Принципы R,S-номенклатуры. Принципы R,S-номенклатуры Сословия, государственная служба и органы управления Российской империи учеб. пособие

НОМЕНКЛАТУРА СТЕРЕОХИМИЧЕСКАЯ (от лат. по-menclatura - перечень, список), предназначена для обозначения пространств. строения хим. соединений. Общий принцип номенклатуры стереохимической (правила ИЮПАК , раздел Е) состоит в том, что пространств. строение соед. обозначают префиксами, добавляемыми к назв., не изменяя этих назв. и нумерации в них (хотя иногда стереохим. особенности могут определять выбор между возможными альтернативными способами нумерации и выбор главной цепи).

В основе большинства стереохим. обозначений лежит правило последовательности, к-рое однозначно устанавливает старшинство заместителей. Старшими считаются те из них, у к-рых с рассматриваемым хиральным (см. Хираль-ность)элементом (напр., асимметрич. атомом , двойной связью , циклом) непосредственно связан атом с большим атомным номером (см. табл.). Если эти атомы одинаковы по старшинству, то рассматривают "второй слой", в к-рый входят атомы , связанные с атомами "первого слоя", и т.д., до появления первого различия; номера атомов , связанных двойной связью , при определении старшинства удваивают. Наиб. общий подход к обозначению конфигурации энан-тиомеров - использование R,S-системы. Обозначение R (от лат. rectus-правый) получает тот из энантиомеров , в к-ром при рассмотрении модели со стороны, противоположной младшему заместителю, старшинство остальных заместителей падает по часовой стрелке. Падение старшинства против часовой стрелки соответствует S-обозначению (от лат. sinister-левый) (рис. 1).

Возрастание старшинства заместителей при хиральном центре:


Рис. 1. Схема для определения старшинства заместителей в органических соединениях .


Для углеводов , a-гидроксикислот, a-аминокислот широко используют также D,L-систему, основанную на сравнении конфигурации рассматриваемого асимметрич. центра с конфигурацией соответствующего энантиомера глицеринового альдегида . При рассмотрении проекционных Фишера фор мул расположение групп ОН или NH 2 слева обозначается символом L (от лат. laevus- левый), справа-символом D (от лат. dexter-правый):



s-Диастереомеры (классич. диастереомеры) в простейших случаях обозначают как мезо- и рацемические формы либо эритро- и трео-формы:



Для сложных структур, когда все шесть заместителей двух асимметрич. центров различны, предложены др. системы. Напр., преф, парф (pref, раrf)-обозначения основаны на рассмотрении порядка падения старшинства (по правилу последовательности) в Ньюмена формулах : при одинаковом направлении падения -преф (англ. priority reflective), при противоположном -парф (англ. priority antireflective). Напр.:



Для описания пространств. строения соед. со связью С=С, а также циклических в случаях, исключающих разночтения, употребляют обозначения цис и транс (одинаковые или родственные заместители расположены соотв. по одну и по разные стороны плоскости двойной связи или цикла), напр. циc-2-бутен (ф-ла I), транс-циклобутан-1,2-дикарбоновая к-та (II).

Такие обозначения становятся неоднозначными для алкенов типа abC=Cde,оксимов , азометинов. В этих случаях применяют Z,E -номенклатуру [старшие заместители при двойной связи расположены соотв. по одну (Z, от нем. zusammen - вместе) и по разные (Е, от нем. entgegen-напротив) стороны плоскости двойной связи ], напр. (Z)-2-хлор-2-бутеновая к-та (III), (E,E)-бензилдиоксим (IV).


При наличии трех и более заместителей в молекуле алициклич. или насыщ. гетероциклич. соединения используют r,с,t-номенклатуру. Один из заместителей выбирают за "опорный"-r (референтный, от англ. reference). Для заместителей, лежащих по одну сторону плоскости цикла с опорным атомом , используют обозначение с (от cis-цuc), для заместителей по др. сторону плоскости цикла-t (от trans-трaнc), напр. t-2-с-4-дихлор-циклопентан-М-карбо новая к-та (V).

В ряду стероидов обозначение пространств. расположения заместителей делается на основе условной плоской ф-лы.

Заместители, удаленные от наблюдателя, обозначают a, приближенные к наблюдателю - b. Напр., 11b,17a,21- тригидрокси-4-прегнен-3,20-дион (

ГЛАВА 7. СТЕРЕОХИМИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ МОЛЕКУЛ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

ГЛАВА 7. СТЕРЕОХИМИЧЕСКИЕ ОСНОВЫ СТРОЕНИЯ МОЛЕКУЛ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Стереохимия (от греч. stereos - пространственный) - это «химия в трех измерениях». Большинство молекул трехмерны (threedimentional, сокращенно 3D). Структурные формулы отражают двумерное (2D) строение молекулы, включающее в себя число, тип и последовательность связывания атомов. Напомним, что соединения, имеющие одинаковый состав, но различное химическое строение, называются структурными изомерами (см. 1.1). Более широкое понятие структуры молекулы (иногда образно называемой молекулярной архитектурой) наряду с понятием химического строения включает стереохимические компоненты - конфигурацию и конформацию, отражающие пространственное строение, т. е. трехмерность молекулы. Молекулы, обладающие одинаковым химическим строением, могут различаться пространственным строением, т. е. существовать в виде пространственных изомеров - стереоизо- меров.

Пространственное строение молекул - это взаимное расположение атомов и атомных групп в трехмерном пространстве.

Стереоизомеры - соединения, в молекулах которых имеется одинаковая последовательность химических связей атомов, но раз- личное расположение этих атомов относительно друг друга в пространстве.

В свою очередь стереоизомеры могут быть конфигурационными и конформационными изомерами, т. е. различаться соответственно конфи- гурацией и конформацией.

7.1. Конфигурация

Конфигурация - это порядок расположения атомов в пространстве без учета различий, возникающих вследствие вращения вокруг одинарных связей.

Конфигурационные изомеры могут переходить друг в друга путем разрыва одних и образования других химических связей и могут существовать раздельно в виде индивидуальных соединений. Они подразделяются на два основных типа - энантиомеры и диастереомеры.

7.1.1. Энантиомерия

Энантиомеры - стереоизомеры, относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отображение.

В виде энантиомеров могут существовать только хиральные молекулы.

Хиральность - это свойство объекта быть несовместимым со своим зеркальным отражением. Хиральными (от греч. cheir - рука), или асимметричными, объектами являются левая и правая рука, а также перчатки, ботинки и др. Эти парные предметы представляют собой объект и его зеркальное отражение (рис. 7.1, а). Такие предметы не могут быть полностью совмещены друг с другом.

В то же время существует множество окружающих нас предметов, которые совместимы со своим зеркальным отражением, т. е. они являются ахиральными (симметричными), например тарелки, ложки, стаканы и т. д. Ахиральные предметы обладают по крайней мере одной плоскостью симметрии, которая делит объект на две зеркальноидентичные части (см. рис. 7.1, б ).

Подобные взаимоотношения наблюдаются также в мире молекул, т. е. молекулы делятся на хиральные и ахиральные. У ахиральных молекул есть плоскости симметрии, у хиральных их нет.

В хиральных молекулах имеется один или несколько центров хиральности. В органических соединениях в качестве центра хиральности чаще всего выступает асимметрический атом углерода.

Рис. 7.1. Отражение в зеркале хирального объекта (а) и плоскость симметрии, разрезающая ахиральный объект (б)

Асимметрическим является атом углерода, связанный с четырьмя различными атомами или группами.

При изображении стереохимической формулы молекулы символ «С» асимметрического атома углерода обычно опускается.

Чтобы определить, является молекула хиральной или ахиральной, нет необходимости изображать ее стереохимической формулой, достаточно внимательно рассмотреть все атомы углерода в ней. Если находится хотя бы один атом углерода с четырьмя разными заместителями, то этот атом углерода асимметричен и молекула за редкими исключениями (см. 7.1.3) хиральна. Так, из двух спиртов - пропано- ла-2 и бутанола-2 - первый ахирален (две группы СН 3 у атома С-2), а второй - хирален, так как в его молекуле у атома С-2 все четыре заместителя разные (Н, ОН, СН 3 и С 2 Н 5). Асимметрический атом углерода иногда помечают звездочкой (С*).

Следовательно, молекула бутанола-2 способна существовать в виде пары энантиомеров, которые не совмещаются в пространстве (рис. 7.2).

Рис. 7.2. Энантиомеры хиральных молекул бутанола-2 не совмещаются

Свойства энантиомеров. Энантиомеры обладают одинаковыми химическими и физическими свойствами (температуры плавления и кипения, плотность, растворимость и т. д.), но проявляют различную оптическую активность, т. е. способность отклонять плоскость поляризованного света*.

При прохождении такого света через раствор одного из энантиомеров происходит отклонение плоскости поляризации влево, другого - вправо на один тот же по величине угол α. Значение угла α, приведенное к стандартным условиям, является константой оптически активного вещества и называется удельным вращением [α]. Левое вращение обозначается знаком «минус» (-), правое - знаком «плюс» (+), а энантиомеры называют соответственно лево- и правовращающими.

С проявлением оптической активности связаны другие названия энантиомеров - оптические изомеры или оптические антиподы.

Каждое хиральное соединение может иметь и третью, оптически неактивную форму - рацемат. Для кристаллических веществ это обычно не просто механическая смесь кристаллов двух энантиомеров, а новая молекулярная структура, образованная энантиомерами. Рацематы оптически неактивны, так как левое вращение одного энантиомера компенсируется правым вращением равного количества другого. В этом случае перед названием соединения иногда ставят знак «плюс-минус» (?).

7.1.2. Относительная и абсолютная конфигурации

Проекционные формулы Фишера. Для изображения конфигурационных изомеров на плоскости можно пользоваться стереохимическими формулами. Однако удобнее применять более простые в написании проекционные формулы Фишера (проще - проекции Фишера). Рассмотрим их построение на примере молочной (2-гидроксипропа- новой) кислоты.

Тетраэдрическую модель одного из энантиомеров (рис. 7.3) располагают в пространстве так, чтобы цепь атомов углерода оказалась в вертикальном положении, а карбоксильная группа - сверху. Связи с неуглеродными заместителями (Н и ОН) у хирального центра долж-

* Подробнее см. учебник Ремизов А.Н., Максина А.Г., Потапенко А.Я. Медицинская и биологическая физика. 4-е изд., перераб. и дополн. - М.: Дрофа, 2003.- С. 365-375.

Рис. 7.3. Построение проекционной формулы Фишера (+)-молочной кислоты

ны быть направлены к наблюдателю. После этого модель проецируют на плоскость. Символ асимметрического атома при этом опускается, под ним понимают точку пересечения вертикальной и горизонтальной линий.

Тетраэдрическую модель хиральной молекулы перед проецированием можно располагать в пространстве по-разному, не только так, как показано на рис. 7.3. Необходимо только, чтобы связи, образующие на проекции горизонтальную линию, были направлены к наблюдателю, а вертикальные связи - за плоскость рисунка.

Полученные таким образом проекции можно с помощью несложных преобразований привести к стандартному виду, в котором углеродная цепь расположена вертикально, а старшая группа (в молочной кислоте это СООН) - сверху. Преобразования разрешают две операции:

В проекционной формуле разрешается менять местами два любых заместителя у одного и того же хирального центра четное число раз (двух перестановок бывает достаточно);

Проекционную формулу разрешается поворачивать в плоскости рисунка на 180? (что эквивалентно двум перестановкам), но не на 90?.

D.L-Система обозначения конфигурации. В начале ХХ в. была предложена система классификации энантиомеров для относительно простых (с позиций стереоизомерии) молекул, таких, как α-аминокислоты, α-гидроксикислоты и им подобные. За конфигурационный стандарт был принят глицериновый альдегид. Его левовращающему энантиомеру была произвольно приписана формула (I). Такая конфигурация атома углерода была обозначена буквой l (от лат. laevus - левый). Правовращающему энантиомеру соответственно была приписана формула (II), а конфигурация обозначена буквой d (от лат. dexter - правый).

Заметим, что в стандартной проекционной формуле l -глицеринового альдегида группа ОН находится слева, а у d -глицеринового альдегида - справа.

Отнесение к d- или l -ряду других родственных по структуре оптически активных соединений производится путем сравнения конфигурации их асимметрического атома с конфигурацией d- или l -глицеринового альдегида. Например, у одного из энантиомеров молочной кислоты (I) в проекционной формуле группа ОН находится слева, как у l -глицеринового альдегида, поэтому энантиомер (I) относят к l -ряду. Из тех же соображений энантиомер (II) относят к d -ряду. Так из срав- нения проекций Фишера определяют относительную конфигурацию.

Следует отметить, что l -глицериновый альдегид имеет левое вращение, а l -молочная кислота - правое (и это не единичный случай). Более того, одно и то же вещество может быть как лево-, так и правовращающим в зависимости от условий определения (разные растворители, температура).

Знак вращения плоскости поляризованного света не связан с принадлежностью к d- или l -стереохимическому ряду.

Практическое определение относительной конфигурации оптически активных соединений проводят с помощью химических реакций: либо исследуемое вещество превращают в глицериновый альдегид (или другое вещество с известной относительной конфигурацией), либо, наоборот, из d- или l -глицеринового альдегида получают исследуемое вещество. Разумеется, что в ходе всех этих реакций не должна изменяться конфигурация асимметрического атома углерода.

Произвольное приписание лево- и правовращающему глицериновому альдегиду условных конфигураций было вынужденным шагом. В то время абсолютная конфигурация не была известна ни для одного хирального соединения. Установление абсолютной конфигурации стало возможным только благодаря развитию физико-химических методов, особенно рентгеноструктурного анализа, с помощью которого в 1951 г. впервые была определена абсолютная конфигура,ция хиральной молекулы - это была соль (+)-винной кислоты. После этого стало ясно, что абсолютная конфигурация d- и l-глицериновых альдегидов действительно такая, какая им была первоначально приписана.

d,l-Система в настоящее время применяется для α-аминокислот, гидроксикислот и (с некоторыми дополнениями) для углеводов

(см. 11.1.1).

R,S-Система обозначения конфигурации. d,L-Система имеет весьма ограниченное применение, так как часто невозможно соотнести конфигурацию какого-либо соединения с глицериновым альдегидом. Универсальной системой обозначения конфигурации центров хиральности является R,S-система (от лат. rectus - прямой, sinister - левый). В ее основе лежит правило последовательности, основанное на старшинстве заместителей, связанных с центром хиральности.

Старшинство заместителей определяется атомным номером элемента, непосредственно связанного с центром хиральности, - чем он больше, тем старше заместитель.

Так, группа ОН старше NH 2 , которая, в свою очередь, старше любой алкильной группы и даже СООН, поскольку в последней с асимметрическим центром связан атом углерода. Если атомные номера оказываются одинаковыми, старшей считается группа, у которой следующий за углеродом атом имеет больший порядковый номер, причем, если этот атом (обычно кислород) связан двойной связью, он учитывается дважды. В результате следующие группы так располагаются в порядке падения старшинства: -СООН > -СН=О > -СН 2 ОН.

Для определения конфигурации тетраэдрическую модель соединения располагают в пространстве так, чтобы самый младший замес- титель (в большинстве случаев это атом водорода) был наиболее удален от наблюдателя. Если старшинство трех остальных заместителей убывает по часовой стрелке, то центру хиральности приписывают R-конфигурацию (рис. 7.4, а), если против часовой стрелки - S -конфигурацию (см. рис. 7.4, б), как это видно водителю, находящемуся за рулем (см. рис. 7.4, в).

Рис. 7.4. Определение конфигурации энантиомеров молочной кислоты по R,S- системе (объяснение в тексте)

Для обозначения конфигурации по RS-системе можно применить проекции Фишера. Для этого проекцию преобразуют так, чтобы младший заместитель разместился на одной из вертикальных связей, что соответствует его положению за плоскостью чертежа. Если после преобразования проекции старшинство остальных трех заместителей убывает по часовой стрелке, то асимметрический атом имеет R-конфигурацию, и наоборот. Применение такого способа показано на примере l-молочной кислоты (цифрами обозначено старшинство групп).

Существует более простой способ определения R- или S-конфигу- рации по проекции Фишера, в которой младший заместитель (обычно атом Н) расположен на одной из горизонтальных связей. В этом случае не проводят указанных выше перестановок, а сразу определяют старшинство заместителей. Однако, поскольку атом Н находится «не на месте» (что равносильно противоположной конфигурации), падение старшинства будет означать теперь не R-, а S-конфигурацию. Этот способ показан на примере l-яблочной кислоты.

Указанный способ особенно удобен для молекул, содержащих несколько хиральных центров, когда для определения конфигурации каждого из них потребовались бы перестановки.

Между d,l- и RS-системами отсутствует корреляция: это два разных подхода к обозначению конфигурации хиральных центров. Если в d,L-системе сходные по конфигурации соединения образуют стерео- химические ряды, то в RS-системе хиральные центры в соединениях, например, l-ряда, могут иметь как R-, так и S-конфигурацию.

7.1.3. Диастереомерия

Диастереомерами называют стереоизомеры, не относящиеся друг к другу, как предмет и несовместимое с ним зеркальное отражение, т. е. не являющиеся энантиомерами.

Наиболее важными группами диастереомеров являются σ-диастереомеры и π-диастереомеры.

σ-Диастереомеры. Многие биологически важные вещества содержат в молекуле более одного центра хиральности. При этом возрастает число конфигурационных изомеров, которое определяется как 2 n , где n - число центров хиральности. Например, при наличии двух асимметрических атомов соединение может существовать в виде четырех стереоизомеров (2 2 = 4), составляющих две пары энантиомеров.

2-Амино-3-гидроксибутановая кислота имеет два центра хиральности (атомы С-2 и С-3) и, следовательно, должна существовать в виде четырех конфигурационных изомеров, один из которых является природной аминокислотой.

Структуры (I) и (II), соответствующие l- и d-треонину, а также (III) и (IV), соответствующие l- и d-аллотреонину (от греч. alios - другой), относятся друг к другу, как предмет и несовместимое с ним зеркальное отражение, т. е. они представляют собой пары энантиомеров. При сопоставлении структур (I) и (III), (I) и (IV), (II) и (III), (II) и (IV) видно, что в этих парах соединений у одного асимметрического центра конфигурация одинаковая, а у другого - противоположная. Такие пары стереоизомеров представляют собой диастереомеры. Подобные изомеры называют σ-диастереомерами, так как заместители в них связаны с центром хиральности σ-связями.

Аминокислоты и гидроксикислоты с двумя центрами хиральности относят к d- или l -ряду по конфигурации асимметрического атома с наименьшим номером.

Диастереомеры, в отличие от энантиомеров, различаются физическими и химическими свойствами. Например l-треонин, входящий в состав белков, и l-аллотреонин имеют разные значения удельного вращения (как показано выше).

Мезосоединения. Иногда в молекуле содержатся два асимметрических центра и более, но молекула в целом остается симметричной. Примером таких соединений может служить один из стереоизомеров винной (2,3-дигидроксибутандиовой) кислоты.

Теоретически эта кислота, в которой имеется два центра хиральности, могла бы существовать в виде четырех стереоизомеров (I)-(IV).

Структуры (I) и (II) соответствуют энантиомерам d- и l-ряда (отнесение проведено по «верхнему» центру хиральности). Может показаться, что структуры (III) и (IV) также соответствуют паре энантиомеров. В действительности это формулы одного и того же соединения - оптически неактивной мезовинной кислоты. В идентичности формул (III) и (IV) легко убедиться, повернув формулу (IV) на 180?, не выводя ее из плоскости. Несмотря на два центра хиральности, молекула мезовинной кислоты в целом является ахиральной, так как имеет плоскость симметрии, проходящую по середине связи С-2-С-3. По отношению к d- и l-винным кислотам мезовинная кислота является диастереомером.

Таким образом, существует три (а не четыре) стереоизомера винных кислот, не считая рацемической формы.

При использовании R,S-системы не возникает трудностей с описанием стереохимии соединений с несколькими хиральными центрами. Для этого определяют конфигурацию каждого центра по R,S-системе и указывают ее (в скобках с соответствующими локантами) перед полным названием. Так, d-винная кислота получит систематическое название (2R,3R)-2,3-дигидроксибутандиовая кислота, а мезовинная кислота будет иметь стереохимические символы (2R,3S)-.

Подобно мезовинной кислоте существует мезоформа α-аминокислоты цистин. При двух центрах хиральности число стереоизомеров цистина равно трем вследствие того, что молекула внутренне сим- метрична.

π-Диастереомеры. К ним относятся конфигурационные изомеры, содержащие π-связь. Этот вид изомерии характерен, в частности, для алкенов. Относительно плоскости π-связи одинаковые заместители у двух атомов углерода могут располагаться по одну (цис) или по разные (транс) стороны. В связи с этим существуют стереоизомеры, известные под названием цис- и транс -изомеров, как показано на примере цис- и транс-бутенов (см. 3.2.2). π-Диастереомерами являются простейшие ненасыщенные дикарбоновые кислоты - малеиновая и фумаровая.

Малеиновая кислота является термодинамически менее стабильным цис -изомером по сравнению с транс -изомером - фумаровой кислотой. Под действием некоторых веществ или ультрафиолетовых лучей между обеими кислотами устанавливается равновесие; при нагревании (~150 ?C) оно смещено в сторону более стабильного транс -изомера.

7.2. Конформации

Вокруг простой связи С-С возможно свободное вращение, в результате которого молекула может принимать различные формы в пространстве. Это видно на стереохимических формулах этана (I) и (II), где отмеченные цветом группы СН 3 расположены по-разному относительно другой группы СН 3.

Поворот одной группы СН 3 относительно другой происходит без нарушения конфигурации - изменяется лишь взаимное расположение в пространстве атомов водорода.

Геометрические формы молекулы, переходящие друг в друга путем вращения вокруг σ-связей, называют конформациями.

В соответствии с этим конформационными изомерами являются стереоизомеры, различие между которыми вызвано поворотом отдельных участков молекулы вокруг σ-связей.

Конформационные изомеры обычно нельзя выделить в индивидуальном состоянии. Переход различных конформаций молекулы друг в друга происходит без разрыва связей.

7.2.1. Конформации ациклических соединений

Простейшим соединением со связью С-С является этан; рассмотрим две из множества его конформаций. В одной из них (рис. 7.5, а) расстояние между атомами водорода двух групп СН 3 наименьшее, поэтому находящиеся друг против друга связи С-Н отталкиваются. Это приводит к увеличению энергии молекулы, а следовательно, к меньшей устойчивости этой конформации. При взгляде вдоль связи С-С видно, что три связи С-Н у каждого атома углерода попарно «заслоняют» друг друга. Такую конформацию называют заслоненной.

Рис. 7.5. Заслоненная (а, б) и заторможенная (в, г) конформации этана

В другой конформации этана, возникающей при повороте одной из групп СН 3 на 60? (см. рис. 7.5, в), атомы водорода двух метильных групп максимально удалены друг от друга. При этом отталкивание электронов связей С-Н будет минимальным, энергия такой конформации также будет минимальной. Эту более устойчивую конформацию называют заторможенной. Разница в энергии обеих конформаций невелика и составляет ~12 кДж/моль; она определяет так называемый энергетический барьер вращения.

Проекционные формулы Ньюмена. Эти формулы (проще - проекции Ньюмена) используют для изображения конформаций на плоскости. Для построения проекции молекулу рассматривают со стороны одного из атомов углерода вдоль его связи с соседним атомом углерода, вокруг которой происходит вращение. При проецировании три связи от ближнего к наблюдателю атома углерода к атомам водорода (или в общем случае - к другим заместителям) располагают в виде трехлучевой звезды с углами 120?. Удаленный от наблюдателя (невидимый) атом углерода изображают в виде круга, от которого также под углом 120? отходят три связи. Проекции Ньюмена также дают наглядное представление о заслоненной (см. рис. 7.5, б) и заторможенной (см. рис. 7.5, г) конформациях.

При обычных условиях конформации этана легко переходят друг в друга, и можно говорить о статистическом наборе различных конформаций, незначительно различающихся по энергии. Выделить в инди- видуальном виде даже более устойчивую конформацию невозможно.

В более сложных молекулах замена атомов водорода при соседних атомах углерода на иные атомы или группы приводит к их взаимному отталкиванию, что сказывается на увеличении потенциальной энергии. Так, в молекуле бутана наименее выгодной будет заслоненная конформация, а самой выгодной - заторможенная конформация с максимально удаленными группами СН 3 . Разница между энергиями этих конформаций составляет ~25 кДж/моль.

По мере удлинения углеродной цепи в алканах быстро возрастает число конформаций в результате расширения возможностей враще- ния вокруг каждой связи С-С, поэтому длинные углеродные цепи алканов могут принимать множество разнообразных форм, например зигзагообразную (I), нерегулярную (II) и клешневидную (III).

Предпочтительна зигзагообразная конформация, в которой все связи С-С в проекции Ньюмена образуют угол 180?, как в затормо- женной конформации бутана. Например, фрагменты длинноцепочечных пальмитиновой C 15 H 31 COOH и стеариновой C 17 H 35 COOH кислот в зигзагообразной конформации (рис. 7.6) входят в состав липидов клеточных мембран.

Рис. 7.6. Скелетная формула (а) и молекулярная модель (б) стеариновой кислоты

В клешневидной конформации (III) сближаются атомы углерода, удаленные друг от друга в иных конформациях. Если на достаточно близком расстоянии оказываются функциональные группы, например Х и Y, способные реагировать друг с другом, то в результате внутримолекулярной реакции это приведет к образованию циклического продукта. Такие реакции распространены довольно широко, что связано с выгодностью образования термодинамически устойчивых пяти- и шестичленных циклов.

7.2.2. Конформации шестичленных циклов

Молекула циклогексана не является плоским шестиугольником, так как при плоском строении валентные углы между атомами углерода составляли бы 120?, т. е. существенно отклонялись от величины нормального валентного угла 109,5?, и все атомы водорода находились в невыгодном заслоненном положении. Это привело бы к неустойчивости цикла. В действительности шестичленный цикл наиболее устойчив из всех циклов.

Различные конформации циклогексана возникают в результате частичного вращения вокруг σ-связей между атомами углерода. Из нескольких неплоских конформаций наиболее энергетически выгодна конформация кресла (рис. 7.7), так как в ней все валентные углы между связями С-С равны ~110?, а атомы водорода при соседних атомах углерода не заслоняют друг друга.

В неплоской молекуле можно только условно говорить о расположении атомов водорода «над и под плоскостью». Вместо этого используют другие термины: связи, направленные вдоль вертикальной оси симметрии цикла (на рис. 7.7, а показаны цветом), называют аксиаль- ными (а), а связи, ориентированные от цикла (как бы по экватору, по аналогии с земным шаром), называют экваториальными (е).

При наличии в кольце заместителя более выгодна конформация с экваториальным положением заместителя, как, например, конформация (I) метилциклогексана (рис. 7.8).

Причина меньшей устойчивости конформации (II) с аксиальным расположением метильной группы заключается в 1,3-диаксиальном отталкивании группы СН 3 и атомов Н в положениях 3 и 5. В таком

Рис. 7.7. Циклогексан в конформации кресла:

а - скелетная формула; б - шаростержневая модель

Рис. 7.8. Инверсия цикла молекулы метилциклогексана (показаны не все атомы водорода)

случае цикл подвергается так называемой инверсии, принимая более устойчивую конформацию. Особенно велико отталкивание в про- изводных циклогексана, имеющих положениях 1 и 3 объемные группы.

В природе встречается множество производных циклогексанового ряда, среди которых важную роль играют шестиатомные спирты - инозиты. В связи с наличием в их молекулах асимметрических центров инозиты существуют в виде нескольких стереоизомеров, из которых наиболее распространен миоинозит. Молекула миоинозита имеет стабильную конформацию кресла, в которой пять из шести групп ОН находятся в экваториальных положениях.

Основные этапы процедуры наименования абсолютной конфигурации рассмотрим на примере энантиомеров бромфторхлорметана (12) и (13).
Первым этапом является определение порядка старшинства заместителей при асимметрическом атоме.

Старшинство изотопов данного элемента возрастает с увеличением их массового числа.
В соответствии с этим, имеем следующий порядок старшинства заместителей в молекулах бромфторхлорметанов:

Br > CI> F> Н

Самый старший заместитель обозначим буквой а, следующий по старшинству - буквой b и т.д. (то есть, при переходе а b c d старшинство убывает):

Второй этап . Располагаем молекулу таким образом, чтобы самый младший заместитель был удален от наблюдателя (при этом он будет заслонен атомом углерода) и рассматриваем молекулу вдоль оси связи углерода с младшим заместителем:

Третий этап . Определяем, в каком направлении ПАДАЕТ старшинство заместителей, находящихся в нашем поле зрения. Если падение старшинства происходит по часовой стрелке, обозначаем буквой R (от латинского "rectus"правый). Если старшинство падает против часовой стрелки, то конфигурацию обозначаембуквой S(от латинского "sinister"-левый).

Существует также мнемоническое правило, в соответствии с которым падение старшинства заместителей в R-изомере происходит в том же направлении, в котором пишется верхняя часть буквы R, а в S-изомере - в том же направлении, в котором пишется верхняя часть буквы S:

Теперь мы можем написать полные названия энантиомеров, которые однозначно говорят об их абсолютной конфигурации:

Следует подчеркнуть, что обозначение конфигурации стерзоизомера как R или S зависит от порядка старшинства всех четырех заместителей при асимметрическом атоме. Так, в изображенных ниже молекулах пространственное расположение атомов F, CI и Вг относительно группы X одинаково:



Однако, обозначение абсолютной конфигурации этих молекул может оказаться одинаковым или разным. Это определяется природой конкретной группы X.

В ряде химических реакция пространственное расположение заместителей у асимметричеекого атома углерода может измениться, например:

В молекулах (16) и (17) пространственное расположение атомов Н, D (дейтерий) и F относительно заместителей X и Z зеркально противоположно:

Поэтому говорят, что в данной реакции произошло обращение конфигурации .

Обозначение абсолютной конфигурации, определенное по системе Кана-Ингольда-Прелога, при переходе от (16) к (17) может измениться или остаться прежним. Это зависит от конкретных групп X и Z, влияющих на порядок старшинства заместителей при асимметрическом атоме, например:

В приведенных примерах нельзя говорить об обращении абсолютной конфигурации , поскольку исходное соединение и продукт реакции не являются изомерами (см. выше, стр.20). В то же время, превращение одного энантиомера в другой - это обращение абсолютной конфигурации:

VI.Молекулы с двумя асимметрическими атомами.
Диастереомеры.

Если в молекуле есть несколько асимметрических атомов, появляются особенности в построении проекций Фишера, а также новый тип взаимоотношений между стереоизомерами, которого нет в случае молекул с одним
асимметрическим атомом.

Рассмотрим принцип построения проекций Фишера для одного из стереоизомеров 2-бром-З-хлорбутана.

Запись в скобках (2S,3S) означает, что атом углерода с номером 2 имеет S-конфигурацию. То же относится к атому углерода с номером 3. Нумерация атсмов в молекуле производится в соответствии с правилами ИЮПАК для наименования органических соединений.
Асимметрическими атомами в этой молекуле являются атомы углерода С(2) и С(3). Поскольку данная молекула может существовать в различных конформациях относительно центральной связи С-С, необходимо условиться, для какой конформации мы будем строить проекциюФишера. Следует запомнить, что проекция Фишера строится только для заслоненной конформации , причем такой, в которой атомы С, составляющие углеродную цепочку молекулы, располагаются в одной плоскости.
Переведем изображенную выше молекулу в заслоненную конформацию и развернем ее таким образом, чтобы углеродная цепочка была расположена вертикально. Полученная при этом клиновидная проекция соответствует такому расположению молекулы, при котором все связи С-С находятся в плоскости чертежа:

Повернем всю молекулу на 90°относительно центральной связи С-С, не изменяя ее конформацию так, чтобы CН 3 -группы ушли под плоскость чертежа. При этом атомы Br, CI и связанные с С(2) и С(3) атомы водорода окажутся над плоскостью чертежа. Спроектируем ориентированную таким образом молекулу на плоскость чертежа (атомы, находящиеся под плоскостью проектируем вверх; атомы, расположенные над плоскостью - вниз) аналогично тому, как мы делали это в случае молекулы с одним асимметрическим атомом:

В полученной таким образом проекции подразумевается, что лишь центральная связь С-С лежит в плоскости чертежа. Связи С(2)-CН 3 и C(3)-CН 3 направлены от нас. Связи атомов С(2) и С(3) с атомами Н, Вr и CI направлены к нам. Атомы С(2) и С(3) подразумеваются в точках пересечения вертикальной и горизонтальных линий. Естественно, что при пользовании полученной проекцией необходимо соблюдать изложенные выше правила (см.правила).
Для молекул о несколькими асимметрическими атомами число стереоизомеров равно в общэм случае 2 n , где n - число асимметрических атомов. Следовательно, для 2-бром-З-хлорбутана должны существовать 2 2 - 4 стереоизомера. Изобразим их с помощью проекций Фишера.

Эти стереоизомеры можно подразделить на две группы: А и Б. Изомеры А (I и П) связаны операцией отражения в зеркальной плоскости - это энантиомеры (антиподы). То же самое относится к изомерам группы Б: Ш и IV - также энантиомеры.

Если же мы сравним любой из стереоизомеров группы А с любым стереоизомером группы Б, то обнаружим, что они не являются зеркальными антиподами.

Таким образом, I и Ш - диастереомеры. Аналогично, диастереомерами являются по отношению друг к другу I и IV, II и III, II и IV.

Могут реализоваться случаи, когда число изомеров меньше предсказываемого формулой 2 n . Такие случаи встречаются, когда окружение центров хиральности создается одним и тем же набором атомов (или групп атомов), например, в молекулах 2,3-дибромбутанов:

(*Молекулы V и VI хиральны, поскольку в них отсутствуют элементы симметрии группы S n . Однако, и в V и в VI есть простая поворотная ось симметрии С 2 , проходящая через середину центральной связи С -С, перпендикулярная плоскости чертежа. На этом примере видно, что хиральные молекулы не обязательно асимметричны).

Нетрудно видеть, что проекции VII и VII " изображают одно и то же соединение: эти проекции полностью совмещаются друг с другом при повороте на 180° в плоскости чертежа. В молекуле VII легко обнаруживается плоскость симметрии, перпендикулярная центральной С-С-связи и проходящая через ее середину. В данном случае в молекуле есть асимметричекие атомы, но в целом молекула ахиральна. Соединения, состоящие из таких молекул, называются мезо-формами . Мезо-форма не способна вращать плоскость поляризации света, то есть она оптически неактивна.

Согласно определению, любой из энантиомеров (V) и (VI) и мезо-форма являются по отношению друг и другу диастереомерами.

Как известно, физические свойства энантиомеров идентичны (за исключением отношения к плоскополяризованному свету). Иначе обстоит делос диастереомерами, поскольку они не являются зеркальными антиподами. Их физические свойства отличаются так же, как свойства структурных изомеров. Ниже это показано на примере винных кислот.

VII Относительная конфигурация. Эритро-трео-обозначения .

В отличие от понятия "абсолютная конфигурация", термин "относительная конфигурация" используется, по крайней мере, в двух аспектах. Так, под относительной конфигурацией понимается структура соединения, определенная по отношению к некоторой "ключевой" модели путем химических переходов. Таким путем в свое время была определена конфигурация асимметрических атомов в молекулах углеводов по отношению к глицериновому альдегиду. При этом рассуждали примерно так: "Если (+)-глицериновый альдегид имеет изображенную ниже конфигурацию, то связанный с ним химическими превращениями углевод имеет такую-то конфигурацию асимметрических атомов".

Позже, когда был разработан рентгенографический метод определения абсолютной конфигурации, было показано, что в данном случае догадка о том, что (+)-глцериновый альдегид имеет изображенную конфигурацию, верна. Следовательно, верно и отнесение конфигураций асимметрических атомов в углеводах.

Термин "относительная конфигурация" имеет и другое значение. Его используют при сравнении диастереомеров по различиям во взаимном расположении выбранных групп внутри каждого диастереомера. Именно в этом плане об относительной конфигурации говорится в номенклатурных правилах ИЮПАК по химии. Рассмотрим два способа обозначения относительной конфигурации (взаимного расположения групп внутри молекулы) диастереомеров с асимметрическими атомами [существуют диастереомеры без асимметрических атомов, например, цис-и транс-алкены (см. ниже, стр. 52)] на примере стереоизомеров 2-бром-3-хлорбутана (1)-(1V).

В первом варианте используются конфигурационные дескрипторы эритро- и трео-. При этом сравнивают расположение одинаковых заместителей при двух асимметрических атомах в проекции Фишера. Стереоизомеры, в которых одинаковые заместители при асимметрических атомах углерода расположены по одну сторону от вертикальной линии, называют эритро-изомерами . Если такие группы находятся по разнне стороны от вертикальной линии, то говорят о трео-изомерах . В соединениях (I) -(IV) такими реперными -группами являются атомы водорода, и эти соединения получают следующие названия:

Отсюда видно, что обозначение относительной конфигурации у энантиомеров совпадает, а у диастереомеров - различается. Это важно, поскольку и в настоящее время установление абсолютной конфигурации энантиомеров - задача непростая. В то же время, различить диастереомеры достаточно легко, например, с помощью спектров ЯМР. При этом фраза "Из спектра следует, что в результате реакции получается эритро-2-бром-3-хлорбутан" означает, что речь идет об одном из энантиомеров: (I) или (II) [либо о рацемате, состояшем из (I)и (П)] (о каком именно - неизвестно), но не о соединениях (Ш) или (IV). Аналогично, фраза "Мы имеем дело с трео-2-бром-3-хлорбутаном" означает, что имеются в виду соединения (Ш) и (IV), но не (I) или (П).
Запомнить эти обозначения можно, например, так. В эритро-изомере одинаковые заместители "смотрят" в одну сторону, как и элементы буквы "а".
Приставки эритро- и трео- происходят от названий углеводов: треозы и эритрозы. В случае соединений с болтшим числом асимметрических атомов применяют другие стереохимические дескрипторы, такжне происходящие от названий углеводов (рибо-, ликсо-, глюко- и т.п.).

В другой варианте обозначения относительной конфигурации испольмуют символы R* и S* При этом асимметрический атом, имеющий наименьший номер (в соответствии с правилами номенклатуры ИЮПАК), независимо от его абсолютной конфигурации, получает дескриптор R*. В случае соединений (I) - (IV) - это атом углерода, связанный с бромом. Второму асимметрическому атому в данной молекуле также придается дескриптор R*, если обозначения абсолютной конфигурации обоих асимметрических атомов совпадают (оба R или оба S).Так следует поступить в случае молекул (Ш) и (IV). Если же абсолютная конфигурация асиммотрических атомов в молекуле имеет разное обозначение (молекулы I и II), то второй асимметрический атом получает дескриптор S*

Эта система обоэначения относительной конфигурации, по существу, эквивалентна в эритро-трео-системе обозначений: у энантиомеров обозначения совпадают, а у диастереомеров - различаются. Разумеется, если у асимметрических атомов нет одинаковых заместителей, то относительную конфигурацию можно обозначить только с помощью дескрипторов R* и S*

VIII Методы Разделения энантиомеров .

Природные вещества, молекулы которых хиральны, являются индивидуальнымиэнантиомерами. Если же хиральный центр возникает в процессе химическойреакции, проводимой в колбе или промышленном реакторе,получается рацемат, содержащий равные количества двух энантиомеров. При этом возникает проблема разделения энантиомеров с целью получения каждого из них в индивидуальном состоянии. Для этого используют специальные приемы, называемые методами расщепления рацематов .

Метод Пастера.

Л.Пастер в 1848 г. обнаружил, что из водных растворов натриево-аммониевой соли виноградной кислоты (рацемат (+)- и (-)-винных кислот) при определенных условиях выпадают кристаллы двух типов, отличающиеся друг от друга как предмет и его зеркальное отображение. Пастер разделил эти кристаллы с помощью микроскопа и пинцета и получил в чистом виде соли (+)-винной кислоты и (-)-винной кислоты. Такой метод расщепления рацематов, основанный на самопроизвольной кристаллизации энантиомеров в двух различных кристаллических модификациях, получил название "метод Пастера". Однако, этот метод удается применить далеко не всегда. В настоящее время известно около 300 пар энантиомеров, способных к такой "самопроизвольной кристаллизации" в виде кристаллов разной формы. Поэтому были разработаны другие методы, позволяющие разделять энантиомеры.

НОМЕНКЛАТУРА СТЕРЕОХИМИЧЕСКАЯ

(от лат. по-menclatura - перечень, список), предназначена для обозначения пространств. строения хим. соединений. Общий принцип Н. с. (правила , раздел Е) состоит в том, что пространств. строение соед. обозначают префиксами, добавляемыми к назв., не изменяя этих назв. и нумерации в них (хотя иногда стереохим. особенности могут определять выбор между возможными альтернативными способами нумерации и выбор главной цепи).

В основе большинства стереохим. обозначений лежит правило последовательности, к-рое однозначно устанавливает старшинство заместителей. Старшими считаются те из них, у к-рых с рассматриваемым хиральным (см. Хираль-ность )элементом (напр., асимметрич. атомом, двойной связью, циклом) непосредственно связан с большим атомным номером (см. табл.). Если эти атомы одинаковы по старшинству, то рассматривают "второй слой", в к-рый входят атомы, связанные с атомами "первого слоя", и т. д., до появления первого различия; номера атомов, связанных двойной связью, при определении старшинства удваивают. Наиб. общий подход к обозначению конфигурации энан-тиомеров - использование R,S -системы. Обозначение R(от лат. rectus-правый) получает тот из энантиомеров, в к-ром при рассмотрении модели со стороны, противоположной младшему заместителю, старшинство остальных заместителей падает по часовой стрелке. Падение старшинства против часовой стрелки соответствует S-обозначению (от лат. sinister-левый) (рис. 1).

Возрастание старшинства заместителей при хиральном центре:


Рис. 1. Схема для определения старшинства заместителей в органических соединениях.


Для углеводов, a-гидроксикислот, a-аминокислот широко используют также D,L-систему, основанную на сравнении конфигурации рассматриваемого асимметрич. центра с конфигурацией соответствующего энантиомера глицеринового альдегида. При рассмотрении проекционных Фишера фор мул расположение групп ОН или NH 2 слева обозначается символом L (от лат. laevus- левый), справа-символом D (от лат. dexter-правый):



Рис.2. Диэдральный угол.


Для обозначения конформаций молекулы указывают величину диэдрального (двугранного) угла j между двумя старшими заместителями при связи СЧС (рис. 2), к-рый отсчитывают по часовой стрелке и выражают в условных единицах (одна единица равна 60°), либо используют словесные обозначения расположения старших заместителей в ф-лах Ньюмена (рис. 3).



Рис. 3. Обозначения конформеров бутана (звездочкой отмечены рекомендуемые правилами ИЮПАК).

Лит.: Номенклатурные правила ИЮПАК по химии, т.3, полутом 2, М., 1983, с. 5-118; Ногради М., Стереохимия. Основные понятия и приложение, пер. с англ., М., 1984. В. М. Потапов, М. А. Федоровская.


Химическая энциклопедия. - М.: Советская энциклопедия . Под ред. И. Л. Кнунянца . 1988 .

Смотреть что такое "НОМЕНКЛАТУРА СТЕРЕОХИМИЧЕСКАЯ" в других словарях:

    Раздел стереохимии, изучающий конформации молекул, их взаимопревращения и зависимость физ. и хим. св в от конформац. характеристик. Конформации молекулы разл. пространств. формы молекулы, возникающие при изменении относит. ориентации отдельных ее … Химическая энциклопедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    Не следует путать с термином «Изомерия атомных ядер». Изомерия (от izos равный и meros доля, часть греч., ср. изо), существование соединений (главным образом органических), одинаковых по элементному составу и молекулярной массе, но различных по… … Википедия

    - (греч. anti приставка, означающая противоположность; греч. syn приставка, означающая совместность), приставки, обозначающие: 1) гео метрич. изомеры с двойной связью =NЧ и ЧN=NЧ. Напр., в изомерах бензальдоксима син указывает на сближенность… … Химическая энциклопедия

    - (от изо... и греч. meros доля, часть), существование соединений (гл. обр. органических), одинаковых по составу и мол. массе, но различных по физ. и хим. св вам. Такие соед. наз. изомерами. В итоге полемики Ю. Либиха и Ф. Вёлера было установлено… … Химическая энциклопедия

И В. Прелогом в 1966 году .

Правила Кана - Ингольда - Прелога отличаются от других химических номенклатур, поскольку ориентированы на решение специфической задачи - описание абсолютной конфигурации стереоизомеров.

Энциклопедичный YouTube

    1 / 3

    Номенклатура энантиомеров по системе Кана-Ингольда-Прелога

    Название по R/S-номенклатуре (системе Кана-Ингольда-Прелога), пример 2

    Конформации циклогексана

    Субтитры

    Теперь, опираясь на уже полученные знания, если мы хотим дать название этой молекуле, сначала нужно найти самую длинную углеродную цепь. У нас есть двухуглеродная цепь, и все связи одинарные, поэтому мы имеем дело с этаном. Давайте потом запишем всё вместе. С одним из углеродов у нас есть, (давайте обозначим его как 1-ый углерод, а это будет 2-ой углерод), у нас есть бром и фтор. Поэтому мы можем назвать его 1-бром, и мы пишем бром перед фтором потому что «б» идёт перед «ф» в алфавитном порядке. 1-бром-1-фтор, и теперь мы имеем дело с этаном. У нас есть двухуглеродная цепь с одинарными связями - фторэтан. Это название молекулы. Я просто хотел повторить материал предыдущих видео, в которых мы разбирали органическую номенклатуру. Теперь мы уже знаем, основываясь на нескольких предыдущих видео, что это также хиральный углерод, и если мы сделаем его зеркальное отражение, у нас получится энантиомер для этой молекулы, и они будут энантиомерами друг для друга. Итак, как выглядит зеркальное отражение для 1-бром-1-фторэтан? Вот здесь у нас будет углерод. Давайте будем рисовать теми же цветами. Наверху у нас по-прежнему будет бром. Метильная группа, которая прикрепляется к углероду, теперь будет с левой стороны, CH3. Фтор, как и прежде, будет позади углерода, а водород будет по-прежнему как бы торчать из рисунка, но теперь в правую сторону. Это водород. Как мы помним, мы назвали это 1-бром-1-фторэтан, и эту молекулу мы также назовём 1-бром 1-фторэтан, но это две в корне разные молекулы. Несмотря на то, что они состоят из одинаковых молекул; у них одинаковая молекулярная формула; одинаковое устройство, то есть этот углерод соединён с водородом, фтором и бромом; и этот углерод соединён с теми же элементами; этот углерод соединён с углеродом и тремя водородами; также как и этот; оба они стереоизомеры. Это стереоизомеры, и они являются зеркальным отражением друг друга, поэтому они ещё и энантиомеры. На самом деле они, во-первых, по-разному поляризуют свет, и у них совершенно разные химические свойства, как в химической, так и в биологической системе. Поэтому не очень хорошо, что мы даём одинаковые названия для них. в этом виде мы сосредоточимся на том как их различать. Итак, как мы обозначаем различия между ними? Система наименования, которую мы будем использовать здесь называется правилом Кана-Ингольда-Прелога, но это другой Кан, это не я. Он пишется как Кан, а не Хан. Правило Кана-Ингольда-Прелога это способ провести различие между этим энантиомером, который мы сейчас называем 1-бром-1-фторэтан, и вот этим энантиомером, 1-бром-1-фторэтан. Это довольно просто. Самая сложная часть - это представить вращение молекулы в нужную сторону и выяснить, является ли эта молекула левосторонней или правосторонней. Сейчас мы разберёмся в этом шаг за шагом. Первое, что мы делаем, согласно правилу Кана-Ингольда-Прелога, это выявляем хиральную молекулу. Здесь это довольно очевидно. Вот здесь у нас углерод. Фокусируемся на левой картинке, с которой мы начали. Он соединён с 3 разными группами. Теперь нам нужно распределить группы по атомному числу. Если мы посмотрим сюда, то из брома, водорода, фтора и углерода, который напрямую связан с этим углеродом, какое самое большое атомное число? Вот бром - давайте отметим более тёмным цветом. Число брома - 35, у фтора - 9, у углерода - 6, и, наконец, у водорода - 1. То есть среди них, самое больше число у брома. Присвоим ему № 1. После него идёт фтор. Это № 2. № 3 это углерод. И самое маленькое число у водорода, поэтому он будет под № 4. Теперь мы пронумеровали их, и следующий шаг- это расположить молекулу так, чтобы группа с наименьшим атомным числом оказалась за изображением. Расположить её позади молекулы. Сейчас самое наименьшее число у водорода. У брома наибольшее, у водорода наименьшее, поэтому нам нужно расположить его позади молекулы. На рисунке сейчас он расположен перед ней. А нам нужно расположить его позади молекулы, и это самая сложная часть - правильно представить это себе. Мы помним, что фтор находится сзади; это правая сторона изображения; эта часть выступает перед изображением. Нам нужно сделать вращение. Вы можете представить, что мы вращаем молекулу в этом направлении и… (давайте нарисуем заново). Здесь у нас будет углерод. И раз это направление вращения, мы повернули его примерно на 1/3 вокруг себя, Это около 120 градусов. Теперь водород находится на месте фтора. Вот здесь находится водород. Фтор теперь находится на месте этой метильной группы. Вот фтор. Пунктир показывает то, что сзади. А это- спереди. И метильная группа теперь вместо водорода. Она теперь выступает перед изображением. Она будет слева и снаружи. Вот метильная группа, выступающая перед изображением, снаружи и слева. Вот здесь будет наша метильная группа. Всё, что мы сделали - просто повернули изображение на 120 градусов. Мы заставили это уйти назад, а это первый шаг после того, как мы выявили хиральный углерод и распределили элементы по их атомному числу. Конечно же, бром будет по-прежнему наверху. Теперь, когда мы поместили молекулу с наименьшим атомным числом назад, давайте попробуем взглянуть на распределение остальных 3. У нас есть 4 молекулы. Мы смотрим на наибольшую, Это бром, № 1. № 2 - это фтор,№ 2, и затем № 3 - это метильная группа. У нас есть углерод, соединённый с этим углеродом, вот это у нас № 3. И согласно правилу Кана-Ингольда-Прелога, нам буквально нужно пройтись от № 1 до № 2 и № 3? В данном случае, пойдём в этом направлении. Переходя от № 1 к № 2 и № 3, мы следуем по часовой стрелке. Пока что оставим без внимания водород. Он просто остаётся сзади. Первым шагом было сориентировать его назад как самую маленькую молекулу. И у нас остаются 3 больших, и мы определили направление, в котором нужно двигаться от № 1 к 2 и № 3, не так ли? В данном случае это направление по часовой стрелке. Если мы будем двигаться по часовой стрелке, тогда наша молекула называется правосторонней, или мы можем использовать латинское слово «правый», которое звучит как rectus. Поэтому теперь мы можем назвать эту молекулу не просто 1-бром-1-фторэтан, но добавить R, R - от слова rectus. Можно думать, что это от английского right (правый),но мы увидим, что для левой стороны используется S, от слова sinister, поэтому буква R всё-таки из латыни. И это у нас (R)-1-бром-1-фторэтан Вот он. Можно догадаться, что вот этот должен быть наоборот, он должен вращаться против часовой стрелки. Давайте быстро это сделаем. Идея та же самая. Нам известен самый большой элемент. Это бром № 1. Он самый большой по атомному числу. Фтор это № 2. Углерод это № 3. Водород № 4. Что нам нужно сделать, так это поместить водород назад, поэтому нам придётся повернуть его назад, туда, где сейчас фтор. Если нам придётся перерисовать эту молекулу, то здесь у нас остаётся углерод. Наверху, по-прежнему, будет бром. Но мы собираемся переместить назад водород, поэтому водород теперь там, где был фтор. Вот наш водород. Метильная группа, углерод с 3 водородами, теперь переместится сюда, где раньше был водород. Теперь она будет выступать перед изображением, так как мы повернули её в этом направлении, и вот наша метильная группа здесь. А фтор теперь перемещается туда, где была метильная группа, и вот тут у нас фтор. Теперь, используя правило Кана-Ингольда-Прелога, мы определяем, что это № 1, Это № 2, только по атомному числу, это № 3. Мы идём от № 1 через № 2 к № 3. Вот в этом направлении. Против часовой стрелки. Иначе говоря, мы идём влево, или мы можем использовать латинское слово которое звучит как sinister. Латинское слово sinister в оригинале обозначает «лево». В современном английком слово "sinister" означает - "зловещий". Но ничего общего с латынью это не имеет. Мы будем использовать его просто, как обозначение левого. Итак, у нас левый вариант молекулы. Мы назовём этот вариант, Этот энантиомер 1-бром-1-фторэтан. Обозначим его S, S от слова sinister, то есть левый, или направленный против часовой стрелки: (S)-1-бром-1-фторэтан. Теперь мы можем различать эти названия. Мы знаем, что это две различные конфигурации. И вот что обозначают S и R, и если нам нужно из этого сделать это, то придётся буквально рассоединить и снова соединить разные группы. То есть придётся на самом деле разорвать связи. И на самом деле придётся поменять местами эти группы определённым образом, чтобы из этого энантиомера получить вот этот. Потому что у них различные конфигурации, и в основе своей они - разные молекулы, стереоизомеры,энантиомеры. Любое из этих названий им подходит… Subtitles by the Amara.org community

Определение старшинства

В современной стереохимической номенклатуре ИЮПАК конфигурации двойных связей, стереоцентров, а также других элементов хиральности присваивают, исходя из взаимного расположения заместителей (лигандов) при данных элементах. Правила Кана - Ингольда - Прелога устанавливают старшинство заместителей, согласно следующим взаимоподчинённым положениям .

  1. Атом с большим атомным номером старше атома с меньшим атомным номером . Сравнение заместителей проводят по атому, который непосредственно связан со стереоцентром или двойной связью. Чем выше атомный номер этого атома, тем заместитель старше. Если первый атом у заместителей одинаков, сравнение проводят по атомам, удалённым от стереоцентра (двойной связи) на расстояние двух связей (т. н. атомам второго слоя). Для этого эти атомы для каждого заместителя выписывают в виде списка в порядке уменьшения атомного номера и сравнивают эти списки построчно. Старшим считается тот заместитель, в пользу которого будет первое различие. Если старшинство заместителей не удаётся определить по атомам второго слоя, сравнение проводят по атомам третьего слоя и т. д. до первого различия.
  2. Атом с большей атомной массой старше атома с меньшей атомной массой . Данное правило обычно применяется к изотопам, так как их невозможно различить по атомному номеру.
  3. Секцис -заместители старше сектранс -заместителей . Данное правило применяется к заместителям, содержащим двойные связи либо плоские четырёхкоординированные фрагменты.
  4. Диастереомерные заместители с подобными (англ. like ) обозначениями старше диастереомерных заместителей с неподобными (англ. unlike ) обозначениями . К первым относятся заместители с обозначениями RR , SS , MM , PP , секциссекцис , сектранссектранс , Rсекцис , Sсектранс , Mсекцис и RM , SP . Ко вторым относятся заместители с обозначениями RS , MP , RP , SM , секциссектранс , Rсектранс , Sсекцис , Pсекцис и Mсектранс .
  5. Заместитель с обозначением R или М старше заместителя с обозначением S или P .

Правила применяются последовательно друг за другом, если при помощи предыдущего невозможно определить старшинство заместителей. Точные формулировки правил 4 и 5 в настоящее время обсуждаются .

Примеры использования

В R /S -номенклатуре

Присвоение стереоцентру конфигурации R или S проводится на основании взаимного расположения заместителей (лигандов) вокруг стереоцентра. При этом в начале определяют их старшинство по правилам Кана - Ингольда - Прелога, затем трёхмерное изображение молекулы располагают так, чтобы младший заместитель располагался за плоскостью изображения, после чего определяют направление уменьшения старшинства оставшихся заместителей. Если старшинство уменьшается по часовой стрелке, то конфигурацию стереоцентра обозначают R (лат. rectus - правый). В противоположном случае конфигурацию обозначают S (лат. sinister - левый)

В E /Z -номенклатуре

В номенклатуре топных сторон

Основная статья: Топность

Правила Кана - Ингольда - Прелога используются также для обозначения сторон плоских тригональных молекул, например, кетонов . Например, стороны ацетона идентичны, поскольку атака нуклеофила с обеих сторон плоской молекулы приводит к единственному продукту. Если нуклеофил атакует бутанон-2, то стороны бутанона-2 неидентичны (энантиотопны), поскольку при атаке на разные стороны образуются энантиомерные продукты. Если кетон является хиральным, то присоединение к противоположным сторонам приведёт к образованию диастереомерных продуктов, поэтому такие стороны называются диастереотопными.

Для обозначения топных сторон пользуются обозначениями re и si , которые соответственно отражают направление уменьшения старшинства заместителей при тригональном атоме углерода карбонильной группы . Например, на иллюстрации молекула ацетофенона видна с re -стороны.

Примечания

  1. . Проверено 5 февраля 2013. Архивировано 14 февраля 2013 года.
  2. Cahn R. S., Ingold C., Prelog V. Specification of Molecular Chirality (англ.) // Angew. Chem. Int. Ed. - 1966. - Vol. 5 , no. 4 . - P. 385–415 . - DOI :10.1002/anie.196603851 .
  3. Preferred IUPAC Names. Chapter 9 . Проверено 5 февраля 2013.
 
Статьи по теме:
Шашлык с дымком в духовке
Когда появляется желание полакомиться ароматным шашлыком, а за окном дождь или вообще зима, а очень хочется почувствовать запах лета и насладиться мясом с «дымком», тогда и вынимается из рукава вот этот рецепт. Домашний шашлык с запахом костра в «быстром»
Значение рыси в славянской культуре Работа с энергией тотема
...фигню всякую про вас думаю...:-)))Тотем Рысь... Будьте молчаливым.Станьте наблюдателем.Почитайте секрет мудрости,которую Вы храните! СЕКРЕТЫ Если Вы хотите узнать секрет, просите помощь у Рыси. К сожалению, трудно уговорить тихую Рысь, заговорить. Ры
Житийная литература «Сказание о Борисе и Глебе»
В XIX веке жанр жития переживал упадок. Казалось, что за двести лет на русской земле, прежде столь щедрой на подвижников, молчальников, святителей, юродивых, перевелись святые. За время существования Священного Синода, с 1721 по 1917 год, коронация в Росс
Что такое проектно-сметная документация
Капитальный ремонт объекта капитального строительства – одновременная разработка рабочего проекта и сметы, чертежи и расчеты производятся после утверждения проектного задания. состав:Раздел 5. "Сведения об инженерном оборудовании, о сетях инженерно – те