кредитных картах VISA при освещении УФ лучами появляется изображение парящего голубя

Лампа чёрного света - лампа, которая излучает преимущественно в длинноволновой ультрафиолетовой области спектра (диапазон UVA) и даёт крайне мало видимого света.

Для защиты документов от подделки их часто снабжают ультрафиолетовыми метками, которые видны только в условиях ультрафиолетового освещения. Большинство паспортов, а также банкноты различных стран содержат защитные элементы в виде краски или нитей, светящихся в ультрафиолете.

Ультрафиолетовое излучение, даваемое лампами чёрного света, является достаточно мягким и оказывает наименее серьёзное негативное влияние на здоровье человека. Однако при использовании данных ламп в темном помещении существует некоторая опасность связанная именно с незначительным излучением в видимом спектре. Это обусловлено тем, что в темноте зрачок расширяется и относительно большая часть излучения беспрепятственно попадает на сетчатку.

Стерилизация ультрафиолетовым излучением

Обеззараживание воздуха и поверхностей

Кварцевая лампа, используемая для стерилизации в лаборатории

Ультрафиолетовые лампы используются для стерилизации (обеззараживания) воды, воздуха и различных поверхностей во всех сферах жизнедеятельности человека. В наиболее распространённых лампах низкого давления почти весь спектр излучения приходится на длину волны 253,7 нм, что хорошо согласуется с пиком кривой бактерицидной эффективности (то есть эффективности поглощения ультрафиолета молекулами ДНК). Этот пик находится в районе длины волны излучения равной 253,7 нм, которое оказывает наибольшее влияние на ДНК, однако природные вещества (например, вода) задерживают проникновение УФ.

Бактерицидное УФ излучение на этих длинах волн вызывает димеризацию тимина в молекулах ДНК. Накопление таких изменений в ДНК микроорганизмов приводит к замедлению темпов их размножения и вымиранию. Ультрафиолетовые лампы с бактерицидным эффектом в основном используются в таких устройствах, как бактерицидные облучатели и бактерицидные рециркуляторы.

Ультрафиолетовая обработка воды, воздуха и поверхности не обладает пролонгированным эффектом. Достоинство данной особенности заключается в том, что исключается вредное воздействие на человека и животных. В случае обработки сточных вод УФ флора водоемов не страдает от сбросов, как, например, при сбросе вод, обработанных хлором, продолжающим уничтожать жизнь ещё долго после использования на очистных сооружениях.

Ультрафиолетовые лампы с бактерицидным эффектом в обиходе часто называют просто бактерицидными лампами. Кварцевые лампы также имеют бактерицидный эффект, но их название обусловлено не эффектом действия, как у бактерицидных лампах, а связано с материалом колбы лампы - кварцевым стеклом.

Дезинфекция питьевой воды

Дезинфекция воды осуществляется способом хлорирования в сочетании, как правило, с озонированием или обеззараживанием ультрафиолетовым (УФ) излучением. Обеззараживание ультрафиолетовым (УФ) излучением - безопасный, экономичный и эффективный способ дезинфекции. Ни озонирование, ни ультрафиолетовое излучение не обладают бактерицидным последействием, поэтому их не допускается использовать в качестве самостоятельных средств обеззараживания воды при подготовке воды для хозяйственно-питьевого водоснабжения, для бассейнов. Озониpование и ультрафиолетовое обеззараживаниe применяются как дополнительные методы дезинфекции, вместе с хлорированием, повышают эффективность хлорирования и снижают количество добавляемых хлорсодержащих реагентов.

Принцип действия УФ-излучения. УФ-дезинфекция выполняется при облучении находящихся в воде микроорганизмов УФ-излучением определённой интенсивности (достаточная длина волны для полного уничтожения микроорганизмов равна 260,5 нм) в течение определённого периода времени. В результате такого облучения микроорганизмы «микробиологически» погибают, так как они теряют способность воспроизводства. УФ-излучение в диапазоне длин волн около 254 нм хорошо проникает сквозь воду и стенку клетки переносимого водой микроорганизма и поглощается ДНК микроорганизмов, вызывая нарушение её структуры. В результате прекращается процесс воспроизводства микроорганизмов. Следует отметить, что данный механизм распространяется на живые клетки любого организма в целом, именно этим обусловлена опасность жесткого ультрафиолета.

Хотя по эффективности обеззараживания воды УФ обработка в несколько раз уступает озонированию, на сегодня использование УФ-излучения - один из самых эффективных и безопасных способов обеззараживания воды в случаях, когда объем обрабатываемой воды невелик.

В настоящее время в развивающихся странах, в регионах испытывающих недостаток чистой питьевой воды внедряется метод дезинфекции воды солнечным светом (SODIS), в котором основную роль в очистке воды от микроорганизмов играет ультрафиолетовая компонента солнечного излучения.

Химический анализ

УФ - спектрометрия

УФ-спектрофотометрия основана на облучении вещества монохроматическим УФ-излучением, длина волны которого изменяется со временем. Вещество в разной степени поглощает УФ-излучение с разными длинами волн. График, по оси ординат которого отложено количество пропущенного или отраженного излучения, а по оси абсцисс - длина волны, образует спектр. Спектры уникальны для каждого вещества, на этом основывается идентификация отдельных веществ в смеси, а также их количественное измерение.

Анализ минералов

Многие минералы содержат вещества, которые при освещении ультрафиолетовым излучением начинают испускать видимый свет. Каждая примесь светится по-своему, что позволяет по характеру свечения определять состав данного минерала. А. А. Малахов в своей книге «Занимательно о геологии» (М., «Молодая гвардия», 1969. 240 с) рассказывает об этом так: «Необычное свечение минералов вызывают и катодный, и ультрафиолетовый, и рентгеновский лучи. В мире мёртвого камня загораются и светят наиболее ярко те минералы, которые, попав в зону ультрафиолетового света, рассказывают о мельчайших примесях урана или марганца, включённых в состав породы. Странным „неземным“ цветом вспыхивают и многие другие минералы, не содержащие никаких примесей. Целый день я провёл в лаборатории, где наблюдал люминесцентное свечение минералов. Обычный бесцветный кальцит расцвечивался чудесным образом под влиянием различных источников света. Катодные лучи делали кристалл рубиново-красным, в ультрафиолете он загорался малиново-красными тонами. Два минерала - флюорит и циркон - не различались в рентгеновских лучах. Оба были зелёными. Но стоило подключить катодный свет, как флюорит становился фиолетовым, а циркон - лимонно-жёлтым.» (с. 11).

Качественный хроматографический анализ

Хроматограммы, полученные методом ТСХ, нередко просматривают в ультрафиолетовом свете, что позволяет идентифицировать ряд органических веществ по цвету свечения и индексу удерживания.

Ловля насекомых

Ультрафиолетовое излучение нередко применяется при ловле насекомых на свет (нередко в сочетании с лампами, излучающими в видимой части спектра). Это связано с тем, что у большинства насекомых видимый диапазон смещён, по сравнению с человеческим зрением, в коротковолновую часть спектра: насекомые не видят того, что человек воспринимает как красный, но видят мягкий ультрафиолетовый свет. Возможно поэтому при сварки в аргоне(с открытой дугой)поджариваются мухи(они летят на свет а там температура 7000 градусов)!

С открытием инфракрасного излучения у известного в свое время германского физика Иоганна Вильгельма Риттера возникло желание изучить противоположную сторону данного явления.

Спустя некоторое время ему удалось выяснить, что на другой конец обладает немалой химической активностью.

Такой спектр стали называть ультрафиолетовыми лучами. Что оно собой представляет и какое влияние оказывает на живые земные организмы, попробуем разобраться далее.

Оба излучения – это в любом случае электромагнитные волны. Как инфракрасное, так и ультрафиолетовое, они с обеих сторон ограничивают спектр света, воспринимаемого человеческим глазом.

Главное отличие этих двух явлений – длина волны. Ультрафиолет обладает достаточно широким диапазоном длины волны – от 10 до 380 мкм и располагается он между видимым светом и рентген-излучением.


Отличия инфракрасного излучения от ультрафиолетового

ИК-излучение имеет основное свойство – излучать тепло, в то время, как ультрафиолетовое обладает химической активностью, что оказывает ощутимое воздействие на человеческий организм.

Как ультрафиолетовое излучение влияет на человека?

Благодаря тому, что УФ делятся по разности длины волны, биологически они влияют на человеческий организм по-разному, поэтому ученые выделяют три участка ультрафиолетового диапазона: УФ-А, УФ-Б, УФ-С: ближний, средний и дальний ультрафиолет.

Атмосфера, которая окутывает нашу планету, выступает в роли защитного щита, что защищает ее от Солнечного потока ультрафиолета. Дальнее излучение удерживается и поглощается практически полностью посредством кислорода, водяного пара, углекислого газа. Таким образом, на поверхность попадает незначительная радиация в виде ближнего и среднего излучения.

Самое опасное – излучение с небольшой длиной волны. Если коротковолновое излучение опадает на живые ткани, это провоцирует моментальное разрушительное действие. Но благодаря тому, что у нашей планеты есть озоновый щит, мы находимся в безопасности от воздействия подобных лучей.

ВАЖНО! Несмотря на природную защиту, мы пользуемся в быту некоторыми изобретениями, являющимися источниками именно данного диапазона лучей. Это сварочные аппараты и ультрафиолетовые лампы, от которых, к сожалению, отказаться нельзя.

Биологически ультрафиолет воздействует на человеческую кожу как небольшое покраснение, загар, что является достаточно мягкой реакцией. Но стоит учитывать индивидуальную особенность кожи, которая может специфически отреагировать на УФ излучение.

Воздействие УФ лучей также неблагоприятно влияет на глаза. Многие осведомлены в том, что ультрафиолет так или иначе влияет на человеческий организм, но подробности известны не все, поэтому далее попробуем более детально разобраться в этой теме.

УФ мутагенез или как УФ воздействует на человеческую кожу

Полностью отказываться от попадания солнечных лучей на кожный покров нельзя, это привод к крайне неприятным последствиям.

Но также впадать в крайность и стараться приобрести привлекательный оттенок тела, изнуряя себя под беспощадными лучами солнца – противопоказано. Что может произойти в случае бесконтрольного пребывания под палящим солнцем?

Если обнаружилось покраснение кожи, это не является признаком того, что спустя некоторое время, оно пройдет и останется милый, шоколадный загар. Кожа темнее вследствие того, что организмом вырабатывается красящий пигмент, меланин, который борется с неблагоприятным воздействием УФ на наш организм.

Притом, покраснение на коже остается недолго, а вот эластичность она может утратить навсегда. Также могут начать разрастаться клетки эпителия, визуально отражающиеся в виде веснушек и пигментных пятен, что также останется надолго, а то и навсегда.

Проникая глубока в ткани, ультрафиолет может привести к ультрафиолетовому мутагенезу, что представляет собой повреждение клеток на генном уровне. Наиболее опасным может стать меланома, в случае метастазировании которой может наступить смерть.

Как защититься от ультрафиолетового излучения?

Можно ли защитить кожу от негативного воздействия ультрафиолета? Да, если, будучи на пляже, придерживаться всего нескольких правил:

  1. Находиться под палящим солнцем необходимо недолго и в строго определенные часы, когда приобретенный легкий загар выступит как фотозащита кожи.
  2. Обязательно использовать солнцезащитные крема. Прежде чем купить такого рода средство, обязательно проверьте, способно ли оно защитить вас от УФ-А и УФ-В.
  3. Стоит включить в рацион питания продукты, содержащие максимальное количество витаминов С и Е, а также богатые на антиоксиданты.

Если вы находитесь не на пляже, но вынуждены находится од открытым небом, стоит выбирать специальную одежду, способную защитить кожу от УФ.

Электроофтальмия – негативное влияние УФ-излучения на глаза

Электроофтальмия – явление, возникающие вследствие негативного воздействия ультрафиолета на структуру глаза. УФ волны со средним диапазонов в данном случае являются очень разрушающими для человеческого зрения.


Электроофтальмия

Данные явления чаще всего возникают, когда:

  • Человек наблюдает за солнцем, его местонахождением, не обезопасив глаза специальными приспособлениями;
  • Яркое солнце на открытом пространстве (пляж);
  • Человек находится в заснеженном районе, в горах;
  • В помещении, где находится человек, рассоложены кварцевые лампы.

Электроофтальмия может привести к ожогу роговицы, главными симптомами которого можно назвать:

  • Слезоточивость глаз;
  • Существенные рези;
  • Боязнь яркого света;
  • Покраснение белка;
  • Отёк эпителия роговицы и век.

О статистике глубокие слои роговицы не успевают подвергнуться поражению, поэтому, когда эпителий заживляется, зрение полностью восстанавливается.

Как оказать первую помощь при электроофтальмии?

Если человек столкнулся с вышеперечисленными симптомами, это не только эстетически неприятно, но и может доставить немыслимые страдания.

Оказание первой помощи довольно простое:

  • Сперва промыть глаза чистой водой;
  • Затем применить увлажняющие капли;
  • Надеть очки;

Чтобы избавиться от рези в глазах, достаточно сделать компресс из влажных пакетиков от черного чая, или же натереть сырой картофель. В случае, если эти способы не помогли, стоит сразу же обратиться за помощью к специалисту.

Чтобы избежать подобных ситуаций, достаточно приобрести социальные солнцезащитные очки. Маркировка UV-400 говорит о том, что данный аксессуар способен защитить глаза от всех УФ-излучений.

Как УФ-излучение используется в медицинской практике?

В медицине есть понятие «ультрафиолетового голодания», что может возникнуть в случае длительного избегания солнечного света. При этом могут возникнут неприятные патологии, избежать которые легко, используя искусственные источники ультрафиолета.

Их небольшое воздействие способно компенсировать дефицит зимней нехватки витамина D.

Помимо этого, подобная терапия применима в случае проблем с суставами, заболевания кожи и аллергических реакций.

При помощи УФ-излучения можно:

  • Повысить гемоглобин, но снизить уровень сахара;
  • Нормализовать работу щитовидки;
  • Улучшить и устранить проблемы дыхательной и эндокринной системы;
  • При помощи установок с ультрафиолетовым излучением дизенфицируют помещения и хирургические инструменты;
  • УФ-лучи обладают бактерицидными свойствами, что особенно полезно для больных с гнойными ранами.

ВАЖНО! Всегда, применяя подобные излучения на практике, стоит ознакомиться не только с положительными, но и с негативными сторонами их воздействия. Применять искусственное, как и природное УФ-излучение в качестве лечения категорически запрещается при онкологии, кровотечениях, гипертонии 1 и 2 стадии, туберкулёзе активной формы.

Энергия Солнца представляет собой электромагнитные волны, которые подразделяются на несколько частей спектра:

  • рентгеновские лучи - с самой короткой длиной волны (ниже 2 нм);
  • длина волны ультрафиолетового излучения составляет от 2 до 400 нм;
  • видимая часть света, которая улавливается глазом человека и животных (400-750 нм);
  • теплое окислительное (свыше 750 нм).

Каждая часть находит свое применение и имеет большое значение в жизни планеты и всей ее биомассы. Мы же рассмотрим, что представляют собой лучи в диапазоне от 2 до 400 нм, где они используются и какую роль играют в жизни людей.

История открытия УФ-излучения

Первые упоминания относятся еще к XIII веку в описаниях философа из Индии. Он писал о невидимом глазу фиолетовом свете, который был им обнаружен. Однако технических возможностей того времени явно недоставало, чтобы подтвердить это экспериментально и изучить подробно.

Удалось же это пять веков спустя физику из Германии Риттеру. Именно он проводил опыты над хлоридом серебра по распаду его под воздействием электромагнитного излучения. Ученый увидел, что быстрее данный процесс идет не в той области света, которая была к тому времени уже открыта и называлась инфракрасной, а в противоположной. Выяснилось, что это новая область, до сих пор не исследованная.

Таким образом, в 1842 году было открыто ультрафиолетовое излучение, свойства и применение которого в последствии подверглись тщательному разбору и изучению со стороны разных ученых. Большой вклад в это внесли такие люди, как: Александр Беккерель, Варшавер, Данциг, Македонио Меллони, Франк, Парфенов, Галанин и другие.

Общая характеристика

Что же представляет собой применение которого на сегодняшний день столь широко в различных отраслях деятельности человека? Во-первых, следует обозначить, что появляется данный света только при очень высоких температурах от 1500 до 2000 0 С. Именно в таком интервале УФ достигает пика активности по воздействию.

По физической природе это электромагнитная волна, длина которой колеблется в довольно широких пределах - от 10 (иногда от 2) до 400 нм. Весь диапазон данного излучения условно делится на две области:

  1. Ближний спектр. Доходит до Земли через атмосферу и озоновый слой от Солнца. Длина волны - 380-200 нм.
  2. Далекий (вакуумный). Активно поглощается озоном, кислородом воздуха, компонентами атмосферы. Исследовать удается только специальными вакуумными устройствами, за что и получил свое название. Длина волны - 200-2 нм.

Существует своя классификация видов, которые имеет ультрафиолетовое излучение. Свойства и применение находит каждый из них.

  1. Ближний.
  2. Дальний.
  3. Экстремальный.
  4. Средний.
  5. Вакуумный.
  6. Длинноволновой черный свет (УФ-А).
  7. Коротковолновой гермицидный (УФ-С).
  8. Средневолновой УФ-В.

Длина волны ультрафиолетового излучения у каждого вида своя, но все они находятся в общих уже обозначенных ранее пределах.

Интересным является УФ-А, или, так называемый, черный свет. Дело в том, что данный спектр имеет длину волны от 400-315 нм. Это находится на границе с видимым светом, который человеческий глаз способен улавливать. Поэтому такое излучение, проходя через определенные предметы или ткани, способно переходить в область видимого фиолетового света, и люди различают его как черный, темно-синий или темно-фиолетовый оттенок.

Спектры, которые дают источники ультрафиолетового излучения, могут быть трех типов:

  • линейчатые;
  • непрерывные;
  • молекулярные (полосные).

Первые характерны для атомов, ионов, газов. Вторая группа - для рекомбинационного, тормозного излучения. Источники третьего типа чаще всего встречаются при изучении разреженных молекулярных газов.

Источники ультрафиолетового излучения

Основные источники УФ-лучей делятся на три большие категории:

  • естественные или природные;
  • искусственные, созданные человеком;
  • лазерные.

Первая группа включает в себя единственный вид концентратора и излучателя - Солнце. Именно небесное светило дает мощнейший заряд данного типа волн, которые способны проходить через и достигать поверхности Земли. Однако не всей своей массой. Учеными выдвигается теория о том, что жизнь на Земле зародилась только тогда, когда озоновый экран стал защищать ее от избыточного проникновения вредного в больших концентрациях УФ-излучения.

Именно в этот период стали способны существовать белковые молекулы, нуклеиновые кислоты и АТФ. До сегодняшнего дня слой озона вступает в тесное взаимодействие с основной массой УФ-А, УФ-В и УФ-С, обезвреживая их, и не давая пройти через себя. Поэтому защита от ультрафиолетового излучения всей планеты - исключительно его заслуга.

От чего зависит концентрация проникающего на Землю ультрафиолета? Есть несколько основных факторов:

  • озоновые дыры;
  • высота над уровнем моря;
  • высота солнцестояния;
  • атмосферное рассеивание;
  • степень отражения лучей от земных природных поверхностей;
  • состояние облачных паров.

Диапазон ультрафиолетового излучения, проникающего на Землю от Солнца, колеблется в пределах от 200 до 400 нм.

Следующие источники - это искусственные. К ним можно отнести все те приборы, устройства, технические средства, которые были сконструированы человеком для получения нужного спектра света с заданными параметрами длины волны. Это было сделано с целью получать ультрафиолетовое излучение, применение которого может быть крайне полезным в разных областях деятельности. К искусственным источникам относятся:

  1. Эритемные лампы, обладающие способностью активизировать синтез витамина D в коже. Это предохраняет от заболеваний рахитом и лечит его.
  2. Аппараты для соляриев, в которых люди получают не только красивый естественный загар, но и лечатся от заболеваний, возникающих при недостатке открытого солнечного света (так называемая, зимняя депрессия).
  3. Лампы-аттрактанты, позволяющие бороться с насекомыми в условиях помещений безопасно для человека.
  4. Ртутно-кварцевые устройства.
  5. Эксилампа.
  6. Люминесцентные устройства.
  7. Ксеноновые лампы.
  8. Газоразрядные устройства.
  9. Высокотемпературная плазма.
  10. Синхротронное излучение в ускорителях.

Еще один тип источников - лазеры. Их работа основана на генерации различных газов - как инертных, так и нет. Источниками могут быть:

  • азот;
  • аргон;
  • неон;
  • ксенон;
  • органические сцинтилляторы;
  • кристаллы.

Совсем недавно, около 4 лет назад, был изобретен лазер, работающий на свободных электронах. Длина ультрафиолетового излучения в нем равна той, которая наблюдается в условиях вакуума. Лазерные поставщики УФ используются в биотехнологических, микробиологических исследованиях, масс-спектрометрии и так далее.

Биологическое воздействие на организмы

Действие ультрафиолетового излучения на живых существ двояко. С одной стороны, при его недостатке могут возникать заболевания. Это выяснилось только в начале прошлого столетия. Искусственное облучение специальным УФ-А в необходимых нормах способно:

  • активизировать работу иммунитета;
  • вызвать образование важных сосудорасширяющих соединений (гистамин, например);
  • укрепить кожно-мышечную систему;
  • улучшить работу легких, повысить интенсивность газообмена;
  • повлиять на скорость и качество метаболизма;
  • повысить тонус организма, активизировав выработку гормонов;
  • увеличить проницаемость стенок сосудов на коже.

Если УФ-А в достаточном количестве попадает в организм человека, то у него не возникает таких заболеваний, как зимняя депрессия или световое голодание, а также значительно снижается риск развития рахита.

Влияние ультрафиолетового излучения на организм бывает следующих типов:

  • бактерицидное;
  • противовоспалительное;
  • регенерирующее;
  • болеутоляющее.

Эти свойства во многом объясняют широкое применение УФ в медицинских учреждениях любого типа.

Однако, помимо перечисленных плюсов, есть и отрицательные стороны. Существует ряд заболеваний и недугов, которые можно приобрести, если не дополучать или, напротив, принимать в избыточном количестве рассматриваемые волны.

  1. Рак кожи. Это самое опасное воздействие ультрафиолетового излучения. Меланома способна образоваться при избыточном влиянии волн от любого источника - как природного, так и созданного людьми. Это особенно касается любителей загара в солярии. Во всем необходима мера и осторожность.
  2. Разрушительное действие на сетчатку глазных яблок. Другими словами, может развиться катаракта, птеригиум или ожег оболочки. Вредное избыточное воздействие УФ на глаза было доказано учеными уже давно и подтверждено экспериментальными данными. Поэтому при работе с такими источниками следует соблюдать На улице оградить себя можно при помощи темных очков. Однако в этом случае следует опасаться подделок, ведь если стекла не снабжены УФ-отталкивающими фильтрами, то разрушающее действие будет еще сильнее.
  3. Ожоги на коже. В летнее время их можно заработать, если долгое время неконтролируемо подвергать себя воздействию УФ. Зимой же можно получить их из-за особенности снега отражать практически полностью данные волны. Поэтому облучение происходит и со стороны Солнца, и со стороны снега.
  4. Старение. Если люди долгое время находятся под воздействием УФ, то у них начинают очень рано проявляться признаки старения кожи: вялость, морщины, дряблость. Это происходит от того, что защитные барьерные функции покровов ослабевают и нарушаются.
  5. Воздействие с последствиями во времени. Заключаются в проявлениях негативных воздействий не в молодом возрасте, а ближе к старости.

Все эти результаты являются последствиями нарушения дозировок УФ, т.е. они возникают, когда использование ультрафиолетового излучения проводится нерационально, неправильно, и без соблюдения мер безопасности.

Ультрафиолетовое излучение: применение

Основные области использования отталкиваются от свойств вещества. Это справедливо и для спектральных волновых излучений. Так, главными характеристиками УФ, на которых базируется его применение, являются:

  • химическая активность высокого уровня;
  • бактерицидное воздействие на организмы;
  • способность вызывать свечение различных веществ разными оттенками, видимыми глазом человека (люминесценция).

Это позволяет широко использовать ультрафиолетовое излучение. Применение возможно в:

  • спектрометрических анализах;
  • астрономических исследованиях;
  • медицине;
  • стерилизации;
  • обеззараживании питьевой воды;
  • фотолитографии;
  • аналитическом исследовании минералов;
  • УФ-фильтрах;
  • для ловли насекомых;
  • для избавления от бактерий и вирусов.

Каждая из перечисленных областей использует определенный тип УФ со своим спектром и длиной волны. В последнее время данный тип излучения активно используется в физических и химических исследованиях (установление электронной конфигурации атомов, кристаллической структуры молекул и различных соединений, работа с ионами, анализ физических превращений на различных космических объектах).

Есть еще одна особенность воздействия УФ на вещества. Некоторые полимерные материалы способны разлагаться под воздействием интенсивного постоянного источника данных волн. Например, такие, как:

  • полиэтилен любого давления;
  • полипропилен;
  • полиметилметакрилат или органическое стекло.

В чем выражается воздействие? Изделия из перечисленных материалов теряют окраску, трескаются, тускнеют и, в конечном итоге, разрушаются. Поэтому их принято называть чувствительными полимерами. Эту особенность деградации углеродной цепи при условиях солнечной освещенности активно используют в нанотехнологиях, рентгенолитографии, трансплантологии и прочих областях. Делается это в основном для сглаживания шероховатостей поверхности изделий.

Спектрометрия - основная область аналитической химии, которая специализируется на идентификации соединений и их состава по способности поглощать УФ-свет определенной длины волны. Получается, что спектры уникальны для каждого вещества, поэтому можно их классифицировать по результатам спектрометрии.

Также применение ультрафиолетового бактерицидного излучения осуществляется для привлечения и уничтожения насекомых. Действие основано на способности глаза насекомого улавливать невидимые человеку коротковолновые спектры. Поэтому животные летят на источник, где и подвергаются уничтожению.

Использование в соляриях - специальных установках вертикального и горизонтального типа, в которых человеческое тело подвергается воздействию УФ-А. Делается это для активизации выработки в коже меланина, придающего ей более темный цвет, гладкость. Кроме того, при этом подсушиваются воспаления и уничтожаются вредные бактерии на поверхности покровов. Особое внимание следует уделять защите глаз, чувствительных зон.

Медицинская область

Применение ультрафиолетового излучения в медицине основано также на его способностях уничтожать невидимые глазу живые организмы - бактерии и вирусы, и на особенностях, происходящих в организме во время грамотного освещения искусственным или естественным облучением.

Основные показания к лечению УФ можно обозначить в нескольких пунктах:

  1. Все виды воспалительных процессов, ран открытого типа, нагноений и открытых швов.
  2. При травмах тканей, костей.
  3. При ожогах, обморожениях и кожных заболеваниях.
  4. При респираторных недугах, туберкулезе, бронхиальной астме.
  5. При возникновении и развитии различных видов инфекционных заболеваний.
  6. При недугах, сопровождающихся сильными болевыми ощущениями, невралгии.
  7. Заболевания горла и носовой полости.
  8. Рахиты и трофическая
  9. Стоматологические заболевания.
  10. Регуляция давления кровяного русла, нормализация работы сердца.
  11. Развитие раковых опухолей.
  12. Атеросклероз, почечная недостаточность и некоторые другие состояния.

Все эти заболевания могут иметь весьма серьезные последствия для организма. Поэтому лечение и профилактика использованием УФ - это настоящее медицинское открытие, спасающее тысячи и миллионы людских жизней, сохраняющее и возвращающее им здоровье.

Еще один вариант использования УФ с медицинской и биологической точки зрения - это обеззараживание помещений, стерилизация рабочих поверхностей и инструментов. Действие основано на способности УФ угнетать развитие и репликацию молекул ДНК, что приводит к их вымиранию. Бактерии, грибки, простейшие и вирусы гибнут.

Основной проблемой при использовании такого излучения для стерилизации и обеззараживания помещения является область освещения. Ведь организмы уничтожаются только при непосредственном воздействии прямых волн. Все, что остается за пределами, продолжает свое существование.

Аналитическая работа с минералами

Способность вызывать у веществ люминесценцию позволяет применять УФ для анализа качественного состава минералов и ценных горных пород. В этом плане очень интересными бывают драгоценные, полудрагоценные и поделочные камни. Каких только оттенков они не дают при облучении их катодными волнами! Очень интересно об этом писал Малахов, знаменитый геолог. В его труде рассказывается о наблюдениях за свечением цветовой палитры, которое способны давать минералы в разных источниках облучения.

Так, например, топаз, который в видимом спектре имеет красивый насыщенный голубой цвет, при облучении высвечивается ярко-зеленым, а изумруд - красным. Жемчуг вообще не может дать какой-то определенный цвет и переливается многоцветьем. Зрелище в результате получается просто фантастическое.

Если в состав исследуемой породы входят примеси урана, то высвечивание покажет зеленый цвет. Примеси мелита дают синий, а морганита - сиреневый или бледно-фиолетовый оттенок.

Использование в фильтрах

Для использования в фильтрах также применяется ультрафиолетовое бактерицидное излучение. Типы таких структур могут быть разные:

  • твердые;
  • газообразные;
  • жидкие.

Основное применение такие устройства находят в химической отрасли, в частности, в хроматографии. С их помощью можно провести качественный анализ состава вещества и идентифицировать его по принадлежности к тому или иному классу органических соединений.

Обработка питьевой воды

Обеззараживание ультрафиолетовым излучением питьевой воды является одним из самых современных и качественных методов ее очистки от биологических примесей. Преимущества этого метода следующие:

  • надежность;
  • эффективность;
  • отсутствие посторонних продуктов в воде;
  • безопасность;
  • экономичность;
  • сохранение органолептических свойств воды.

Именно поэтому на сегодняшний день такая методика обеззараживания идет в ногу с традиционным хлорированием. Действие основано на тех же особенностях - разрушение ДНК вредоносных живых организмов в составе воды. Используют УФ с длиной волны около 260 нм.

Помимо прямого воздействия на вредителей, ультрафиолет используется также для разрушения остатков химических соединений, которые применяются для смягчения, очищения воды: таких, как, например, хлор или хлорамин.

Лампа черного света

Такие устройства снабжены специальными излучателями, способными давать волны большой длинны, близкой к видимому. Однако они все равно остаются неразличимы для человеческого глаза. Используются такие лампы в качестве устройств, читающих тайные знаки из УФ: например, в паспортах, документах, денежных купюрах и так далее. То есть, такие метки могут быть различимы только под действием определенного спектра. Таким образом построен принцип работы детекторов валюты, устройств для проверки натуральности денежных купюр.

Реставрация и определение подлинности картины

И в этой области находит применение УФ. Каждый художник использовал белила, содержащие в каждый эпохальный промежуток времени разные тяжелые металлы. Благодаря облучению возможно получение так называемых подмалевков, которые дают информацию о подлинности картины, а также о специфической технике, манере письма каждого художника.

Кроме того, лаковая пленка на поверхности изделий относится к чувствительным полимерам. Поэтому она способна стареть под воздействием света. Это позволяет определять возраст композиций и шедевров художественного мира.

Светолечение (фототерапия) - лечение светом. Инфракрасное излучение. Видимое излучение. Ультрафиолетовое излучение

Светолечение представляет собой дозированное воздействие инфракрасного, видимого и ультрафиолетового излучения на организм человека с целью лечения. Для этого применяются специальные лампы фототерапии. Данный метод лечения также часто называют фототерапией (от греческого photos - свет).

С давних времен люди обращали внимание на целительное воздействие солнечных лучей на здоровье человека. Солнечный спектр на 10% состоит из ультрафиолетовых лучей, на 40% - из лучей видимого спектра и на 50% - из инфракрасных лучей. Все эти виды электромагнитных излучений получили широкое распространение в медицине.

В медицинских учреждениях для данного вида лечения используются искусственные излучатели с нитями накаливания. Они нагреваются при помощи электрического тока.

Инфракрасное излучение: влияние на человека, лечение

Инфракрасное излучение представляет собой тепловое излучение. Его лучи способны проникать в ткани организма на большую глубину, по сравнению с другими видами световой энергии. Это приводит к прогреванию всей толщи кожи и части подкожных тканей. Структуры, которые расположены глубже, не подвержены воздействию данного вида излучения.

Основными показаниями к его применению являются: некоторые заболевания опорно-двигательного аппарата, негнойные хронические и подострые воспалительные местные процессы, происходящие, в том числе, во внутренних органах. Лечат с его помощью пациентов с заболеваниями центральной и периферической нервной системы, периферических сосудов, глаз, уха, кожи. Помогает этот метод и при остаточных явлениях после ожогов и отморожений.

Данный вид излучения способствует устранению воспалительных процессов, ускоряет заживление, повышает местную сопротивляемость и противоинфекционную защиту.

Если правила проведения процедуры нарушаются, существует опасность серьезного перегрева тканей и образования термических ожогов. Может возникнуть также перегрузка кровообращения, которая противопоказана при сердечно-сосудистых заболеваниях.



Противопоказаниями к применению являются: наличие доброкачественных или злокачественных новообразований, активные формы туберкулеза, гипертоническая болезнь III стадии, кровотечение, а также недостаточность кровообращения.

Видимое излучение

Видимое излучение представляет собой участок общего электромагнитного спектра, который состоит из 7 цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Оно может проникать в кожу на глубину до 1 см. Но основное воздействие оно оказывает через сетчатку глаза.

Восприятие человеком цветовых компонентов видимого света воздействует на его центральную нервную систему. Этот вид излучения применяется при лечении пациентов, имеющих различные заболевания нервной системы.

Как известно, например, желтый, зеленый и оранжевый цвета повышают настроение, а синий и фиолетовый действуют наоборот. Красный цвет возбуждает деятельность коры головного мозга. Синий - тормозит нервно-психическую деятельность. Очень важное значение для эмоционального состояния человека имеет белый цвет. Его нехватка приводит к депрессиям.

Ультрафиолетовое излучение

Ультрафиолетовое излучение обладает наиболее мощной энергией и активностью. Однако при этом его лучи способны проникать в ткани человека только на глубину до 1 мм.

Наибольшей чувствительностью к лучам данного типа отличаются наша кожа и слизистые оболочки. Маленькие дети имеют повышенную чувствительность к ультрафиолету.

Ультрафиолетовое облучение способствует повышению защитных сил организма, оказывает десенсибилизирующее воздействие, улучшает показатели жирового обмена. Оно также нормализует процессы свертывания крови, улучшает функции внешнего дыхания, увеличивает активность коры надпочечников. Дефицит ультрафиолета приводит к авитаминозу, понижению иммунитета, ухудшению работы нервной системы и проявлениям психической неустойчивости.

Показания к применению ультрафиолетового излучения

Показаниями к применению служат заболевания кожи, суставов, органов дыхания, женских половых органов, периферической нервной системы. Назначается для скорейшего заживления ран и с целью компенсации ультрафиолетовой недостаточности в организме. Профилактирует рахит.

Противопоказания к применению ультрафиолетового излучения

Противопоказаниями являются : острые воспалительные процессы, опухоли, кровотечения, гипертоническая болезнь III стадии, недостаточность кровообращения II-III стадии, активные формы туберкулеза и др.

Лазерное излучение.

Лазерная или квантовая терапия - это метод светолечения, который заключается в использовании пучков лазерного излучения. Лазерное излучение обладает следующими лечебными свойствами: противовоспалительное, репаративное, гипоальгезивное, иммуностимулирующее и бактерицидное.

Назначается оно при большом количестве заболеваний костно-мышечной, сердечно-сосудистой, дыхательной, пищеварительной, нервной, мочеполовой систем. Применяется также для лечения кожных заболеваний, заболеваний ЛОР-органов и диабетических ангиопатий. Противопоказания такие же, как и у других видов светового излучения.

 
Статьи по теме:
Маршрут первой камчатской экспедиции
Первая Камчатская экспедицияБудучи любознательным по природе и, как просвещённый монарх, озабоченным выгодами для страны, первый русский император живо интересовался описаниями путешествий. Царь и его советники знали о существовании Аниана – так назывался
Транквилизаторы (анксиолитики): фармакологические свойства, направления совершенствования, проблемы безопасности применения
В психиатрической практике применяется достаточно обширная группа фармакологических препаратов. Психиатрия использует транквилизаторы чаще других медицинских областей. Но они применяются не только для лечения психопатических заболеваний.Так что такое тран
Послекурсовая терапия (ПКТ)
Для контроля уровня этих гормонов необходимо использовать специальные препараты, но производство тестостерона в большинстве случаев все же замедляется. После прекращения использования анаболиков атлетам необходимо в кратчайшие сроки восстановить синтез му
 Происхождение мумие Из чего делается мумие алтайское
Ученые и альпинисты сняли ролик о залежах мумиё: https://www.youtube.com/watch?v=gHU30ds17r0. Из видно, что мумиё прямо-таки растет внутри гор, стекает, как смола, по каменистым отложениям и застывает в причудливых узорах. Прииски для добычи мумиё имеют о