Вычисляем сумму углов и площадь параллелограмма: свойства и признаки. Параллелограмм и его свойства. Площадь параллелограмма. Биссектрисы углов параллелограмма

Видеокурс «Получи пятерку» включает все темы, необходимые для успешной сдачи ЕГЭ по математике на 60-65 баллов. Полностью все задачи 1-13 Профильного ЕГЭ по математике. Подходит также для сдачи Базового ЕГЭ по математике. Если вы хотите сдать ЕГЭ на 90-100 баллов, вам надо решать часть 1 за 30 минут и без ошибок!

Курс подготовки к ЕГЭ для 10-11 класса, а также для преподавателей. Все необходимое, чтобы решить часть 1 ЕГЭ по математике (первые 12 задач) и задачу 13 (тригонометрия). А это более 70 баллов на ЕГЭ, и без них не обойтись ни стобалльнику, ни гуманитарию.

Вся необходимая теория. Быстрые способы решения, ловушки и секреты ЕГЭ. Разобраны все актуальные задания части 1 из Банка заданий ФИПИ. Курс полностью соответствует требованиям ЕГЭ-2018.

Курс содержит 5 больших тем, по 2,5 часа каждая. Каждая тема дается с нуля, просто и понятно.

Сотни заданий ЕГЭ. Текстовые задачи и теория вероятностей. Простые и легко запоминаемые алгоритмы решения задач. Геометрия. Теория, справочный материал, разбор всех типов заданий ЕГЭ. Стереометрия. Хитрые приемы решения, полезные шпаргалки, развитие пространственного воображения. Тригонометрия с нуля - до задачи 13. Понимание вместо зубрежки. Наглядное объяснение сложных понятий. Алгебра. Корни, степени и логарифмы, функция и производная. База для решения сложных задач 2 части ЕГЭ.

Как в евклидовой геометрии точка и прямая - главные элементы теории плоскостей, так и параллелограмм является одной из ключевых фигур выпуклых четырехугольников. Из него, как нитки из клубка, втекают понятия «прямоугольника», «квадрата», «ромба» и других геометрических величин.

Вконтакте

Определение параллелограмма

Выпуклый четырехугольник, состоящий из отрезков, каждая пара из которых параллельна, известен в геометрии как параллелограмм.

Как выглядит классический параллелограмм изображает четырехугольник ABCD. Стороны называются основаниями (AB, BC, CD и AD), перпендикуляр, проведенный из любой вершины на противоположную этой вершине сторону, - высотой (BE и BF), линии AC и BD - диагоналями.

Внимание! Квадрат, ромб и прямоугольник - это частные случаи параллелограмма.

Стороны и углы: особенности соотношения

Ключевые свойства, по большому счету, предопределены самим обозначением , их доказывает теорема. Эти характеристики следующие:

  1. Стороны, которые являются противоположными, - попарно одинаковые.
  2. Углы, расположенные противоположно друг другу - попарно равны.

Доказательство: рассмотрим ∆ABC и ∆ADC, которые получаются вследствие разделения четырехугольника ABCD прямой AC. ∠BCA=∠CAD и ∠BAC=∠ACD, поскольку AC для них общая (вертикальные углы для BC||AD и AB||CD, соответственно). Из этого следует: ∆ABC = ∆ADC (второй признак равенства треугольников).

Отрезки AB и BC в ∆ABC попарно соответствуют линиям CD и AD в ∆ADC, что означает их тождество: AB = CD, BC = AD. Таким образом, ∠B соответствует ∠D и они равны. Так как ∠A=∠BAC+∠CAD, ∠C=∠BCA+∠ACD, которые так же попарно одинаковые, то ∠A = ∠C. Свойство доказано.

Характеристики диагоналей фигуры

Основной признак этих линий параллелограмма: точка пересечения разделяет их пополам.

Доказательство: пусть т. Е - это точка пересечения диагоналей AC и BD фигуры ABCD. Они образуют два соизмеримых треугольника - ∆ABE и ∆CDE.

AB=CD, так как они противоположные. Согласно прямых и секущей, ∠ABE = ∠CDE и ∠BAE = ∠DCE.

По второму признаку равенства ∆ABE = ∆CDE. Это означает, что элементы ∆ABE и ∆CDE: AE = CE, BE = DE и при этом они соразмерные части AC и BD. Свойство доказано.

Особенности смежных углов

У смежных сторон сумма углов равна 180° , поскольку они лежат по одну сторону параллельных линий и секущей. Для четырехугольника ABCD:

∠A+∠B=∠C+∠D=∠A+∠D=∠B+∠C=180º

Свойства биссектрисы:

  1. , опущенные на одну сторону, являются перпендикулярными;
  2. противолежащие вершины имеют параллельные биссектрисы;
  3. треугольник, полученный проведением биссектрисы, будет равнобедренным.

Определение характерных черт параллелограмма по теореме

Признаки этой фигуры вытекают из ее основной теоремы, которая гласит следующее: четырехугольник считается параллелограммом в том случае, если его диагонали пересекаются, а эта точка разделяет их на равные отрезки.

Доказательство: пусть в т. Е прямые AC и BD четырехугольника ABCD пересекаются. Так как ∠AED = ∠BEC, а AE+CE=AC BE+DE=BD, то ∆AED = ∆BEC (по первому признаку равенства треугольников). То есть ∠EAD = ∠ECB. Они также являются внутренними перекрестными углами секущей AC для прямых AD и BC. Таким образом, по определению параллельности - AD || BC. Аналогичное свойство линий BC и CD выводится также. Теорема доказана.

Вычисление площади фигуры

Площадь этой фигуры находится несколькими методами, одним из самых простых: умножения высоты и основания, к которому она проведена.

Доказательство: проведем перпендикуляры BE и CF из вершин B и C. ∆ABE и ∆DCF - равные, поскольку AB = CD и BE = CF. ABCD - равновеликий с прямоугольником EBCF, так как они состоят и соразмерных фигур: S ABE и S EBCD , а также S DCF и S EBCD . Из этого следует, что площадь этой геометрической фигуры находится так же как и прямоугольника:

S ABCD = S EBCF = BE×BC=BE×AD.

Для определения общей формулы площади параллелограмма обозначим высоту как hb , а сторону - b . Соответственно:

Другие способы нахождения площади

Вычисления площади через стороны параллелограмма и угол , который они образуют, - второй известный метод.

,

Sпр-ма - площадь;

a и b - его стороны

α - угол между отрезками a и b.

Этот способ практически основывается на первом, но в случае, если неизвестна. всегда отрезает прямоугольный треугольник, параметры которого находятся тригонометрическими тождествами, то есть . Преобразуя соотношение, получаем . В уравнении первого способа заменяем высоту этим произведением и получаем доказательство справедливости этой формулы.

Через диагонали параллелограмма и угол, который они создают при пересечении, также можно найти площадь.

Доказательство: AC и BD пересекаясь, образуют четыре треугольника: ABE, BEC, CDE и AED. Их сумма равна площади этого четырехугольника.

Площадь каждого из этих ∆ можно найти за выражением , где a=BE, b=AE, ∠γ =∠AEB. Поскольку , то в расчетах используется единое значение синуса. То есть . Поскольку AE+CE=AC= d 1 и BE+DE=BD= d 2 , формула площади сводится до:

.

Применение в векторной алгебре

Особенности составляющих частей этого четырехугольника нашли применение в векторной алгебре, а именно: сложении двух векторов. Правило параллелограмма утверждает, что если заданные векторы и не коллинеарны, то их сумма будет равна диагонали этой фигуры, основания которой соответствуют этим векторам.

Доказательство: из произвольно выбранного начала - т. о. - строим векторы и . Далее строим параллелограмм ОАСВ, где отрезки OA и OB - стороны. Таким образом, ОС лежит на векторе или сумме .

Формулы для вычисления параметров параллелограмма

Тождества приведены при следующих условиях:

  1. a и b, α - стороны и угол между ними;
  2. d 1 и d 2 , γ - диагонали и в точке их пересечения;
  3. h a и h b - высоты, опущенные на стороны a и b;
Параметр Формула
Нахождение сторон
по диагоналям и косинусу угла между ними

по диагоналям и стороне

через высоту и противоположную вершину
Нахождение длины диагоналей
по сторонам и величине вершины между ними

Доказательство

Первым делом проведем диагональ AC . Получаются два треугольника: ABC и ADC .

Так как ABCD — параллелограмм, то справедливо следующее:

AD || BC \Rightarrow \angle 1 = \angle 2 как лежащие накрест.

AB || CD \Rightarrow \angle3 = \angle 4 как лежащие накрест.

Следовательно, \triangle ABC = \triangle ADC (по второму признаку: и AC — общая).

И, значит, \triangle ABC = \triangle ADC , то AB = CD и AD = BC .

Доказано!

2. Противоположные углы тождественны.

Доказательство

Согласно доказательству свойства 1 мы знаем, что \angle 1 = \angle 2, \angle 3 = \angle 4 . Таким образом сумма противоположных углов равна: \angle 1 + \angle 3 = \angle 2 + \angle 4 . Учитывая, что \triangle ABC = \triangle ADC получаем \angle A = \angle C , \angle B = \angle D .

Доказано!

3. Диагонали разделены пополам точкой пересечения.

Доказательство

Проведем еще одну диагональ.

По свойству 1 мы знаем, что противоположные стороны тождественны: AB = CD . Еще раз отметим накрест лежащие равные углы.

Таким образом видно, что \triangle AOB = \triangle COD по второму признаку равенства треугольников (два угла и сторона между ними). То есть, BO = OD (напротив углов \angle 2 и \angle 1 ) и AO = OC (напротив углов \angle 3 и \angle 4 соответственно).

Доказано!

Признаки параллелограмма

Если лишь один признак в вашей задаче присутствует, то фигура является параллелограммом и можно использовать, все свойства данной фигуры.

Для лучшего запоминания, заметим, что признак параллелограмма будет отвечать на следующий вопрос — «как узнать?» . То есть, как узнать, что заданная фигура это параллелограмм.

1. Параллелограммом является такой четырехугольник, у которого две стороны равны и параллельны.

AB = CD ; AB || CD \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим подробнее. Почему AD || BC ?

\triangle ABC = \triangle ADC по свойству 1 : AB = CD , AC — общая и \angle 1 = \angle 2 как накрест лежащие при параллельных AB и CD и секущей AC .

Но если \triangle ABC = \triangle ADC , то \angle 3 = \angle 4 (лежат напротив AB и CD соответственно). И следовательно AD || BC (\angle 3 и \angle 4 - накрест лежащие тоже равны).

Первый признак верен.

2. Параллелограммом является такой четырехугольник, у которого противоположные стороны равны.

AB = CD , AD = BC \Rightarrow ABCD — параллелограмм.

Доказательство

Рассмотрим данный признак. Еще раз проведем диагональ AC .

По свойству 1 \triangle ABC = \triangle ACD .

Из этого следует, что: \angle 1 = \angle 2 \Rightarrow AD || BC и \angle 3 = \angle 4 \Rightarrow AB || CD , то есть ABCD — параллелограмм.

Второй признак верен.

3. Параллелограммом является такой четырехугольник, у которого противоположные углы равны.

\angle A = \angle C , \angle B = \angle D \Rightarrow ABCD — параллелограмм.

Доказательство

2 \alpha + 2 \beta = 360^{\circ} (поскольку ABCD — четырехугольник, а \angle A = \angle C , \angle B = \angle D по условию).

Получается, \alpha + \beta = 180^{\circ} . Но \alpha и \beta являются внутренними односторонними при секущей AB .

И то, что \alpha + \beta = 180^{\circ} говорит и о том, что AD || BC .

При этом \alpha и \beta — внутренние односторонние при секущей AD . И это значит AB || CD .

Третий признак верен.

4. Параллелограммом является такой четырехугольник, у которого диагонали разделены точкой пересечения пополам.

AO = OC ; BO = OD \Rightarrow параллелограмм.

Доказательство

BO = OD ; AO = OC , \angle 1 = \angle 2 как вертикальные \Rightarrow \triangle AOB = \triangle COD , \Rightarrow \angle 3 = \angle 4 , и \Rightarrow AB || CD .

Аналогично BO = OD ; AO = OC , \angle 5 = \angle 6 \Rightarrow \triangle AOD = \triangle BOC \Rightarrow \angle 7 = \angle 8 , и \Rightarrow AD || BC .

Четвертый признак верен.

Это четырёхугольник, противоположные стороны которого попарно параллельны.

Свойство 1 . Любая диагональ параллелограмма делит его на два равных треугольника.

Доказательство . По II признаку (накрест лежащие углы и общая сторона).

Теорема доказана .

Свойство 2 . В параллелограмме противолежащие стороны равны, противолежащие углы равны.

Доказательство .
Аналогично,

Теорема доказана .

Свойство 3. В параллелограмме диагонали точкой пересечения делятся пополам.

Доказательство .

Теорема доказана .

Свойство 4 . Биссектриса угла параллелограмма, пересекая противоположную сторону, делит его на равнобедренный треугольник и трапецию. (Ч. сл. - вершину - два равнобедренных?-ка).

Доказательство .

Теорема доказана .

Свойство 5 . В параллелограмме отрезок с концами на противоположных сторонах, проходящий через точку пересечения диагоналей, делится этой точкой пополам.

Доказательство .

Теорема доказана .

Свойство 6 . Угол между высотами, опущенными из вершины тупого угла параллелограмма, равен острому углу параллелограмма.

Доказательство .

Теорема доказана .

Свойство 7 . Сумма углов параллелограмма, прилежащих к одной стороне, равна 180°.

Доказательство .

Теорема доказана .

Построение биссектрисы угла. Свойства биссектрисы угла треугольника.

1) Построить произвольный луч DE.

2) На данном луче построить произвольную окружность с центром в вершине и такую же
с центром в начале построенного луча.

3) F и G - точки пересечения окружности со сторонами данного угла, H - точка пересечения окружности с построенным лучом

Построить окружность с центром в точке H и радиусом, равным FG.

5) I - точка пересечения окружностей построенного луча.

6) Провести прямую через вершину и I.

IDH - требуемый угол.
)

Свойство 1 . Биссектриса угла треугольника разбивает противоположную сторону пропорционально прилежащим сторонам.

Доказательство . Пусть x, y-отрезки стороны c. Продолжим луч BC. На луче BC отложим от C отрезок CK, равный AC.

Параллелограмм - это четырехугольник, у которого противоположные стороны попарно параллельны. На следующем рисунке представлен параллелограмм ABCD. У него сторона AB параллельна стороне CD, а сторона BC параллельна стороне AD.

Как вы уже успели догадаться, параллелограмм является выпуклым четырехугольником. Рассмотрим основные свойства параллелограмма.

Свойства параллелограмма

1. В параллелограмме противоположные углы и противоположные стороны равны. Докажем это свойство - рассмотрим параллелограмм, представленный на следующем рисунке.

Диагональ BD разделяет его на два равных треугольника: ABD и CBD. Они равны по стороне BD и двум прилежащим к ней углам, так как углы накрест лежащие при секущей BD параллельных прямых BC и AD и AB и CD соответственно. Следовательно, AB = CD и
BC = AD. А из равенства углов 1, 2 ,3 и 4 следует, что угол A = угол1 +угол3 = угол2 + угол4 = угол С.

2. Диагонали параллелограмма точкой пересечения делятся пополам. Пусть точка О есть точка пересечения диагоналей AC и BD параллелограмма ABCD.

Тогда треугольник AOB и треугольник COD равны между собой, по стороне и двум прилежащим к ней углам. (AB=CD так как это противоположные стороны параллелограмма. А угол1 = угол2 и угол3 = угол4 как накрест лежащие углы при пересечении прямых AB и CD секущими AC и BD соответственно.) Из этого следует, что AO = OC и OB = OD, что и требовалось доказать.

Все основные свойства проиллюстрированы на следующих трех рисунках.

 
Статьи по теме:
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение
Кислотно-основной гомеостаз
1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов. 2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода. 4. Индикан мочи,значение исследов
Святой апостол андрей первозванный (†ок
Святой апостол Андрей Первозванный был родом из города Вифсаида, который располагался на берегу Галилейского моря. Его отца звали Иона, и он занимался рыбной ловлей. Этим он кормил семью. Повзрослевшие сыновья Симон и Андрей присоединились к отцу и тоже с