Разграничаване на изразите. Производна на сложна функция

Комплексни производни. Логаритмична производна.
Производна на мощност експоненциална функция

Продължаваме да подобряваме нашата техника за диференциране. В този урок ще консолидираме материала, който сме покрили, ще разгледаме по-сложни производни, а също така ще се запознаем с нови техники и трикове за намиране на производна, по-специално с логаритмичната производна.

Тези читатели, които имат ниско ниво на подготовка, трябва да се обърнат към статията Как да намерим производната? Примери за решения, което ще ви позволи да повишите уменията си почти от нулата. След това трябва внимателно да проучите страницата Производна на сложна функция, разберете и решете всичкопримерите, които дадох. Този урок логично е третият и след като го усвоите, вие уверено ще различавате доста сложни функции. Не е желателно да заемате позицията „Къде другаде? Стига!”, тъй като всички примери и решения са взети от реални тестове и често се срещат в практиката.

Да започнем с повторение. На урока Производна на сложна функцияРазгледахме няколко примера с подробни коментари. В хода на изучаване на диференциално смятане и други клонове на математическия анализ ще трябва да диференцирате много често и не винаги е удобно (и не винаги е необходимо) да описвате примери в големи подробности. Затова ще се упражняваме да намираме производни устно. Най-подходящите „кандидати“ за това са производни на най-простите от сложните функции, например:

Според правилото за диференциация сложна функция :

При изучаване на други matan теми в бъдеще най-често не се изисква такъв подробен запис; предполага се, че ученикът знае как да намира такива производни на автопилот. Нека си представим, че в 3 часа през нощта телефонът звънна и приятен гласпопита: „Каква е производната на тангенса на две X?“ Това трябва да бъде последвано от почти мигновен и учтив отговор: .

Първият пример ще бъде незабавно предназначен за независимо решение.

Пример 1

Намерете устно следните производни, в едно действие, например: . За да изпълните задачата, трябва само да използвате таблица с производни на елементарни функции(ако още не сте го запомнили). Ако имате затруднения, препоръчвам ви да прочетете отново урока Производна на сложна функция.

, , ,
, , ,
, , ,

, , ,

, , ,

, , ,

, ,

Отговори в края на урока

Комплексни производни

След предварителна артилерийска подготовка, примерите с 3-4-5 влагане на функции ще бъдат по-малко страшни. Може би следващите два примера ще изглеждат сложни за някои, но ако ги разберете (някой ще пострада), тогава почти всичко останало в диференциално смятанеЩе изглежда като детска шега.

Пример 2

Намерете производната на функция

Както вече беше отбелязано, при намиране на производната на сложна функция, на първо място, е необходимо вярноРАЗБЕРЕТЕ вашите инвестиции. В случаите, когато има съмнения, напомням полезен трик: вземаме експерименталната стойност на „x“ например и се опитваме (мислено или в чернова) да заменим дадена стойноств "ужасно изражение".

1) Първо трябва да изчислим израза, което означава, че сумата е най-дълбокото вграждане.

2) След това трябва да изчислите логаритъма:

4) След това кубирайте косинуса:

5) На петата стъпка разликата:

6) И накрая, най-много външна функцияе корен квадратен:

Формула за диференциране на сложна функция се прилагат в обратен ред, от най-външната функция към най-вътрешната. Ние решаваме:

Изглежда, че няма грешки...

(1) Вземете производната на корен квадратен.

(2) Вземаме производната на разликата, използвайки правилото

(3) Производната на тройка е нула. Във втория член вземаме производната на степента (куб).

(4) Вземете производната на косинуса.

(5) Вземете производната на логаритъма.

(6) И накрая, вземаме производната на най-дълбокото вграждане.

Може да изглежда твърде трудно, но това не е най-жестокият пример. Вземете например колекцията на Кузнецов и ще оцените цялата красота и простота на анализираната производна. Забелязах, че обичат да дават подобно нещо на изпит, за да проверят дали студентът разбира как се намира производната на сложна функция или не разбира.

Следващият пример трябва да решите сами.

Пример 3

Намерете производната на функция

Съвет: Първо прилагаме правилата за линейност и правилото за диференциране на продукта

Пълно решение и отговор в края на урока.

Време е да преминем към нещо по-малко и по-хубаво.
Не е необичайно примерът да показва произведението не на две, а три функции. Как да намерим производната на продукти от тримножители?

Пример 4

Намерете производната на функция

Първо разглеждаме, възможно ли е да превърнем произведението на три функции в произведение на две функции? Например, ако имаме два полинома в произведението, тогава можем да отворим скобите. Но в разглеждания пример всички функции са различни: степен, степен и логаритъм.

В такива случаи е необходимо последователноприложете правилото за продуктова диференциация два пъти

Номерът е, че с “y” означаваме произведението на две функции: , а с “ve” означаваме логаритъма: . Защо може да се направи това? възможно ли е – това не е произведение на два фактора и правилото не работи?! Няма нищо сложно:

Сега остава правилото да се приложи втори път в скоби:

Все още може да бъдете перверзни и да извадите нещо извън скоби, но навътре в такъв случайПо-добре е да оставите отговора в тази форма - ще бъде по-лесно да се провери.

Разглежданият пример може да бъде решен по втория начин:

И двете решения са абсолютно равностойни.

Пример 5

Намерете производната на функция

Това е пример за независимо решение; в примера се решава по първия метод.

Нека да разгледаме подобни примери с дроби.

Пример 6

Намерете производната на функция

Има няколко начина, по които можете да отидете тук:

Или така:

Но решението ще бъде написано по-компактно, ако първо използваме правилото за диференциране на частното , като се вземе за целия числител:

По принцип примерът е решен и ако се остави така, няма да е грешка. Но ако имате време, винаги е препоръчително да проверите черновата, за да видите дали отговорът може да бъде опростен? Нека намалим израза на числителя до общ знаменателИ да се отървем от триетажната част:

Недостатъкът на допълнителните опростявания е, че съществува риск от грешка не при намиране на производната, а при банални училищни трансформации. От друга страна, учителите често отхвърлят задачата и искат да „напомнят“ производната.

По-прост пример за самостоятелно решаване:

Пример 7

Намерете производната на функция

Продължаваме да овладяваме методите за намиране на производната и сега ще разгледаме типичен случай, когато "ужасният" логаритъм е предложен за диференциране

Пример 8

Намерете производната на функция

Тук можете да отидете по дългия път, като използвате правилото за разграничаване на сложна функция:

Но още първата стъпка веднага те потапя в униние - трябва да приемеш неприятната производна на дробна мощност, а след това и от фракцията.

Ето защо предикак да вземем производната на „сложен“ логаритъм, първо се опростява с помощта на добре познати училищни свойства:



! Ако имате учебна тетрадка под ръка, копирайте тези формули директно там. Ако нямате тетрадка, препишете ги на лист хартия, тъй като останалите примери от урока ще се въртят около тези формули.

Самото решение може да бъде написано по следния начин:

Нека трансформираме функцията:

Намиране на производната:

Предварителното преобразуване на самата функция значително опрости решението. По този начин, когато подобен логаритъм е предложен за диференциране, винаги е препоръчително да го „разбиете“.

А сега няколко прости примера, които можете да решите сами:

Пример 9

Намерете производната на функция

Пример 10

Намерете производната на функция

Всички трансформации и отговори са в края на урока.

Логаритмична производна

Ако производното на логаритмите е толкова сладка музика, тогава възниква въпросът: възможно ли е в някои случаи логаритъмът да се организира изкуствено? Мога! И дори необходимо.

Пример 11

Намерете производната на функция

Наскоро разгледахме подобни примери. Какво да правя? Можете последователно да приложите правилото за диференциране на частното и след това правилото за диференциране на продукта. Недостатъкът на този метод е, че в крайна сметка получавате огромна триетажна фракция, с която изобщо не искате да се занимавате.

Но на теория и практика има такова прекрасно нещо като логаритмичната производна. Логаритмите могат да бъдат организирани изкуствено, като ги "окачите" от двете страни:

Сега трябва да „разбиете“ логаритъма на дясната страна колкото е възможно повече (формули пред очите ви?). Ще опиша този процес много подробно:

Да започнем с диференциацията.
Заключваме и двете части под прайм:

Производната на дясната страна е доста проста, няма да я коментирам, защото ако четете този текст, би трябвало да можете да се справите с нея уверено.

Ами лявата страна?

От лявата страна имаме сложна функция. Предвиждам въпроса: „Защо, има ли една буква „Y“ под логаритъма?“

Факт е, че тази „игра с една буква“ - САМОТО Е ФУНКЦИЯ(ако не е много ясно, вижте статията Производна на функция, указана имплицитно). Следователно логаритъмът е външна функция, а "y" е вътрешна функция. И използваме правилото за диференциране на сложна функция :

От лявата страна, сякаш с магия магическа пръчкаимаме производна. След това, според правилото за пропорцията, прехвърляме "y" от знаменателя на лявата страна към горната част на дясната страна:

А сега нека си спомним за какъв вид функция „играч“ говорихме по време на диференциацията? Нека да разгледаме състоянието:

Окончателен отговор:

Пример 12

Намерете производната на функция

Това е пример, който можете да решите сами. Примерен пример за дизайн от този типв края на урока.

С помощта на логаритмичната производна беше възможно да се реши всеки от примерите № 4-7, друго нещо е, че функциите там са по-прости и може би използването на логаритмичната производна не е много оправдано.

Производна на степенно-експоненциална функция

Все още не сме обмисляли тази функция. Степенно-експоненциална функция е функция, за която както степента, така и основата зависят от "x". Класически пример, които ще ви бъдат дадени във всеки учебник или на всяка лекция:

Как да намерим производната на степенно-експоненциална функция?

Необходимо е да се използва току-що обсъдената техника - логаритмичната производна. Закачаме логаритми от двете страни:

Като правило от дясната страна степента се изважда от под логаритъма:

В резултат от дясната страна имаме произведението на две функции, които ще бъдат диференцирани по стандартната формула .

Намираме производната, заграждаме двете части под черти:

Допълнителните действия са прости:

Накрая:

Ако някое преобразуване не е напълно ясно, моля, прочетете внимателно отново обясненията на Пример #11.

В практическите задачи степенно-експоненциалната функция винаги ще бъде по-сложна от дискутирания пример от лекцията.

Пример 13

Намерете производната на функция

Използваме логаритмичната производна.

От дясната страна имаме константа и произведението на два фактора - “x” и “логаритъм от логаритъм x” (друг логаритъм е вложен под логаритъма). При диференциране, както си спомняме, е по-добре незабавно да преместите константата от производния знак, така че да не ви пречи; и, разбира се, прилагаме познатото правило :


Както можете да видите, алгоритъмът за използване на логаритмичната производна не съдържа никакви специални трикове или трикове и намирането на производната на степенна експоненциална функция обикновено не е свързано с „мъчение“.

Функции сложен типне винаги отговарят на дефиницията на сложна функция. Ако има функция от вида y = sin x - (2 - 3) · a r c t g x x 5 7 x 10 - 17 x 3 + x - 11, тогава тя не може да се счита за сложна, за разлика от y = sin 2 x.

Тази статия ще покаже концепцията за сложна функция и нейната идентификация. Нека работим с формули за намиране на производната с примери за решения в заключението. Използването на таблицата за производни и правилата за диференциране значително намалява времето за намиране на производната.

Yandex.RTB R-A-339285-1

Основни определения

Определение 1

Сложна функция е тази, чийто аргумент също е функция.

Означава се така: f (g (x)). Имаме, че функцията g (x) се счита за аргумент f (g (x)).

Определение 2

Ако има функция f и е котангенсна функция, тогава g(x) = ln x е функцията натурален логаритъм. Откриваме, че комплексната функция f (g (x)) ще бъде записана като arctg(lnx). Или функция f, която е функция, повдигната на 4-та степен, където g (x) = x 2 + 2 x - 3 се счита за цяла рационална функция, получаваме, че f (g (x)) = (x 2 + 2 x - 3) 4 .

Очевидно g(x) може да бъде комплексно. От примера y = sin 2 x + 1 x 3 - 5 става ясно, че стойността на g е кубичен коренс дроб. Този израз може да се означи като y = f (f 1 (f 2 (x))). Откъдето имаме, че f е синусова функция и f 1 е функция, разположена под корен квадратен, f 2 (x) = 2 x + 1 x 3 - 5 - дробна рационална функция.

Определение 3

Степента на гнездене се определя от всеки естествено числои се записва като y = f (f 1 (f 2 (f 3 (... (f n (x)))))) .

Определение 4

Концепцията за композиция на функции се отнася до броя на вложените функции според условията на проблема. За да решите, използвайте формулата за намиране на производната на сложна функция от формата

(f (g (x))) " = f " (g (x)) g " (x)

Примери

Пример 1

Намерете производната на сложна функция от вида y = (2 x + 1) 2.

Решение

Условието показва, че f е функция за повдигане на квадрат и g(x) = 2 x + 1 се счита за линейна функция.

Нека приложим формулата за производна за сложна функция и напишем:

f " (g (x)) = ((g (x)) 2) " = 2 (g (x)) 2 - 1 = 2 g (x) = 2 (2 x + 1) ; g " (x) = (2 x + 1) " = (2 x) " + 1 " = 2 x " + 0 = 2 1 x 1 - 1 = 2 ⇒ (f (g (x))) " = f " (g (x)) g " (x) = 2 (2 x + 1) 2 = 8 x + 4

Необходимо е да се намери производната с опростена оригинална форма на функцията. Получаваме:

y = (2 x + 1) 2 = 4 x 2 + 4 x + 1

Оттук нататък имаме това

y " = (4 x 2 + 4 x + 1) " = (4 x 2) " + (4 x) " + 1 " = 4 (x 2) " + 4 (x) " + 0 = = 4 · 2 · x 2 - 1 + 4 · 1 · x 1 - 1 = 8 x + 4

Резултатите бяха същите.

При решаването на задачи от този тип е важно да се разбере къде ще се намира функцията на формата f и g (x).

Пример 2

Трябва да намерите производните на сложни функции във формата y = sin 2 x и y = sin x 2.

Решение

Първата нотация на функцията казва, че f е функцията за повдигане на квадрат, а g(x) е функцията синус. Тогава разбираме това

y " = (sin 2 x) " = 2 sin 2 - 1 x (sin x) " = 2 sin x cos x

Вторият запис показва, че f е синусова функция, а g(x) = x 2 означава степенна функция. От това следва, че записваме произведението на сложна функция като

y " = (sin x 2) " = cos (x 2) (x 2) " = cos (x 2) 2 x 2 - 1 = 2 x cos (x 2)

Формулата за производната y = f (f 1 (f 2 (f 3 (. . . (f n (x))))) ще бъде записана като y " = f " (f 1 (f 2 (f 3 (. . ))) )) · . . . fn "(x)

Пример 3

Намерете производната на функцията y = sin (ln 3 a r c t g (2 x)).

Решение

Този пример показва трудността при писане и определяне на местоположението на функциите. Тогава y = f (f 1 (f 2 (f 3 (f 4 (x))))) означава, където f , f 1 , f 2 , f 3 , f 4 (x) е синусовата функция, функцията за повишаване до 3 степен, функция с логаритъм и основа e, арктангенс и линейна функция.

От формулата за дефиниране на сложна функция имаме това

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x)

Получаваме това, което трябва да намерим

  1. f " (f 1 (f 2 (f 3 (f 4 (x))))) като производна на синуса според таблицата с производни, след това f " (f 1 (f 2 (f 3 (f 4 ( x)))) ) = cos (ln 3 a r c t g (2 x)) .
  2. f 1 " (f 2 (f 3 (f 4 (x)))) като производна на степенна функция, тогава f 1 " (f 2 (f 3 (f 4 (x)))) = 3 ln 3 - 1 a r c t g (2 x) = 3 ln 2 a r c t g (2 x) .
  3. f 2 " (f 3 (f 4 (x))) като логаритмична производна, тогава f 2 " (f 3 (f 4 (x))) = 1 a r c t g (2 x) .
  4. f 3 " (f 4 (x)) като производна на арктангенса, тогава f 3 " (f 4 (x)) = 1 1 + (2 x) 2 = 1 1 + 4 x 2.
  5. Когато намирате производната f 4 (x) = 2 x, премахнете 2 от знака на производната, като използвате формулата за производна на степенна функция с показател, равен на 1, след което f 4 " (x) = (2 x) " = 2 x " = 2 · 1 · x 1 - 1 = 2 .

Комбинираме междинните резултати и получаваме това

y " = f " (f 1 (f 2 (f 3 (f 4 (x)))) f 1 " (f 2 (f 3 (f 4 (x)))) f 2 " (f 3 (f 4) (x)) f 3 " (f 4 (x)) f 4 " (x) = = cos (ln 3 a r c t g (2 x)) 3 ln 2 a r c t g (2 x) 1 a r c t g (2 x) 1 1 + 4 x 2 2 = = 6 cos (ln 3 a r c t g (2 x)) ln 2 a r c t g (2 x) a r c t g (2 x) (1 + 4 x 2)

Анализът на такива функции напомня на кукли за гнездене. Правилата за диференциране не винаги могат да се прилагат изрично с помощта на производна таблица. Често трябва да използвате формула за намиране на производни на сложни функции.

Има някои разлики между сложния външен вид и сложните функции. С ясна способност да разграничите това, намирането на производни ще бъде особено лесно.

Пример 4

Необходимо е да се обмисли даването на такъв пример. Ако има функция от формата y = t g 2 x + 3 t g x + 1, тогава тя може да се разглежда като сложна функция от формата g (x) = t g x, f (g) = g 2 + 3 g + 1 . Очевидно е необходимо да се използва формулата за сложна производна:

f " (g (x)) = (g 2 (x) + 3 g (x) + 1) " = (g 2 (x)) " + (3 g (x)) " + 1 " = = 2 · g 2 - 1 (x) + 3 g " (x) + 0 = 2 g (x) + 3 1 g 1 - 1 (x) = = 2 g (x) + 3 = 2 t g x + 3 ; g " (x) = (t g x) " = 1 cos 2 x ⇒ y " = (f (g (x))) " = f " (g (x)) g " (x) = (2 t g x + 3 ) · 1 cos 2 x = 2 t g x + 3 cos 2 x

Функция под формата y = t g x 2 + 3 t g x + 1 не се счита за сложна, тъй като има сумата от t g x 2, 3 t g x и 1. Обаче t g x 2 се счита за сложна функция, тогава получаваме степенна функция от вида g (x) = x 2 и f, която е допирателна функция. За да направите това, диференцирайте по количество. Разбираме това

y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + (3 t g x) " + 1 " = = (t g x 2) " + 3 (t g x) " + 0 = (t g x 2) " + 3 cos 2 x

Нека да преминем към намиране на производната на сложна функция (t g x 2) ":

f " (g (x)) = (t g (g (x))) " = 1 cos 2 g (x) = 1 cos 2 (x 2) g " (x) = (x 2) " = 2 x 2 - 1 = 2 x ⇒ (t g x 2) " = f " (g (x)) g " (x) = 2 x cos 2 (x 2)

Получаваме, че y " = (t g x 2 + 3 t g x + 1) " = (t g x 2) " + 3 cos 2 x = 2 x cos 2 (x 2) + 3 cos 2 x

Функциите от сложен тип могат да бъдат включени в сложни функции, а самите сложни функции могат да бъдат компоненти на функции от сложен тип.

Пример 5

Например, разгледайте сложна функция от формата y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1)

Тази функция може да бъде представена като y = f (g (x)), където стойността на f е функция на логаритъм с основа 3, а g (x) се счита за сумата от две функции във формата h (x) = x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 и k (x) = ln 2 x · (x 2 + 1) . Очевидно y = f (h (x) + k (x)).

Да разгледаме функцията h(x). Това е отношението l (x) = x 2 + 3 cos 3 (2 x + 1) + 7 към m (x) = e x 2 + 3 3

Имаме, че l (x) = x 2 + 3 cos 2 (2 x + 1) + 7 = n (x) + p (x) е сумата от две функции n (x) = x 2 + 7 и p ( x) = 3 cos 3 (2 x + 1) , където p (x) = 3 p 1 (p 2 (p 3 (x))) е комплексна функция с числов коефициент 3, а p 1 е кубична функция, p 2 чрез косинусова функция, p 3 (x) = 2 x + 1 чрез линейна функция.

Открихме, че m (x) = e x 2 + 3 3 = q (x) + r (x) е сумата от две функции q (x) = e x 2 и r (x) = 3 3, където q (x) = q 1 (q 2 (x)) е сложна функция, q 1 е експоненциална функция, q 2 (x) = x 2 е степенна функция.

Това показва, че h (x) = l (x) m (x) = n (x) + p (x) q (x) + r (x) = n (x) + 3 p 1 (p 2 ( p 3 (x))) q 1 (q 2 (x)) + r (x)

Когато се премине към израз на формата k (x) = ln 2 x · (x 2 + 1) = s (x) · t (x), е ясно, че функцията е представена под формата на комплекс s ( x) = ln 2 x = s 1 ( s 2 (x)) с цяло рационално число t (x) = x 2 + 1, където s 1 е квадратна функция, а s 2 (x) = ln x е логаритмична с база e.

От това следва, че изразът ще приеме формата k (x) = s (x) · t (x) = s 1 (s 2 (x)) · t (x).

Тогава разбираме това

y = log 3 x 2 + 3 cos 3 (2 x + 1) + 7 e x 2 + 3 3 + ln 2 x (x 2 + 1) = = f n (x) + 3 p 1 (p 2 (p 3 ( x))) q 1 (q 2 (x)) = r (x) + s 1 (s 2 (x)) t (x)

Въз основа на структурите на функцията стана ясно как и какви формули трябва да се използват за опростяване на израза при диференцирането му. За да се запознаете с такива проблеми и за концепцията за тяхното решение, е необходимо да се обърнете към точката на диференциране на функция, тоест намиране на нейната производна.

Ако забележите грешка в текста, моля, маркирайте я и натиснете Ctrl+Enter

Определение.Нека функцията \(y = f(x)\) е дефинирана в определен интервал, съдържащ точката \(x_0\). Нека дадем на аргумента увеличение \(\Delta x \), така че да не напуска този интервал. Нека намерим съответното нарастване на функцията \(\Delta y \) (при преместване от точка \(x_0 \) до точка \(x_0 + \Delta x \)) и съставим отношението \(\frac(\Delta y)(\Делта x) \). Ако има ограничение за това съотношение при \(\Delta x \rightarrow 0\), тогава определеното ограничение се извиква производна на функция\(y=f(x) \) в точката \(x_0 \) и означете \(f"(x_0) \).

$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x_0) $$

Символът y често се използва за обозначаване на производната. Имайте предвид, че y" = f(x) е нова функция, но естествено свързана с функцията y = f(x), дефинирана във всички точки x, в които съществува горната граница. Тази функция се нарича така: производна на функцията y = f(x).

Геометрично значение на производнатае както следва. Ако е възможно да се начертае допирателна към графиката на функцията y = f(x) в точката с абсцисата x=a, която не е успоредна на оста y, тогава f(a) изразява наклона на допирателната :
\(k = f"(a)\)

Тъй като \(k = tg(a) \), тогава равенството \(f"(a) = tan(a) \) е вярно.

Сега нека тълкуваме дефиницията на производната от гледна точка на приблизителните равенства. Нека функцията \(y = f(x)\) има производна в определена точка \(x\):
$$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) = f"(x) $$
Това означава, че близо до точката x приблизителното равенство \(\frac(\Delta y)(\Delta x) \approx f"(x)\), т.е. \(\Delta y \approx f"(x) \cdot\ Делта x\). Значението на полученото приблизително равенство е следното: увеличението на функцията е „почти пропорционално“ на увеличението на аргумента, а коефициентът на пропорционалност е стойността на производната в дадена точкаХ. Например за функцията \(y = x^2\) е валидно приблизителното равенство \(\Delta y \approx 2x \cdot \Delta x \). Ако анализираме внимателно дефиницията на производна, ще открием, че тя съдържа алгоритъм за намирането й.

Нека го формулираме.

Как да намеря производната на функцията y = f(x)?

1. Фиксирайте стойността на \(x\), намерете \(f(x)\)
2. Дайте на аргумента \(x\) увеличение \(\Delta x\), отидете до нова точка \(x+ \Delta x \), намерете \(f(x+ \Delta x) \)
3. Намерете нарастването на функцията: \(\Delta y = f(x + \Delta x) - f(x) \)
4. Създайте релацията \(\frac(\Delta y)(\Delta x) \)
5. Изчислете $$ \lim_(\Delta x \to 0) \frac(\Delta y)(\Delta x) $$
Тази граница е производната на функцията в точка x.

Ако функция y = f(x) има производна в точка x, тогава тя се нарича диференцируема в точка x. Извиква се процедурата за намиране на производната на функцията y = f(x). диференциацияфункции y = f(x).

Нека обсъдим следния въпрос: как са свързани помежду си непрекъснатостта и диференцируемостта на функция в дадена точка?

Нека функцията y = f(x) е диференцируема в точката x. Тогава може да се начертае допирателна към графиката на функцията в точка M(x; f(x)) и, припомнете си, ъгловият коефициент на допирателната е равен на f "(x). Такава графика не може да се „счупи“ в точка M, т.е. функцията трябва да е непрекъсната в точка x.

Това бяха „практически“ аргументи. Нека дадем по-строги аргументи. Ако функцията y = f(x) е диференцируема в точката x, тогава е валидно приблизителното равенство \(\Delta y \approx f"(x) \cdot \Delta x\). Ако в това равенство \(\Delta x \) клони към нула, тогава \(\Delta y \) ще клони към нула и това е условието за непрекъснатост на функцията в точка.

Така, ако една функция е диференцируема в точка x, тогава тя е непрекъсната в тази точка.

Обратното твърдение не е вярно. Например: функция y = |x| е непрекъсната навсякъде, по-специално в точката x = 0, но допирателната към графиката на функцията в „точката на свързване“ (0; 0) не съществува. Ако в даден момент допирателната не може да бъде начертана към графиката на функция, тогава производната не съществува в тази точка.

Още един пример. Функцията \(y=\sqrt(x)\) е непрекъсната на цялата числова ос, включително в точката x = 0. А допирателната към графиката на функцията съществува във всяка точка, включително в точката x = 0 Но в тази точка допирателната съвпада с оста y, т.е. тя е перпендикулярна на абсцисната ос, нейното уравнение има формата x = 0. Коефициент на наклонтакъв ред няма, което означава, че \(f"(0) \) също не съществува

И така, ние се запознахме с ново свойство на функция - диференцируемост. Как може да се заключи от графиката на функция, че тя е диференцируема?

Отговорът всъщност е даден по-горе. Ако в дадена точка е възможно да се начертае допирателна към графиката на функция, която не е перпендикулярна на абсцисната ос, тогава в тази точка функцията е диференцируема. Ако в дадена точка допирателната към графиката на функция не съществува или е перпендикулярна на абсцисната ос, тогава в тази точка функцията не е диференцируема.

Правила за диференциране

Операцията за намиране на производната се нарича диференциация. Когато извършвате тази операция, често трябва да работите с частни, суми, произведения на функции, както и „функции на функции“, тоест сложни функции. Въз основа на определението за производна можем да изведем правила за диференциране, които улесняват тази работа. Ако C е постоянно число и f=f(x), g=g(x) са някои диференцируеми функции, тогава следните са верни правила за диференциране:

$$ C"=0 $$ $$ x"=1 $$ $$ (f+g)"=f"+g" $$ $$ (fg)"=f"g + fg" $$ $$ ( Cf)"=Cf" $$ $$ \left(\frac(f)(g) \right) " = \frac(f"g-fg")(g^2) $$ $$ \left(\frac (C)(g) \right) " = -\frac(Cg")(g^2) $$ Производна на сложна функция:
$$ f"_x(g(x)) = f"_g \cdot g"_x $$

Таблица с производни на някои функции

$$ \left(\frac(1)(x) \right) " = -\frac(1)(x^2) $$ $$ (\sqrt(x)) " = \frac(1)(2\ sqrt(x)) $$ $$ \left(x^a \right) " = a x^(a-1) $$ $$ \left(a^x \right) " = a^x \cdot \ln a $$ $$ \left(e^x \right) " = e^x $$ $$ (\ln x)" = \frac(1)(x) $$ $$ (\log_a x)" = \frac (1)(x\ln a) $$ $$ (\sin x)" = \cos x $$ $$ (\cos x)" = -\sin x $$ $$ (\text(tg) x) " = \frac(1)(\cos^2 x) $$ $$ (\text(ctg) x)" = -\frac(1)(\sin^2 x) $$ $$ (\arcsin x) " = \frac(1)(\sqrt(1-x^2)) $$ $$ (\arccos x)" = \frac(-1)(\sqrt(1-x^2)) $$ $$ (\text(arctg) x)" = \frac(1)(1+x^2) $$ $$ (\text(arcctg) x)" = \frac(-1)(1+x^2) $ $

В „старите“ учебници се нарича още „верижно“ правило. Така че, ако y = f (u) и u = φ (x), това е

y = f (φ (x))

    комплексно - съставна функция (композиция от функции) тогава

Където , след изчисление се разглежда при u = φ(x).



Имайте предвид, че тук взехме „различни“ композиции от едни и същи функции и резултатът от диференциацията естествено се оказа, че зависи от реда на „смесване“.

Верижното правило естествено се разпростира до композиции от три или повече функции. В този случай ще има три или повече „връзки“ във „веригата“, която съставлява производното. Ето една аналогия с умножението: „имаме“ таблица с производни; “там” - таблица за умножение; „при нас“ е верижното правило, а „там“ е правилото за умножение в „колона“. При изчисляването на такива „сложни“ производни, разбира се, не се въвеждат спомагателни аргументи (u¸v и т.н.), но след като са отбелязали за себе си броя и последователността на функциите, участващи в състава, съответните връзки са „нанизани“ по посочения ред.

. Тук с “x” за получаване на стойността на “y” се извършват пет операции, тоест има композиция от пет функции: “външна” (последната от тях) - експоненциална - e  ; след това в обратен ред, мощност. (♦) 2; тригонометричен sin(); успокоен. () 3 и накрая логаритмичен ln.(). Ето защо

Със следните примери ще „убием няколко заека с един камък“: ще практикуваме диференциране на сложни функции и ще добавяме към таблицата с производни на елементарни функции. Така:

4. За степенна функция - y = x α - пренаписвайки я с помощта на добре познатата „основна логаритмична идентичност“ - b=e ln b - във формата x α = x α ln x получаваме

5. За произволна експоненциална функция, използвайки същата техника, която ще имаме

6. За произволна логаритмична функция, използвайки добре известната формула за преход към нова база, последователно получаваме

.

7. За диференциране на тангенса (котангенса) използваме правилото за диференциране на коефициентите:

За да получим производните на обратни тригонометрични функции, ние използваме връзката, която е изпълнена от производните на две взаимно обратни функции, т.е. функциите φ (x) и f (x), свързани с отношенията:

Това е съотношението

Тя е от тази формула за взаимно обратни функции

И
,

И накрая, нека обобщим тези и някои други производни, които също лесно се получават в следващата таблица.

Ако следвате дефиницията, тогава производната на функция в точка е границата на съотношението на нарастването на функцията Δ гкъм увеличението на аргумента Δ х:

Всичко изглежда ясно. Но опитайте да използвате тази формула, за да изчислите, да речем, производната на функцията f(х) = х 2 + (2х+ 3) · д хгрях х. Ако правите всичко по дефиниция, тогава след няколко страници изчисления просто ще заспите. Следователно има по-прости и по-ефективни начини.

Като начало отбелязваме, че от цялото разнообразие от функции можем да различим така наречените елементарни функции. Относително е прости изрази, чиито производни отдавна са изчислени и изброени в таблицата. Такива функции са доста лесни за запомняне - заедно с техните производни.

Производни на елементарни функции

Елементарни функции са всички изброени по-долу. Производните на тези функции трябва да се знаят наизуст. Освен това не е никак трудно да ги запомните - затова са елементарни.

И така, производни на елементарни функции:

Име функция Производна
Константа f(х) = ° С, ° СР 0 (да, нула!)
Степен с рационален показател f(х) = х н н · х н − 1
синусите f(х) = грях х cos х
Косинус f(х) = cos х − грях х(минус синус)
Допирателна f(х) = tg х 1/cos 2 х
Котангенс f(х) = ctg х − 1/грех 2 х
Натурален логаритъм f(х) = дневник х 1/х
Произволен логаритъм f(х) = дневник а х 1/(хвътре а)
Експоненциална функция f(х) = д х д х(Нищо не се промени)

Ако една елементарна функция се умножи по произволна константа, тогава производната на новата функция също се изчислява лесно:

(° С · f)’ = ° С · f ’.

По принцип константите могат да бъдат извадени от знака на производната. Например:

(2х 3)’ = 2 · ( х 3)’ = 2 3 х 2 = 6х 2 .

Очевидно елементарните функции могат да се добавят една към друга, умножават, разделят - и много повече. Така ще се появят нови функции, вече не особено елементарни, но и диференцирани по определени правила. Тези правила са обсъдени по-долу.

Производна на сбор и разлика

Нека функциите са дадени f(х) И ж(х), чиито производни са ни известни. Например можете да вземете елементарните функции, обсъдени по-горе. След това можете да намерите производната на сбора и разликата на тези функции:

  1. (f + ж)’ = f ’ + ж
  2. (fж)’ = f ’ − ж

И така, производната на сумата (разликата) на две функции е равна на сумата (разликата) на производните. Възможно е да има повече термини. Например, ( f + ж + ч)’ = f ’ + ж ’ + ч ’.

Строго погледнато, в алгебрата няма концепция за „изваждане“. Съществува понятието „отрицателен елемент“. Следователно разликата fжможе да се пренапише като сума f+ (−1) ж, и тогава остава само една формула - производната на сумата.

f(х) = х 2 + sin x; ж(х) = х 4 + 2х 2 − 3.

функция f(х) е сумата от две елементарни функции, следователно:

f ’(х) = (х 2 + грях х)’ = (х 2)’ + (грех х)’ = 2х+ cos x;

Разсъждаваме по подобен начин за функцията ж(х). Само че вече има три термина (от гледна точка на алгебрата):

ж ’(х) = (х 4 + 2х 2 − 3)’ = (х 4 + 2х 2 + (−3))’ = (х 4)’ + (2х 2)’ + (−3)’ = 4х 3 + 4х + 0 = 4х · ( х 2 + 1).

Отговор:
f ’(х) = 2х+ cos x;
ж ’(х) = 4х · ( х 2 + 1).

Производно на продукта

Математиката е логическа наука, така че много хора вярват, че ако производната на дадена сума е равна на сумата от производните, тогава производната на произведението стачка">равно на произведението на производните. Но майната ви! Производната на продукт се изчислява по напълно различна формула. А именно:

(f · ж) ’ = f ’ · ж + f · ж

Формулата е проста, но често се забравя. И не само ученици, но и студенти. Резултатът е неправилно решени задачи.

Задача. Намерете производни на функции: f(х) = х 3 cos x; ж(х) = (х 2 + 7х− 7) · д х .

функция f(х) е продукт на две елементарни функции, така че всичко е просто:

f ’(х) = (х 3 cos х)’ = (х 3)’ cos х + х 3 (cos х)’ = 3х 2 cos х + х 3 (-грех х) = х 2 (3 cos ххгрях х)

функция ж(х) първият фактор е малко по-сложен, но обща схематова не се променя. Очевидно първият фактор на функцията ж(х) е полином и неговата производна е производната на сумата. Ние имаме:

ж ’(х) = ((х 2 + 7х− 7) · д х)’ = (х 2 + 7х− 7)’ · д х + (х 2 + 7х− 7) · ( д х)’ = (2х+ 7) · д х + (х 2 + 7х− 7) · д х = д х· (2 х + 7 + х 2 + 7х −7) = (х 2 + 9х) · д х = х(х+ 9) · д х .

Отговор:
f ’(х) = х 2 (3 cos ххгрях х);
ж ’(х) = х(х+ 9) · д х .

Моля, обърнете внимание, че в последната стъпка производната се факторизира. Формално това не е необходимо да се прави, но повечето производни не се изчисляват самостоятелно, а за изследване на функцията. Това означава, че по-нататък производната ще бъде приравнена на нула, нейните знаци ще бъдат определени и т.н. За такъв случай е по-добре да имате факторизиран израз.

Ако има две функции f(х) И ж(х), и ж(х) ≠ 0 на множеството, което ни интересува, можем да дефинираме нова функция ч(х) = f(х)/ж(х). За такава функция можете също да намерите производната:

Не е слаб, нали? Откъде дойде минусът? Защо ж 2? И така! Това е един от най сложни формули- Не можете да го разберете без бутилка. Затова е по-добре да го изучавате на конкретни примери.

Задача. Намерете производни на функции:

Числителят и знаменателят на всяка дроб съдържат елементарни функции, така че всичко, от което се нуждаем, е формулата за производната на частното:


Според традицията, нека разложим числителя на множители - това значително ще опрости отговора:

Сложната функция не е непременно дълга половин километър формула. Например, достатъчно е да вземете функцията f(х) = грях хи заменете променливата х, да речем, на х 2 + ин х. Ще се получи f(х) = грях ( х 2 + ин х) - това е сложна функция. Той също има производно, но няма да е възможно да го намерите с помощта на обсъдените по-горе правила.

Какво трябва да направя? В такива случаи замяната на променлива и формула за производна на сложна функция помага:

f ’(х) = f ’(T) · T', Ако хсе заменя с T(х).

По правило ситуацията с разбирането на тази формула е още по-тъжна, отколкото с производната на коефициента. Ето защо е по-добре да го обясните с конкретни примери, с Подробно описаниевсяка стъпка.

Задача. Намерете производни на функции: f(х) = д 2х + 3 ; ж(х) = грях ( х 2 + ин х)

Имайте предвид, че ако във функцията f(х) вместо израз 2 х+ 3 ще бъде лесно х, тогава ще се получи елементарна функция f(х) = д х. Затова правим замяна: нека 2 х + 3 = T, f(х) = f(T) = д T. Търсим производната на сложна функция по формулата:

f ’(х) = f ’(T) · T ’ = (д T)’ · T ’ = д T · T

А сега - внимание! Извършваме обратната замяна: T = 2х+ 3. Получаваме:

f ’(х) = д T · T ’ = д 2х+ 3 (2 х + 3)’ = д 2х+ 3 2 = 2 д 2х + 3

Сега нека да разгледаме функцията ж(х). Очевидно трябва да се смени х 2 + ин х = T. Ние имаме:

ж ’(х) = ж ’(T) · T’ = (грех T)’ · T’ = cos T · T

Обратна замяна: T = х 2 + ин х. Тогава:

ж ’(х) = cos ( х 2 + ин х) · ( х 2 + ин х)’ = cos ( х 2 + ин х) · (2 х + 1/х).

Това е всичко! Както се вижда от последния израз, цялата задача е сведена до изчисляване на производната сума.

Отговор:
f ’(х) = 2 · д 2х + 3 ;
ж ’(х) = (2х + 1/х) защото ( х 2 + ин х).

Много често в моите уроци, вместо термина „производна“, използвам думата „просто“. Например ударът на сбора е равен на сбора от ударите. Това по-ясно ли е? Е, това е добре.

По този начин изчисляването на производната се свежда до премахване на същите тези удари според правилата, обсъдени по-горе. Като последен пример, нека се върнем към производната степен с рационален показател:

(х н)’ = н · х н − 1

Малко хора знаят това в ролята нможе и да е дробно число. Например коренът е х 0,5. Ами ако има нещо фантастично под корена? Отново резултатът ще бъде сложна функция - те обичат да дават такива конструкции тестовеи изпити.

Задача. Намерете производната на функцията:

Първо, нека пренапишем корена като степен с рационален показател:

f(х) = (х 2 + 8х − 7) 0,5 .

Сега правим замяна: нека х 2 + 8х − 7 = T. Намираме производната по формулата:

f ’(х) = f ’(T) · T ’ = (T 0,5)’ · T’ = 0,5 · T−0,5 · T ’.

Нека направим обратната замяна: T = х 2 + 8х− 7. Имаме:

f ’(х) = 0,5 · ( х 2 + 8х− 7) −0,5 · ( х 2 + 8х− 7)’ = 0,5 (2 х+ 8) ( х 2 + 8х − 7) −0,5 .

И накрая, обратно към корените:

 
Статии оттема:
Какво означава нова синя кърпа насън?
Разберете от онлайн книгата за сънища за какво е кърпата насън, като прочетете отговора по-долу, както се тълкува от авторите на тълкуването. Какво означава кърпа насън? Тълкуване на сънища от 21 век Защо сънувате кърпа и какво означава това: кърпа - Избърсването с кърпа насън е знак, че
Симптоми и лечение на гноен аднексит
(салпингоофорит) е възпалителен процес с едновременно засягане на яйчниците и фалопиевите тръби (придатъци на матката). В острия период се характеризира с болка в долната част на корема, по-интензивна от възпаление, повишена температура и признаци на интоксикация. мо
Обезщетения за социална карта за пенсионер в района на Москва
В района на Москва се предоставят различни обезщетения за пенсионерите, тъй като те се считат за най-социално уязвимата част от населението. Полза – пълно или частично освобождаване от условията за изпълнение на определени задължения, обхващащи
Какво ще се случи с долара през февруари
Какъв ще бъде курсът на долара в началото на 2019 г.? Как ще се отрази цената на барел върху динамиката на двойката долар/рубла? Какво ще попречи на рублата да се засили спрямо щатския долар в началото на 2019 г.? Всичко това ще научите в прогнозата за обменния курс на долара за началото на 2019 г. Икономически анализи