Что значит построить сечение. Сечение многогранника плоскостью

Разберем, как построить сечение пирамиды, на конкретных примерах. Поскольку в пирамиде нет параллельных плоскостей, построение линии пересечения (следа) секущей плоскости с плоскостью грани чаще всего предполагает проведение прямой через две точки, лежащие в плоскости этой грани.

В простейших задачах требуется построить сечение пирамиды плоскостью, проходящей через данные точки, уже лежащие в одной грани.

Пример.

Построить сечение плоскостью (MNP)

Треугольник MNP — сечение пирамиды

Точки M и N лежат в одной плоскости ABS, следовательно, через них можем провести прямую. След этой прямой — отрезок MN. Он видимый, значит, соединяем M и N сплошной линией.

Точки M и P лежат в одной плоскости ACS, поэтому через них проведем прямую. След — отрезок MP. Мы его не видим, поэтому отрезок MP проводим штрихом. Аналогично строим след PN.

Треугольник MNP — искомое сечение.

Если точка, через которую требуется провести сечение, лежит не на ребре, а на грани, то она не будет концом следа-отрезка.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки B, M и N, где точки M и N принадлежат, соответственно, граням ABS и BCS.

Здесь точки B и M лежат в одной грани ABS, поэтому можем через них провести прямую.

Аналогично проводим прямую через точки B и P. Получили, соответственно, следы BK и BL.

Точки K и L лежат в одной грани ACS, поэтому через них можем провести прямую. Ее след — отрезок KL.

Треугольник BKL — искомое сечение.

Однако не всегда через данные в условии точки удается провести прямую. В этом случае нужно найти точку, лежащую на прямой пересечения плоскостей, содержащих грани.

Пример. Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Точки M и N лежат в одной плоскость ABS, поэтому через них можно провести прямую. Получаем след MN. Аналогично — NP. Оба следа видимые, поэтому соединяем их сплошной линией.

Точки M и P лежат в разных плоскостях. Поэтому соединить их прямой не можем.

Продолжим прямую NP.

Она лежит в плоскости грани BCS. NP пересекается только с прямыми, лежащими в этой же плоскости. Таких прямых у нас три: BS, CS и BC. С прямыми BS и CS уже есть точки пересечения — это как раз N и P. Значит, ищем пересечение NP с прямой BC.

Точку пересечения (назовем ее H), получаем, продолжая прямые NP и BC до пересечения.

Эта точка H принадлежит как плоскости (BCS), поскольку лежит на прямой NP, так и плоскости (ABC), поскольку лежит на прямой BC.

Таким образом мы получили еще одну точку секущей плоскости, лежащей в плоскости (ABC).

Через H и точку M, лежащую в этой же плоскости, можем провести прямую.

Получим след MT.

T — точка пересечения прямых MH и AC.

Так как T принадлежит прямой AC, то через нее и точку P можем провести прямую, так как они обе лежат в одной плоскости (ACS).

4-угольник MNPT — искомое сечение пирамиды плоскостью, проходящей через данные точки M,N,P.

Мы работали с прямой NP, продлевая ее для отыскания точки пересечения секущей плоскости с плоскостью (ABC). Если работать с прямой MN, приходим к тому же результату.

Рассуждаем так: прямая MN лежит в плоскости (ABS), поэтому пересекаться может только с прямыми, лежащими в этой же плоскости. У нас таких прямых три: AB, BS и AS. Но с прямыми AB и BS уже есть точки пересечения: M и N.

Значит, продлевая MN, ищем точку пересечения ее с прямой AS. Назовем эту точку R.

Точка R лежит на прямой AS, значит, она лежит и в плоскости (ACS), которой принадлежит прямая AS.

Поскольку точка P лежит в плоскости (ACS), через R и P можем провести прямую. Получаем след PT.

Точка T лежит в плоскости (ABC), поэтому через нее и точку M можем провести прямую.

Таким образом, получили все то же сечение MNPT.

Рассмотрим еще один пример такого рода.

Построить сечение пирамиды плоскостью, проходящей через точки M, N, P.

Через точки M и N, лежащие в одной плоскости (BCS), проводим прямую. Получаем след MN (видимый).

Через точки N и P, лежащие в одной плоскости (ACS), проводим прямую. Получаем след PN (невидимый).

Через точки M и P прямую провести не можем.

1) Прямая MN лежит в плоскости (BCS), где есть еще три прямые: BC, SC и SB. С прямыми SB и SC уже есть точки пересечения: M и N. Поэтому ищем точку пересечения MN с BC. Продолжив эти прямые, получаем точку L.

Точка L принадлежит прямой BC, а значит, она лежит в плоскости (ABC). Поэтому через L и P, которая также лежит в плоскости (ABC) можем провести прямую. Ее след — PF.

F лежит на прямой AB, а значит, и в плоскости (ABS). Поэтому через F и точку M, которая также лежит в плоскости (ABS), проводим прямую. Ее след — FM. Четырехугольник MNPF — искомое сечение.

2) Другой путь — продолжить прямую PN. Она лежит в плоскости (ACS) и пересекается с прямыми AC и CS, лежащими в этой плоскости, в точках P и N.

Значит, ищем точку пересечения PN с третьей прямой этой плоскости — с AS. Продолжаем AS и PN, на пересечении получаем точку E. Поскольку точка E лежит на прямой AS, принадлежащей плоскости (ABS), то через E и точку M, которая также лежит в (ABS), можем провести прямую. Ее след — FM. Точки P и F лежат водной плоскости (ABC), проводим через них прямую и получаем след PF (невидимый).

Существует 2 основных метода построения сечений многогранников:

Аксиоматический метод построения сечений

1. Метод следов

Пример 1.

На ребрах АА" и В"С" призмы АВСА"В"С" зададим соответственно точку P и Q. Построим сечение призмы плоскостью (PQR), точку R которой зададим в одной из следующих граней:
а) ВССВ"С";
б) А"В"С";
в) АВС

Решение.

а) 1) Так как точки Q и R лежат в плоскости (ВСС"), то в этой плоскости лежит прямая QR. Проведем ее. Это след плоскости (PQR) на плоскость(ВСС"). (рис.1)

2) Находим точки В"" и С", в которых прямая QR пересекает соответственно прямые ВВ" и СС". Точки В" и С" - это следы плоскости (PQR) соответственно на прямых ВВ" и СС".

3) Так как точки В"" и Р лежат в плоскости (АВВ"), то прямая В""Р лежит в этой плоскости. Проведем ее. Отрезок В**Р - след плоскости (PQR) на грани АВВ"А".

4) Так как точки Р и С лежат в плоскости (АСС"), то прямая РС"" лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (АСС").

5) Находим точку V, в которой прямая РС"" пересекает ребро А"С". Это след плоскости (PQR) на ребре А"С".

6) Тачка как точки Q и V лежат в плоскости (А"В"С"), то прямая QV лежит в этой плоскости. Проведем прямую QV. Отрезок QV - след плоскости (PQR) на грани АВС. Итак, мы получили многоугольник QB""PV - искомое сечение.

б) 1) Так как точки Q и R лежат в плоскости (А"В"С"), то в этой плоскости лежит прямая QR. Проведем ее. Это след плоскости (PQR) на плоскости (А"В"С").(рис.2)

2) Находим точки D" и Е", в которых прямая QR пересекает соответственно прямые А"В" и B"С". Так как точка D" лежит на ребре А"В", отрезок QD" - след плоскости (PQR) на грани А"В"С".

3) Так как точки D" и P лежат в плоскости (АВВ"), то прямая D"P лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (АВВ"), а отрезок D"P - след плоскости (PQR) на грани АВВ"А".

4) Так как точки Р и Е" лежат в плоскости (АСС"), то в этой плоскости лежит прямая РЕ". Проведем ее. Это след плоскости (PQR) на плоскости (АСС").

5) Находим точку С""=PE""CC". Так как точка С"" лежит на ребре СС", то отрезок РС"" - это след плоскости (PQR) на грани АСС"А".

6) Так как точки Q и С"" лежат в плоскости (ВСС"), то прямая QC"" лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (ВСС"), а отрезок QC""- след плоскости (PQR) на грани ВСС"В". Итак, мы получили многоугольник QD"РС"" - это и есть искомое сечение.

в) 1) Из трех заданных точек Р, Q и R никакие две не лежат в какой-нибудь одной из плоскостей граней призмы, поэтому найдем основной след плоскости (PQR) (т. е. линию пересечения плоскости (PQR) с плоскостью (АВС), выбранной в качестве основной). Для этого сначала найдем проекции точек Р, Q и R на плоскость (АВС) в направлении, параллельном боковому ребру призмы. Так как точка Р лежит на ребре АА", то точка Р" совпадает с точкой А. Так как точка Q лежит в плоскости (ВСС"), то в этой плоскости через точку Q проведем прямую, параллельную прямой ВВ", и найдем точку Q", в которой проведенная прямая пересекает прямую ВС. Так как точка R по условию лежит в плоскости, выбранной в качестве основной, то точка R" совпадает с точкой R.(Рис.3)

2) Параллельными прямыми РР" и QQ" определяется плоскость. Проведем в этой плоскости прямые PQ и Р"Q" и найдем точку S=PQ пересекает P"Q". Так как точка S" лежит на прямой PQ, то она лежит в плоскости (PQR), и так как точка S" лежит на прямой Р"Q", то она лежит в плоскости (АВС). Таким образом, точка S" является общей точкой плоскостей (PQR) и (АВС). Это значит, что плоскости (PQR) и (АВС) пересекаются по прямой, проходящей через точку S".

3) Так как точка R совпадает с точкой R", то точка R - это еще одна общая точка плоскостей (PQR) и (АВС). Таким образом, прямая S"R - основной след плоскости (PQR). Проведем эту прямую. Как видим из рисунка, прямая S"R пересекает ребра АВ и ВС основания призмы соответственно в точках S" "и S""".

4) Так как точки S""" и Q лежат в плоскости (ВСС"), то прямая S""" Q лежит в этой плоскости. Проведем ее. Это след плоскости (PQR) на плоскости (ВСС"). А отрезок S""" Q, - след плоскости (PQR) на грани ВСС"В".

5) Аналогично находим отрезок S"" Р - след плоскости (PQR) на грани АВВ"А".

7) Находим точку F=PC"" пересекает A"С" и получаем затем отрезок PF - след плоскости (PQR) на грани АСС"А".

8) Точки Q и F лежат в плоскости А"В"C", поэтому прямая QF лежит в плоскости (А"В"C"). Проведем прямую QF, получим отрезок QF - след плоскости (PQR) на грани А"В"C". Итак, мы получили многоугольник QS"""S""PF - искомое сечение.

3 а м е ч а н и е . Покажем другой путь нахождения точки С"", при котором не находим точку пересечения прямой S""" Q с прямой С"С"". Будем рассуждать следующим образом. Если следом плоскости (PQR) на прямой СС" является некоторая точка V, то ее проекция на плоскость (АВС) совпадает с точкой С. Тогда точка S""""= V"P "пересекает VP лежит на основном следе S"R плоскости (PQR). Строим эту точку S"""" как точку пересечения прямых V"P" (это прямая СА) и S"R. А далее проводим прямую S""""Р. Она пересекает прямую СС" в точке V.

Пример 2.

На ребре МВ пирамиды МАВСD зададим точку Р, на ее грани MCD зададим точку Q. Построим сечение пирамиды плоскостью (PQR), точку R которой зададим:
а) на ребре МС;
б) на грани МАD;
в) в плоскости (МАС), вне пирамиды.

Решение.

a) Следом плоскости (PQR) на грани МВС является отрезок РR, а ее следом на грани MCD является отрезок RD", где точка D" - это точка пересечения прямой RQ с ребром МD. Ясно, что плоскость (PQR) имеет следы на гранях MAD и МАВ (так как с этими гранями плоскость (PQR) имеет общие точки). Найдем след плоскости (PQR) на прямой МА. Сделаем это следующим образом:

1) Построим точки Р", Q" и R" - проекции точек Р, Q и R из центра М на плоскость (АВС), принимаемую, таким образом, за основную плоскость. (Рис. 4)

3) Если плоскость (PQR) пересекает прямую МА в некоторой точке V, то точка V" совпадает с точкой А и точка S"""= VQ пересекает V"Q" лежит на прямой S" S"". Другими словами, в точке S""" пересекаются три прямые: VQ, V"Q"" и S" S"". Две последние прямые из этих трех на чертеже уже есть. Поэтому точку S""" мы построим как точку пересечения прямых V"Q" и SS"".

4) Проведем прямую QS""" (она совпадает с прямой VQ, так как прямая VQ должна проходить через точку S""", т. е. точки V, Q и S""" лежат на одной прямой).

5) Находим точку V, в которой прямая QS"" "пересекает прямую МА, Точка V - это след плоскости (PQR) на ребре МА. Далее ясно, что отрезки PV и VD" - следы плоскости (PQR) соответственно на гранях МАВ и MAD. Таким образом, многоугольник PRD"V - искомое сечение.

б) 1) Принимаем плоскость (АВС) за основную плоскость и строим точки P", Q" и R" - проекции соответственно точек Р, Q и R на плоскость (АВС). Центром этого внутреннего проектирования является точка М.(Рис.5.)

2) Строим прямую S"S"" - основной след плоскости (PQR).

3) Если плоскость (PQR) пересекает прямую МА в точке V, то точка V" - проекция точки V на плоскость (АВС) из центра М- совпадает с точкой А, а прямые S"S"", V"R" и прямая VR, точка V которой пока нами не построена, пересекаются в точке S""". Находим эту точку S"""=V"R" пересекается S"S"" . "", и находим точку V=RS""" пересекается MA. Дальнейшее построение ясно. Искомым сечением является многоугольник PVD"Т.

в)

(Рис.6.) Пусть точка R расположена в плоскости (МАС) так, как это показано на рисунке 6.

1) Принимаем плоскость (АВС) за основную плоскость и строим точки P", Q" и R" - проекции соответственно точек P, Q и R на плоскость (ABC). (центром проектирования является точка М.)

2) Строим прямую S"S"", - основной след плоскости (PQR).

3) Находим точку V - след плоскости (PQR) на прямой МА. Точка V" - проекция точки V на плоскость (АВС) из центра М- совпадает в этом случае с точкой А.

4) Находим точку S"""= P"V" пересекается S"S"", а затем и точку V =PS""" пересекается МА.

5) Получаем след РV плоскости (PQR) на плоскости (МАВ).

6) Находим точку T - след плоскости (PQR) на прямой МО. Ясно, что точка Т" в этом случае совпадает с точкой D. Для построения точки T строим точку S""""=Q"T" пересекается S"S"", а затем точку T = QS""" "пересекается MT".

7) Совокупность следов PV, VT, ТС", и С"P, т. е. многоугольник PVTC" - искомое сечение.

Комбинированный метод построения сечений

Суть комбинированного метода построения сечений многогранников состоит в применении теорем о параллельности прямых и плоскостей в пространстве в сочетании с аксиоматическим методом.

Пример№1.

На ребрах AB и AD пирамиды MABCD зададим соответственно точки P и Q - середины этих ребер, а на ребре MC зададим точку R. Построим сечение пирамиды плоскостью, проходящей через точки P, Q и R.

Решение

(рисунок 14):

1). Ясно, что основным следом плоскости PQR является прямая PQ.

2). Найдем точку К, в которой плоскость МАС пересекает прямую PQ. Точки К и R принадлежат и плоскости PQR, и плоскости MAC. Поэтому, проведя прямую KR, мы получим линию пересечения этих плоскостей.

3). Найдем точку N=AC BD, проведем прямую MN и найдем точку F=KR MN.

4). Точка F является общей точкой плоскостей PQR и MDB, то есть эти плоскости пересекаются по прямой, проходящей через точку F. Вместе с тем так как PQ - средняя линия треугольника ABD, то PQ параллена BD, то есть прямая PQ параллельна и плоскости MDB. Тогда плоскость PQR, проходящая через прямую PQ, пересекает плоскость MDB по прямой, параллельной прямой PQ, то есть параллельной и прямой BD. Поэтому в плоскости MDB через точку F проведем прямую, параллельную прямой BD.

5). Дальнейшие построения понятны из рисунка. В итоге получаем многоугольник PQD"RB" - искомое сечение.

1. Построение сечения, проходящего через заданную прямую параллельную другой заданной прямой.

Пусть, например, требуется построить сечение многогранника плоскостью @, проходящей через заданную прямую р параллельную второй заданной прямой q. В общем случае решение этой задачи требует некоторых предварительных построений, которые можно выполнять по следующему плану:

1). Через вторую прямую q и какую-нибудь точку W первой прямой p проведем плоскость бетта (рис.

2). В плоскости бетта через точку W проведем прямую q" параллельную q.

3). Пересекающимися прямыми p и q". Определяется плоскость @. На этом предварительные построения заканчиваются и можно переходить к построению непосредственно сечения многогранника плоскостью @. В некоторых случаях особенности конкретной задачи позволяет осуществить и болле короткий план решения. Рассмотрим примеры.

Пример№2.

На ребрах BC и MA пирамиды MABC зададим соответственно точки P и Q. Построим сечение пирамиды плоскостью @, проходящей через прямую PQ параллельно прямой AR, точку R, которую зададим следующим образом: а). На ребре MB; б). Она совпадает с точкой В; в). В грани MAB.

Решение:

а)

.(рисунок Плоскость, проходящая через вторую прямую, то есть прямую AR, и точку Q, взятую на первой прямой, на изображении уже есть. Это плоскость MAB.

2). В плоскости MAB через точку Q проведем прямую QF параллельную AR.

3). Пересекающимися прямыми PQ и QF определяется плоскость @ (эта плоскость PQF) - плоскость искомого сечения. Построим это сечение методом следов.

4). Точка B совпадает с точкой F" - проекцией точки F на плоскость ABC (из центра М), а точка A совпадает с точкой Q" - проекция точки Q на эту плоскость. Тогда точка S"=FQ F"Q" лежит на основном следе секущей плоскости @. Так как точка P лежит на основном следе секущей плоскости, то прямая S"P - это основной след плоскости @, а отрезок S""P - след плоскости @ на грани ABC. Далее ясно, что точку P следует соединить с точкой F. В итоге получаем четырехугольник PFQS"" - искомое сечение.

б)

(рисунокПлоскость, проходящая через прямую AB и точку Р прямой PQ, на изображении уже построена. Это плоскость АВС. Продолжим построение по вышеизложенному плану.

2). В плоскости АВС через точку P проведем прямую PD, параллельную прямой AB.

3). Пересекающимися прямыми PQ и PD определяется плоскость альфа (это плоскость PQD) - плоскость искомого сечения. Построим это сечение.

4). Ясно, что следом плоскости альфа на грани МАС является отрезок DQ.

5). Дальнейшие построения выполним, принимая во внимание следующие соображения. Так как прямая PD параллельна прямой AB, то прямая PD параллельна плоскости МАВ. Тогда плоскость альфа, проходящая через прямую PD, пересекает плоскость МАВ по прямой, параллельной прямой PD, то есть и прямой АВ. Итак, в плоскости МАВ через точку Q проведем прямую QE параллельную АВ. Отрезок QE - это след плоскости альфа на грани МАВ.

6). Соединим точку Р с точкой Е. Отрезок РЕ - это след плоскости альфа на грани МВС. Таким образом, четырехугольник PEQD - искомое сечение. совпадает с точкой А, а точка L" совпадает с R"=MR BC. Тогда точка S"=LQ L"Q" лежит на основном следе секущей плоскости альфа. Этим основным следом является прямая S"P, а следом плоскости альфа на грани АВС является отрезок S""P. Далее прямая PL - это след плоскости альфа на плоскости МВС, а отрезок РN - след плоскости альфа на грани МВС. Итак, четырехугольник PS""QN - искомое сечение.

Пример 3.

На диагоналях АС и C"E" оснований призмы ABCDEA"B"C"D"E" зададим соответственно точки P и Q. Построим сечение призмы плоскостью альфа, проходящей через прямую PQ параллельно одной из следующих прямых: а). АВ; б). АС"; в). BC" Решение:

а)

(рисунок Плоскость. проходящая через прямую АВ - вторую заданную прямую и точку Р, взятую на первой прямой, уже построена. Это плоскость АВС.

2). В плоскости АВС через точку Р проведем прямую, параллельно прямой АВ, и найдем точки К и L, в которых эта прямая пересекает соответственно прямые ВС и АЕ. B"C" также параллельны между собой. Принимая во внимание, что KL параллельна AB и A"B" параллельна АВ, проведем в плоскости А"B"C" через точку Q прямую, параллельную прямой A"B", и найдем точки F и Т, в которых эта прямая пересекает соответственно прямые C"D" и A"E". Далее получаем отрезок TL - след плоскости альфа на грани AEE"A", точку S"=KL CD, прямую S"F - след плоскости альфа на плоскости CDD" , отрезок FC"" - след плоскости альфа на грани CDD"C" и, наконец, отрезок C""K - след плоскости альфа на грани BCC"B". В итоге получаем многоугольник KLTFC"" - искомое сечение.

б)

(рисунок Проведем плоскость через прямую AC" - вторую заданную прямую, и точку Р, взятую на первой прямой. Это плоскость ACC".

2). В плоскости ACC" через точку Р проведем прямую, параллельную прямой АС", и найдем точку C"", в которой эта прямая пересекает прямую CC".

3). Пересекающимися прямыми PQ и PC"" определяется плоскость альфа (плоскость C""PQ) - плоскость искомого сечения. Построим это сечение, например, методом следов. Одна точка, принадлежащая следу плоскости альфа на плоскость ABC, которую мы принимаем за основную, на чертеже уже есть. Это точка Р. Найдем еще одну точку этого следа.

4). Проекция точки C"" на плоскость АВС является точка С, а проекцией точки Q - точка Q" - точка пересечения прямой CE с прямой, проходящей в плоскости CEE" через точку Q параллельно прямой EE". Точка S"=C""Q CQ" - это вторая точка основного следа плоскости альфа. Итак, основным следом плоскости альфа является прямая S"P. Она пересекает стороны ВС и АЕ основания призмы соответственно в точках S"" и S""" . Тогда отрезок S""S""" - след секущей плоскости альфа на грани ABCDE. А отрезок S""C"" - след плоскости альфа на грани BCC"B". Нетрудно увидеть, что прямые C"" Q и EE" лежат в одной плоскости. Найдем точку E"" =С""Q EE". Тогда ясно получение дальнейших следов плоскости альфа: S"""S"", S"""T, TF и FC"". В итоге получаем многоугольник S""S"""TFC"" - искомое сечение.

в)

(рисунокЧерез вторую заданную прямую - прямую BC" - и, например, через точку Р, лежащую на первой заданной прямой, поведем плоскость. Сделаем это методом следов. Легко устанавливается, что основным следом этой плоскости BC"P является прямая ВР. Затем находим точку S"=BP CD и след S"C" плоскости BC"P и плоскости CDD".

2).В плоскости BC"P через точку Р проведем прямую, параллельную прямой BC". Точку пересечения проведенной прямой с прямой S"C" обозначим V.

3). Пересекающимися прямыми PQ и PV определяется плоскость альфа (плоскость PQV) - плоскость искомого сечения. Построим это сечение.

4). Находим точки Q" и V" - проекции соответственно точек Q и V на плоскость ABC, принимаемую нами за основную плоскость. Затем находим точку S""=QV Q"V". Это одна из точек основного следа плоскости альфа. И еще одна точка этого следа уже есть. Это заданная точка Р. Итак, прямая S""P - основной след плоскости альфа, а полученный при этом отрезок S"""S"""" - след плоскости альфа на грани АВСDE. Дальнейший ход построения ясен: S"""""=S""P CD, S"""""V, точки C""=S"""""V CC" и F=S"""""V C"D", затем FQ и точка T=FQ A"E" и, наконец, TS"""". В итоге получаем многоугольник S"""C""FTS"""" - искомое сечение.

Замечание: Наметим кратко ход решения примера 3,в, при котором на первой заданной прямой была взята точка Q, а не точка P (рисунок 22).

1). Строим плоскость BC"Q (это плоскость BC"E").

2). Плоскость BC"Q пересекает плоскость ABC по прямой BN параллельной C"E"(для построения можно воспользоваться тем, что BN параллельна СЕ).

3). В плоскости BC"Q через точку Q проводим прямую QM параллельную BC" (М=QM BN).

4). Строим сечение призмы плоскостью, определяемой пересекающимися прямыми PQ и QM. Это можно сделать в следующем порядке: MP, S"=MP AE и S""=МР ВС, S""""=MP CE, C""=S""""Q CC", S"""C"", F=S"""C"" C"D", FQ, T=FQ A"E", TS. Многоугольник S""C""FTS"- искомое сечение.

2. Построение сечения, проходящего через заданную точку параллельно двум заданным скрещивающимся прямым.

Пусть требуется построить сечение многогранника плоскостью, проходящей через заданную точку К параллельно двум заданным скрещивающимся прямым l и m. При background:#FFCCCC; border:outset #CC33FF 1.5pt">

1.Выберем некоторую точку W. (Эта точка может лежать на одной из заданных скрещивающихся прямых, может совпадать с точкой К.)

2.Через точку W проведем прямые l" и m". (Естественно, если точка W лежит на одной из прямых, например на прямой l, то прямая l" совпадает с прямой l.)

3. Пересекающимися прямыми l" и m" определяется плоскость бетта - плоскость вспомогательного сечения многогранника. Строим сечение многогранника плоскостью бетта.

4. Построим сечения многогранника плоскостью альфа, проходящей через точку K, параллельно плоскости бетта.

Рассмотрим примеры применения изложенного плана.

П р и м е р 4.

На ребрах AD и С"D" призмы ABCDA"В"С"D", зададим соответственно точки P и Q, а на ребре DD" зададим точку К. Построим сечение призмы плоскостью альфа, проходящей через точку К параллельно прямой PQ и одной из следующих прямых: а) АВ; б) А"В; в) BR, точку R которой зададим на ребре A"D".

Решение. a)

(Рис. 2Пусть точка W совпадает с точкой P.

2) В плоскости АВС через точку P проведем прямую, параллельную прямой АВ. Найдем точку Е, в которой проведенная прямая пересекает прямую ВС.

3) Пересекающимися прямыми PQ и PE определяется плоскость бетта - плоскость вспомогательного сечения. Построим сечение призмы плоскостью бетта. Прямая PE и точки С"" и D"" - следы плоскости бетта соответственно на прямых СС" и DD". Затем строим прямую D""Р и получаем точку F на ребре А"D". Таким образом, сечением призмы плоскостью бетта являет - я многоугольник РЕС""QF.

4) Строим теперь сечение призмы плоскостью альфа, проходящей через точку К параллельно плоскости бетта. В итоге получаем треугольник KLN - искомое сечение.

б)

(Рис. Пусть точка W совпадает с точкой Q. Чтобы через точку Q провести прямую, параллельную прямой А"В, сначала через прямую А"В и точку Q проведем плоскость гамма. Сделаем это так. Найдем точку Q" - проекцию точки Q на плоскость АВС и проведем прямую AQ". Ясно, что AQ" параллельно A"Q. Теперь через точку В в плоскости АВС проведем прямую l" параллельно AQ". Пересекающимися прямыми А"В и l" определяется плоскость гамма. В плоскости гамма через точку Q проведем прямую l"" параллельно A"В.

3) Пересекающимися прямыми PQ и l"", определяется плоскость бетта - плоскость вспомогательного сечения призмы. Построим это сечение. Находим для этого точку S"=l" пересекается l"", а затем прямую PS" - основной след плоскости бетта. Находим далее точку s""=PS" пересекается CD и проводим прямую S""Q - след плоскости бетта на плоскости CDD". Получаем точку D"" - след плоскости бетта на прямой DD". Точка D"" и точка Р лежат в плоскости ADD". Поэтому прямая PD""- след плоскости бетта на плоскости АDD", а отрезок PF - след плоскости бетта на грани ADD"A". Таким образом, сечением призмы плоскостью бетта является четырехугольник РS""QF. (Обратите внимание: QF параллельно PS"". И это, естественно, так. Ведь основания призмы лежат в параллельных плоскостях. Этим обстоятельством можно было воспользоваться при построении сечения призмы плоскостью бетта.)

4) Теперь строим сечение призмы плоскостью альфа, проходящей через точку К параллельно плоскости бетта. Это построение выполнить уже несложно. В итоге получаем треугольник KLN - искомое сечение.

в)

(Рис. В качестве точки W выберем точку Q.

2) Через прямую BR и точку Q проведем плоскость гамма. Плоскость гамма пересекает плоскость АВС по прямой l" параллельно QR. Для построения прямой l" строим точки R" и Q" - проекции соответственно точек R и Q на плоскость АВС - и проводим прямую Q"R", а затем в плоскости АВС через точку В проводим прямую l" параллельно Q"R". В плоскости гамма через точку Q проводим прямую l"" параллельно BR. Получим точку S"=l" пересекается l"".

3) Пересекающимися прямыми PQ и l"" определяется плоскость бетта - плоскость вспомогательного сечения призмы. Построим это сечение. Ясно, что прямая PS" является основным следом плоскости бетта. Находим далее точки S""= PS" пересекается CD, S"""= РS" пересекается BC и C"" = QS"" пересекается CC". Получим отрезки РS""", S"""C"" и C""Q- следы плоскости бетта соответственно на гранях ABCD, ВСС"В и CDD"С". Далее либо проведем в плоскости А"В"С" прямую, параллельную следу PS", и получим точку F, либо найдем точку D""=S""Q пересекается DD" и проведем прямую D""Р. Эта прямая пересечет прямую А"D" в точке F. Получаем, таким образом, еще два следа плоскости бетта: QF н FP. Итак, многоугольник PS"""C""QF - сечение призмы плоскостью бетта.

4) Теперь построим сечение призмы плоскостью альфа, проходящей через точку К параллельно плоскости бетта. В итоге получаем треугольник KLN - искомое сечение.

П р и м е р 5.

На ребрах МВ и МА пирамиды МАВСD зададим соответственно точки Р и К, и на отрезке АС зададим точку Q. Построим сечение пирамиды плоскостью альфа, проходящей через точку К параллельно прямой PQ и одной из следующих прямых: а) CD; б) МС; в) RV, точки R и V которой зададим соответственно на ребрах АВ и МС пирамиды.

Р е ш е н и е.

a)

(Рис. 2В плоскости ABC через точку Q проведем прямую, параллельную прямой CD, и. найдем точки S". S"" и S""", в которых эта прямая пересекает соответственно прямые BC, АD и АВ.

2) Пересекающимися прямыми PQ и S"S"" определяется плоскость бетта - плоскость вспомогательного сечения пирамиды. Построим это сечение. Основным следом плоскости бетта является прямая S"S"". Отрезок PS" - след плоскости бетта на грани МВС, прямая PS""" - ее след на плоскости МАВ, отрезок PA" - на грани МАВ, отрезок А"S""- на грани MAD.

б)

(Рис. 27.) Выполним построение заданного сечения в следующем порядке:

1) В плоскости МАС через
точку Q проведем прямую QA параллельно MC

2) Построим вспомогательное сечение пирамиды плоскостью, которая определяется . С этой целью найдем точку S"=PA" пересекается АВ, проведем прямую S"Q, являющуюся основным следом плоскости PQA", получим точки S""=S"Q пересекается AD и S"""=S"Q пересекается BC и соединим точку А" с точкой S"", а точку P с точкой S""". Четырехугольник PA"S""S""" - это вспомогательное сечение пирамиды. Плоскость этого сечения параллельна прямым PQ и МС, но не проходит через точку К.

3) Теперь построим сечение пирамиды плоскостью, проходящей через точку К параллельно плоскости PQA". В итоге получаем четырехугольник В"KFE - искомое сечение.

a)

(Рис. 28.) Выполним построение заданного сечения пирамиды, построив сначала вспомогательное сечение ее плоскостью, проходящей через прямую PQ параллельно прямой RV. Сделаем это в следующем порядке:

1) Построим точку S"=PV пересекается BC и проведем прямую S"R.

2) Пересекающимися прямыми S"V и S"R определяется плоскость. В этой плоскости через точку Р проведем прямую PS"" параллельно RV.

3) Пересекающимися прямыми PQ и PS"" определяется плоскость вспомогательного сечения пирамиды. Построим это сечение. Находим последовательно прямую S""Q - основной след плоскости вспомогательного сечения, затем точки Т"=S""Q пересекается ВС, Т""=S""Q пересекается АB и Т"""=S""Q пересекается CD, Проведем далее прямую Т"P и найдем точку Е= Т"P пересекается "MC. Точку P соединим с точкой Т"", а точку Е - с Т""". Четырехугольник PT""Т"""Е - вспомогательное сечение пирамиды. Плоскость этого сечения параллельна прямым PQ и RV, но не проходит через точку К. Теперь построим сечение пирамиды плоскостью, проходящей через точку К параллельно плоскости вспомогательного сечения. В итоге получаем четырехугольник КВ"С"D" - искомое сечение.

Нахождение площади сечения в многогранниках.

Задача №1.

Задача №2

Задача №3.

Задача №4.

Задача №5.

Задача №6.

Задача №7

Задача №8.

Использование свойств подобных треугольников.

Поэтому далее представлены несколько простейших задач, в которых подобные треугольники играют главную роль, - тем более, что их нужно еще и построить (и увидеть!!!) с помощью стандартного стереометрического приема: одну плоскость пересечь другой плоскостью и построить их линию пересечения по двум общим для плоскостей точкам.

Задача №1.

Задача №2

Задача №3

Задача №4

Задача №5

Для нахождения расстояния между скрещивающимися прямыми можно воспользоваться четырьмя основными способами:

1)Нахождение длины общего перпендикуляра двух скрещивающихся прямых, то есть отрезка с концами на этих прямых и перпендикулярного обеим.

2)Нахождение расстояния от одной из скрещивающихся прямых до параллельной ей плоскости, проходящей через другую прямую.

3)Нахождение расстояния между двумя параллельными плоскостями, проходящими через заданные скрещивающиеся прямые.

4)Нахождение расстояния от точки, - являющейся проекцией одной из скрещивающихся прямых на перпендикулярную ей плоскость, - до проекции другой прямой на ту же самую плоскость.

Задача №18

Задача №19

Представьте 4 варианта решения данной задачи и выберите самый рациональный из них. Обоснуйте свой выбор.

Задача №20

Задача №21

Задача №22

Нахождение расстояния и угла между скрещивающимися прямыми в многограннике.

Задача №1.

Задача №2.

Задача №3.

проходящей через боковое ребро и пересекающуюся с ним медиану основания, и плоскостью, проходящей через ту же медиану и середину любого другого бокового ребра.

Сечения.

Задача №1.

Задача №2.

Задача №3.

Два противоположных ребра тетраэдра перпендикулярны, а их длины равны а и b расстояние - между ними равно с. В тетраэдр вписан куб, четыре ребра которого перпендикулярны этим двум ребрам тетраэдра, а на каждой грани тетраэдра лежат ровно две вершины куба. Найдите ребро куба.

Задача №4.

Задача №5.

Задача №6.

Задача №7.

Задача №8.

Задача №9.

Отношение объемов частей многогранника.

Задача №1.

Задача №2.

Задача №3.

Задача №4.

Проекции и сечения правильных многогранников.

Задача №1.

окажите, что проекции додекаэдра и икосаэдра на плоскости, параллельные их граням, являются правильными многоугольниками.

Задача №2.

окажите, что проекция додекаэдра на плоскость, перпендикулярную прямой, проходящей через его центр и середину ребра, является шестиугольником (а не десятиугольником).

Задача №3.

а) окажите, что проекция икосаэдра на плоскость. перпендикулярную прямой, проходящей через его центр и вершину, является правильным 10-угольником. б). Докажите, что проекция додекаэдра на плоскость, перпендикулярную прямой, проходящей через его центр и вершину, является неправильным 12- угольником.

Задача №4.

уществует ли сечение куба, являющееся правильным т шетиугольником?

Задача №5.

уществует ли сечение октаэдра, являющееся правильным шестиугольником?

Задача №6.

уществует ли сечение додекаэдра, являющееся правильным шестиугольником?

Задача №7.

ве грани АВС и АВD икосаэдра имеют общее ребро АВ. Через вершину D проводится плоскость, параллельная плоскости АВС. Верно ли, что сечение икосаэдра этой плоскостью является правильным шестиугольником?

Ответы к задачам по темам:

4. Угол между плоскостями.

5. Сечения

6. Отношение объемов частей многогранника.

7. Проекции и сечения правильных многогранников.

1. Нахождение площади сечения в многогранниках.

Решение задачи

№1 №2 №3 №4 №5 №6 №7 №8

Задача №1.

https://pandia.ru/text/78/375/images/image040_59.gif" width="597" height="292 src=">

Задача №2.

https://pandia.ru/text/78/375/images/image042_56.gif" width="577" height="277 src=">

Задача №3.

https://pandia.ru/text/78/375/images/image044_53.gif" width="630" height="275 src=">

Задача №4.

https://pandia.ru/text/78/375/images/image046_49.gif" width="641" height="332 src=">

Задача №5.

https://pandia.ru/text/78/375/images/image048_46.gif" width="642" height="245 src=">

Задача №6.

https://pandia.ru/text/78/375/images/image050_46.gif" width="680" height="340 src=">

Задача №7.

https://pandia.ru/text/78/375/images/image052_47.gif" width="659" height="340 src=">left" style="margin-left: 6.75pt;margin-right:6.75pt">

2. Использование свойств подобных треугольников.

Решение задачи

№1 №2 №3 №4 №5

Задача №1.

https://pandia.ru/text/78/375/images/image055_46.gif" width="605" height="254">

2-ой случай

Задача №2.

https://pandia.ru/text/78/375/images/image058_41.gif" width="683" height="260 src=">

Задача №3.

https://pandia.ru/text/78/375/images/image061_42.gif" width="536" height="203">

https://pandia.ru/text/78/375/images/image063_41.gif" width="341" height="107 src=">MsoNormalTable">

Точка С принадлежит плоскости CB"A"D (так как CD" перпендикулярна C"D как диагонали квадрата и так как B"C" перпендикулярна плоскости CC"D"D, - из чего следует B"C" перпендикулярна СЕ, - то получаем СЕ перпендикулярна B"C" и СЕ перпендикулярна C"D). Затем проводим EF перпендикулярно B"D и тогда получаем B"D перпендикулярна CF (по теореме о трех перпендикулярах: CF по отношению к плоскости AB"C"D является наклонной, СЕ - перпендикуляром и EF - проекцией наклонной CF; то она перпендикулярна и самой наклонной CF). Так как EF и CF принадлежат соответственно обеим плоскостям, то угол фи (угол CFE) является искомым.

После этого обоснования следует несложная вычислительная часть.

"B"EF и D""C"EF), в результате чего перпендикуляры A""M и D""M, проведенные в обеих фигурах к их линии пересечения, попадут в одну точку М, причем - внутри, а не снаружи призмы, так как углы B"A""D и C"D""A - тупые (B"D и больше BD=AC=A""C"" и C"A больше AC=BD=B""D""). Далее, найдя диагонали и стороны ромбов, можно найти отрезки A""M и D""M с помощью, например, двух формул для площади ромба

Примечание: Безусловно, в этой и аналогичных задачах никакие размеры многогранника (например, "a") не нужны, поэтому при подборе численных значений параметра "k" для различных вариантов задачи содержание ее условия в соответствующем месте должно формулироваться, например, так: "... в призме, у которой высота во столько-то раз больше стороны основания...", и т. д.

3. Нахождение расстояния и угла между скрещивающимися прямыми в многограннике.

Решение задачи

№1 №2 №3 №4 №5

Задача №1.

MsoNormalTable">

№1 Решение задачи первым способом предполагает:
- непростое обоснование того, что искомый перпендикуляр (h скр.) с концами на двух данных скрещивающихся прямых располагается внутри куба (а не вне его);
- ориентировочное определение местоположения этого перпендикуляра;
- догадку о том, что для нахождения длины отрезка h скр. необходимо с помощью теоремы о трех перпендикулярах спроектировать его на смежные грани куба, которым принадлежат скрещивающиеся прямые (диагонали) а уже затем подойти к несложному решению:

2. Решение задачи вторым способом предполагает следующие действия:
- построение в кубе секущей плоскости, параллельной одной из прямых A"C"; так как АС параллельна A"C", то A"C" параллельна плоскости ACD" по признаку параллельности прямой плоскости;
- отыскание внутри куба прямой, перпендикулярной секущей плоскости; здесь требуется догадка и обоснование того, что такой прямой является главная диагональB"D (АС перпендикулярна ВД и, так как ВД является проекцией наклонной В"D на плоскость основания АВСД, то по теореме о трех перпендикулярах получаем АС перпендикулярна В"D ; аналогично устанавливается, что CD" перпендикулярна B"D и, так как получили перпендикулярность главной диагонали В"D двум непараллельным прямым АС и СD" , принадлежащим плоскости сечения АСD" , то по признаку перпендикулярности прямой и плоскости:B"D перпендикулярна плоскости ACD");

Построение еще одной секущей плоскости, проходящей через диагональ В"D и пересекающей вторую из скрещивающихся прямых A"C"; этой плоскостью удобно выбрать диагональное сечение BB"D"D этому признаку перпендикулярности двух плоскостей плоскости BB"D"D перпендикулярна плоскости ACD", так как плоскость BB"D"D проходит через прямую (B"D), перпендикулярную другой плоскости (ACD"). Далее строиться линия пересечения обоих плоскостей по 2 их общим точкам (D"O) и фиксируется пересечением этой линии диагональю B"D (точка N);
-и наконец, по теореме о том, что если плоскость перпендикулярна одной из параллельных прямых, то она перпендикулярна и другой, из точки O" принадлежит A"C" проводим в плоскости сечения BB"D"D до пересечения с D"O отрезок O"M параллелен B"D; при этом будет O"M перпендикулярен плоскости ACD" и потому O"M = h скр.;
- затем в вычислительной части решения, рассмотрев сечение BB"D'D и в нем - прямоугольный треугольник OO'D', находим: Как видим, оба первых способа малопригодны для задач, представляющих хотя бы какую-то сложность

3. Решение задачи третьим способом предполагает :
- построение параллельных двух секущих плоскостей, содержащих две заданные скрещивающиеся прямые, - с помощью пересекающихся пар соответственно параллельных прямых (BC' параллельна AD' u AC параллельна A'C' => плоскость A'BC' параллельна плоскости ACD')
- отыскание и построение прямой, перпендикулярной одной из двух построенных секущих плоскостей (главная диагональ B'D перпендикулярна плоскости ACD' - доказательство приведено в предыдущем способе решения зада
- отыскание и построение точек пересечения указанной прямой (В'D) с обеими секущими параллельными плоскостями,- для чего необходимо построение любой третьей секущей плоскости(в данном случае, например, BB'D'D) содержащей указанную прямую(B'D), а затем - построение линий пересечения третьей секущей плоскости с первыми двумя (BO' u D'O); зафиксированные таким образом точки М и N т определяют отрезок МN=h скр.

И, наконец, в вычислительной части решения можно воспользоваться приемом из предыдущего способа решения или же прибегнуть к подобию треугольников:

4. Решение задачи четвертым способом предполагает:
-отыскание и построение такой секущей плоскости(в данном случае - BB'D'D), которая перпендикулярна одной из скрещивающихся прямых (A'C' перпендикулярен BB'D'D - так как A'C' перпендикулярен B'D' и DD' перпендикулярен плоскости A'B'C'D' => DD' перпендикулярен A'C', т. е. A'C' перпендикулярна двум непараллельным прямым, принадлежащим секущей плоскости) и на которую указанная прямая (A'C') проектируется в точку (O'); причем при выборе секущей плоскости желательно, чтобы хотя бы один из концов отрезка второй прямой принадлежал этой секущей плоскости;
- построение проекции второй прямой на эту секущую плоскость, - для чего из концов отрезка этой прямой (в данном случае из точки А) перпендикуляры на эту плоскость (в данном случае АО) проводятся параллельно первой из скрещивающихся прямых (АО параллельна A'C');
- после построения проекции D'O к ней в плоскости сечения BB'D'D проводится перпендикуляр O'M из первоначально полученной точки O' - проекции первой прямой на ту же секущую плоскость; получаем O'M = h скр.;
- и, наконец, в вычислительной части решения можно воспользоваться уже известным приемом нахождения высоты к гипотенузе прямоугольного треугольника (OO'D'):h скр

Задача №3.

В данной задаче для выбора способа решения определяющим является перпендикулярность прямой АС диагональной плоскости ВB'D'D (т. к. АС перпендикулярна ВD и АС перпендикулярна BB'), которой принадлежит другая прямая B'F, т. е. секущая плоскость BB'D'D удобна для выбора ее в качестве плоскости проекции. А далее следует несложная вычислительная часть:
1). Иэ подобия треугольника DFT и треугольника D'FB' находим DT = kd;
2). Из подобия треугольника NOT и треугольника BB'T находим ON:

Задача №4.

Данная задача представлена здесь для демонстрации применения второго способа (построение перпендикуляра от первой прямой к параллельной плоскости, содержащей вторую прямую) к простейшим ситуациям расположения скрещивающихся прямых в таком непростом многограннике, каким является правильная шестиугольная призма.

https://pandia.ru/text/78/375/images/image077_33.gif" width="186" height="87 src=">

Задача №5.

https://pandia.ru/text/78/375/images/image079_29.gif" width="347" height="326 src=">

5. Сечения.

Решение задачи

№1 №2 №3 №4 №5 №6

Задача №1.

По всяком случае, точки А, В и С лежат в одной плоскости, и поэтому можно рассмотреть сечение плоскостью, содержащей эти точки. Так как плоскость сечения проходит через точку касания сфер (сферы плоскости), и сечении получаются касающиеся окружности (окружность и прямая). Пусть О' и 0'' - центры первой и второй окружностей. Так как О'А || 0''В и точки O', С и 0'' лежат па одной прямой, угол АО'С = углу ВО''С. Поэтому угол АСО' = углу ВСО'', т. е. точки А, В и С лежат на одной прямой.

Задача №2.

Осевое сечение данного усеченного конуса является описанной трапецией АВСD с основаниями АD = 2R и ВС = = 2r. Пусть Р - точка касания вписанной окружности со стороной АВ, О - центр вписанной окружности. В треугольнике АВО сумма углов при вершинах А и В равна 90°, поэтому он прямоугольный. Следовательно, АР: РО - РО: ВР, т. е. РО'2 = АР*ВР. Ясно также, что АР = R и ВР = r. Поэтому радиус РО вписанной в конус сферы равен квадратному корню из произведения R и r, а значит, S = 4п(R2 + Rr+ r2). Выражая объем данного усеченного конуса по формулам, получаем, что площадь его полной поверхности равна 2п(R2 + Rr+ r2) = S/2 (нужно учесть, что высота усеченного конуса равна удвоенному радиусу сферы, около которой он описан).

Задача №3.

Общий перпендикуляр к данным ребрам делится параллельными им плоскостями граней куба на отрезки длиной у, х и г (х - длина ребра куба; отрезок длиной у прилегает к ребру а). Плоскости граней куба, параллельные данным ребрам, пересекают тетраэдр по двум прямоугольникам. Меньшие стороны этих прямоугольников равны ребру куба х. Так как стороны этих прямоугольников легко вычисляются, получаем х = bу/с и х = az/с. Следовательно, с=х+у+г=х+сх/b + еx/а, т. е. х=аЬс/(аb + bс + сa).

Задача №4.

Каждая сторона полученного многоугольника принадлежит одной из граней куба, поэтому число его сторон не превосходит 6. Кроме того, стороны, принадлежащие противоположным граням куба, параллельны, так как линии пересечения плоскости с двумя параллельными плоскостями параллельны. Следовательно, сечение куба не может быть правильным пятиугольником, так как у того нет параллельных сторон. Легко проверить, что правильный треугольник, квадрат и правильный шестиугольник могут быть сечениями куба.

Задача №5.

Рассмотрим некоторый круг, являющийся сечением данного тела, и проведем через его центр прямую l, перпендикулярную его плоскости. Эта прямая пересекает данное тело по некоторому отрезку АВ. Все сечения, проходящие через прямую l являются кругами с диаметром АВ.

Задача №6.

Рассмотрим произвольное сечение, проходящее через вершину А. Это сечение является треугольником АВС, причем его стороны АВ и АС являются образующими конуса, т. с. имеют постоянную длину. Поэтому площадь сечения пропорциональна синусу угла ВАС. Угол ВАС изменяется от 0° до ф,

MsoNormalTable">

Задача №2.

Рассмотрим куб, вершины которого расположены в вершинах додекаэдра. В нашей задаче речь идет о проекции на плоскость, параллельную грани этого куба. Теперь легко убедиться, что проекцией додекаэдра действительно является шестиугольник (рис. 70).

Задача №3.

а) Рассматриваемая проекция икосаэдра переходит в себя при повороте на З6° (при этом проекции верхних граней переходят в проекции нижних граней). Следовательно, она является правильным 10-угольнлком (рис. 71, а).

б) Рассматриваемая проекция додекаэдра является 12-угольником, переходящим в себя при повороте на 60° (рис. 71. б). Половина его сторон является проекциями ребер, параллельных плоскости проекции, а другая половина сторон - проекциями ребер, не параллельных плоскости проекции. Следовательно, этот 12-угольник неправильный.

MsoNormalTable">

Задача №4.

Существует. Середины указанных на рис. 72 ребер куба являются вершинами правильного шестиугольника. Это следует из того, что стороны этого шестиугольника параллельны сторонам правильного треугольника PQR, а их длины вдвое меньше длин сторон этого треугольника.

Задача №6.

Существует. Возьмем три пятиугольные грани о общей вершиной А и рассмотрим сечение плоскостью, пересекающей эти грани и параллельной плоскости, в которой лежат три попарно общие вершины рассматриваемых граней (рис. 74). Это сечение является шестиугольником с попарно параллельными противоположными сторонами. При повороте на 120° относительно оси, проходящей через вершину А и перпендикулярной секущей плоскости, додекаэдр и секущая плоскость переходят в себя. Поэтому сечение является выпуклым шестиугольником с углами 120°, длины сторон которого, чередуясь, принимают два значения. Для того чтобы этот шестиугольник был правильный, достаточно, чтобы эти два значения были равны. Когда секущая плоскость движется от одного своего крайнего положения до другого, удаляясь от вершины А, первое из этих значений возрастает от 0 до d, а второе убывает от d до а, где а - длина ребра додекаэдра. (d - длина диагонали грани (d больше а). Поэтому в некоторый момент эти значения равны, т. е. сечение является правильным шестиугольником.

Задача №7.

Нет, не верно. Рассмотрим проекцию икосаэдра на плоскость АВС. Она является правильным шестиугольником (см. рис.69). Поэтому рассматриваемое сечение было бы правильным шестиугольником, лишь если бы все 6 вершин, соединенных ребрами с точками А, В и С (и отличных от А, В и С), лежали в одной плоскости. Но, как легко убедиться, это неверно (иначе получилось бы, что все вершины икосаэдра расположены на трех параллельных плоскостях).

ЗАДАЧИ

2. Использование свойств подобных треугольников.

Решение задачи

№1 №2 №3 №4 №5

Задача №1.

https://pandia.ru/text/78/375/images/image055_46.gif" width="605" height="254">

2-ой случай

Задача №2.

https://pandia.ru/text/78/375/images/image058_41.gif" width="683" height="260 src=">

Задача №3.

https://pandia.ru/text/78/375/images/image060_43.gif" width="570" height="264 src=">

Задача №4.

https://pandia.ru/text/78/375/images/image063_41.gif" width="341" height="107 src=">right">

Сегодня еще раз разберем, как построить сечение тетраэдра плоскостью .
Рассмотрим самый простой случай (обязательный уровень), когда 2 точки плоскости сечения принадлежат одной грани, а третья точка - другой грани.

Напомним алгоритм построения сечений такого вида (случай: 2 точки принадлежат одной грани).

1. Ищем грань, которая содержит 2 точки плоскости сечения. Проводим прямую через две точки, лежащие в одной грани. Находим точки ее пересечения с ребрами тетраэдра. Часть прямой, оказавшаяся в грани, есть сторона сечения.

2. Если многоугольник можно замкнуть - сечение построено. Если нельзя замкнуть, то находим точку пересечения построенной прямой и плоскости, содержащей третью точку.

1. Видим, что точки E и F лежат в одной грани (BCD), проведем прямую EF в плоскости (BCD).
2. Найдем точку пересечения прямой EF c ребром тетраэдра BD, это точка Н.
3. Теперь следует найти точку пересечения прямой EF и плоскости, содержащей третью точку G, т.е. плоскости (ADC).
Прямая CD лежит в плоскостях (ADC) и (BDC), значит она пересекается с прямой EF, и точка К является точкой пересечения прямой EF и плоскости (ADC).
4. Далее находим еще две точки, лежащие в одной плоскости. Это точки G и K, обе лежат в плоскости левой боковой грани. Проводим прямую GK, отмечаем точки, в которых эта прямая пересекает ребра тетраэдра. Это точки M и L.
4. Осталось "замкнуть" сечение, т.е.соединить точки, лежащие в одной грани. Это точки M и H, и также L и F. Оба этих отрезка - невидимы, проводим их пунктиром.


В сечении получился четырехугольник MHFL. Все его вершины лежат на ребрах тетраэдра. Выделим получившееся сечение.

Теперь сформулируем "свойства" правильно построенного сечения:

1. Все вершины многоугольника, которое является сечением, лежат на ребрах тетраэдра (параллелепипеда, многоугольника).

2. Все стороны сечения лежат в гранях многогранника.
3. В каждой грани многоранника может находиться не более одной (одна или ни одной!) стороны сечения

1. Понятие о позиционной задаче. Напомним, что плоскость называется секущей плоскостью многогранника, если по обе стороны от этой плоскости имеются точки многогранника. Сечением многогранника плоскостью называется многоугольник, сторонами которого являются отрезки, по которым секущая плоскость пересекает грани многогранника.

На рис. 30 изображена треугольная призма . (На этом проекционном чертеже изображения точек обозначены теми же буквами, что и соответствующие точки-оригиналы). Представим, что нам необходимо отметить точки: а) М , лежащую на ребре ; б) N , лежащую в грани ; в) , лежащую внутри призмы.

Если мы изобразим эти точки так, как это сделано на рисунке а), то лишь про точку М можно условно сказать, что она лежит на ребре . Положение точек N и K по этому рисунку определить нельзя. Рисунок б) уже позволяет заключить, что точка N лежит в грани , а точка –


внутри призмы. За счет чего можно сделать эти выводы? Дело в том, что на втором рисунке мы задали проекции точек N и K на плоскость основания параллельно боковым ребрам призмы. Строго говоря, для того, чтобы быть уверенным, что и точка М лежит на ребре , одних зрительных восприятий также недостаточно. (В проектировании, с помощью которого выполнялось изображение призмы, точка М служит проекцией любой точки прямой, параллельной направлению проектирования и через нее проходящей.)


Если же указать, что при проектировании, параллельном боковым ребрам призмы, точка М проектируется на основание в точку А , то такая уверенность появляется.

Аналогичная ситуация показана на рис. 31. Здесь нужно отметить точки: а) М на боковом ребре SA ; б) N – в грани SАB ;
в) К – внутри пирамиды. Разница заключается в том, что на правом рисунке используется центральное проектирование отмечаемых точек на плоскость основания пирамиды из ее вершины S .

Для того чтобы сделать изображение наглядным, в рассмотренных примерах приходится использовать не одно проектирование, а два. Первое проектирование, с помощью которого выполнено изображение многогранника, называется внешним. Второе проектирование носит вспомогательный характер. Оно связано с самой фигурой, – это, как правило, проектирование на плоскость, содержащую одну из граней многогранника. Мы будем иметь дело только с призмами и пирамидами, а в качестве такой плоскости чаще всего выбирать плоскость их основания. Вспомогательное проектирование называется внутренним. Из рассмотренных примеров видно, что для призмы удобно использовать внутреннее параллельное проектирование, а для пирамиды – центральное.

Пусть F 0 – некоторая фигура в пространстве, которая параллельно проектируется на плоскость p (внешнее проектирование). Для того чтобы изображение фигуры было наглядным, мы выбираем в пространстве некоторую плоскость , отличную от плоскости p , и рассматриваем новое проектирование, параллельное или центральное, точек фигуры F 0 на эту плоскость (внутреннее проектирование).

Рассмотрим в пространстве точку М 0 и ее проекцию на плоскость p 0 ¢ при внутреннем проектировании. Обе эти точки спроектируем на плоскость p . При этом проекция М точки М 0 называется основной (или просто проекцией), а проекция М¢ точки – вторичной.

Если для точки М 0 фигуры F 0 известны ее проекция и вторичная проекция, то по изображению мы можем судить о положении этой точки на оригинале. В этом случае говорят, что точка М 0 , принадлежащая фигуре F 0 , является заданной на проекционном чертеже. Изображение фигуры F 0 , на котором каждая точка фигуры является заданной, называется полным.

На проекционных чертежах часто приходится решать задачи о нахождении пересечения различных фигур. Такие задачи называются позиционными. Если некоторое изображение является полным, то на этом изображении разрешима любая позиционная задача.

В заключение заметим следующее. Если M 0 ¢ , N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем проектировании, то при внешнем проектировании (параллельном) образы MM¢ , NN ¢, KK ¢, ... параллельных прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... на плоскости p также будут параллельными. Если же M 0 ¢, N 0 ¢, K 0 ¢, ... – образы точек M 0 , N 0 , K 0 , ... при внутреннем центральном проектировании с центром S 0 , то образы MM ¢, NN ¢, KK ¢, ... прямых M 0 M 0 ¢, N 0 N 0 ¢, K 0 K 0 ¢, ... при внешнем проектировании пересекаются на плоскости p в одной точке S. Эта точка будет образом точки S 0 .

Среди позиционных задач нас будут интересовать только задачи, связанные с построением сечений многоугольников. Рассмотрим основные методы построения таких сечений. Обычно при решении стереометрических задач образы точек фигуры на проекционном чертеже обозначают теми же буквами, что и соответствующие им точки на фигуре-оригинале. Мы также в дальнейшем будем придерживаться этого правила.

2. Построения сечений, основанные на свойствах параллельных прямых и плоскостей. Данный способ особенно часто используется при построении сечений параллелепипедов. Это объясняется тем, что противоположные грани параллелепипеда параллельны. По теореме о пересечении параллельных плоскостей третьей плоскостью линии пересечения параллельных граней являются параллельными отрезками.

Задача 1. Основанием четырехугольной пирамиды SABCD является параллелограмм. Постройте сечение пирамиды плоскостью, проходящей через точку , лежащую на боковом ребре AS , параллельно диагонали BD основания.

Сколько таких плоскостей можно построить? Какие фигуры могут получаться в сечении?

Решение. В плоскости основания пирамиды проведем произвольную прямую a , параллельную диагонали BD . Через эту прямую и точку проходит плоскость a , и притом единственная. По признаку параллельности прямой и плоскости и, значит, плоскость a является искомой.

В плоскости основания существует бесконечно много прямых, параллельных прямой BD, поэтому существует бесконечно много плоскостей, удовлетворяющих условию задачи.


Вид многоугольника, получающегося в сечении, зависит от числа граней, которые пересекает плоскость a . Так как четырехугольная пирамида имеет пять граней, то в сечении могут получаться треугольники, четырехугольники и пятиугольники.

На рис. 32 показаны различные случаи расположения прямой a относительно параллелограмма ABCD . Очевидно, что в зависимости от этого расположения будет определяться вид многоугольника-сечения.

Слева на рис. 33 рассмотрен случай, когда прямая a 1 пересекает стороны AD , AB в точках M , N соответственно и лежит с точкой в одном полупространстве с границей BSD . Здесь сечением является треугольник MKN.

На правом рисунке показан случай, когда прямая a 3 лежит с точкой по разные стороны от плоскости BSD и пересекает стороны DC , BC основания в точках M , N соответственно. Обозначим через Х точку пересечения прямых AD и a 3 . Так как прямая AD лежит в плоскости грани ASD , то в этой грани лежит и точка Х . С другой стороны, точка Х принадлежит прямой a 3 , лежащей в секущей плоскости. Поэтому прямая будет линией пересечения секущей плоскости и плоскости грани ASD. Это позволяет найти точку R=SD ÇKX . Аналогично, точка позволяет построить вершину T ÎBS искомого сечения. В рассмотренном случае секущая плоскость пересекает все грани пирамиды и сечение является пятиугольником.

Остальные случаи взаимного расположения прямой a и основания пирамиды рассмотрите самостоятельно.

Рассмотрим специальные методы построения сечений.

4. Метод следов. Если секущая плоскость не параллельна грани многогранника, то она пересекает плоскость этой грани по прямой. Прямая, по которой секущая плоскость пересекает плоскость грани многогранника, называется следом секущей плоскости на плоскости этой грани. Один из методов построения сечений многогранников основан на использовании следа секущей плоскости на плоскости одной из его граней. Чаще всего при построении сечений призмы и усеченной пирамиды в качестве такой плоскости выбирается плоскость нижнего основания, а в случае пирамиды – плоскость ее основания.

Рассмотрим построение сечений методом следов на примерах.

Задача 2. Дано изображение четырехугольной призмы ABCDA 1 B 1 C 1 D 1 . Задать три точки, принадлежащие ее различным боковым граням, и построить сечение, проходящее через эти три точки.

Решение. Напомним, что для задания точки на проекционном чертеже необходимо задать ее основную и вторичную проекции. В случае призмы для задания вторичных проекций мы договорились использовать внутреннее параллельное проектирование. Поэтому, чтобы задать точку М , лежащую в грани АВВ 1 А 1 , указываем ее проекцию М 1 на плоскость основания параллельно боковым ребрам призмы. Аналогично задаются точки N и K , лежащие в гранях AD 1 DA 1 , CDD 1 C 1 соответственно (рис. 34). Построим след секущей плоскости на плоскости нижнего основания призмы. Параллельные прямые ММ 1 , лежат в одной плоскости и, значит, в общем случае прямые , пересекаются в некоторой точке Х . Так как прямая лежит в секущей плоскости, а прямая – в плоскости нижнего основания, то точка Х принадлежит следу секущей плоскости на плоскости нижнего основания призмы. Аналогично, точки K , N и их вторичные проекции K 1 , N 1 позволяют найти вторую точку Y , принадлежащую искомому следу.

Прямая АВ , лежащая в грани АВВ 1 А 1 , пересекает след XY в точке Z , поэтому прямая MZ лежит как в плоскости грани АВВ 1 А 1 , так и в секущей плоскости. Отрезок ТР , где T=MZ ÇAA 1 , P=MZ ÇBB 1 , будет стороной многоугольника-сечения. Далее последовательно строим его стороны TR и RQ , проходящие через данные точки N и K соответственно. Наконец, строим сторону PQ .

Задача 3. Дано изображение пятиугольной пирамиды SABCDE. Задать точки N и K , принадлежащие боковым ребрам SC , SD соответственно и точку М , лежащую в грани ASE. Построить сечение, проходящее через заданные точки.

Решение. Для задания точек K , N и М воспользуемся внутренним центральным проектированием с центром в вершине пирамиды. При этом проекциями точек K и N будут точки D и C , а проекцией точки М – точка (рис. 35).

Прямые и , лежащие в плоскости , в общем случае пересекаются в точке Х , лежащей в секущей плоскости. С другой стороны, точка Х лежит в плоскости основания, и, значит, она принадлежит следу секущей плоскости на плоскости основания. Второй точкой искомого следа будет точка . Прямая АЕ , лежащая в грани ASE пирамиды, пересекает след XY в точке Z . Проводя прямую , находим сторону LP многоугольника-сечения. Для того чтобы найти вершину сечения, строим точку , а затем прямую .

5. Метод внутреннего проектирования. Суть этого метода заключается в том, что здесь с помощью внутреннего проектирования точки сечения ищутся по их известным вторичным проекциям. Метод внутреннего проектирования особенно удобно применять в тех случаях, когда след секущей плоскости далеко удален от заданной фигуры. Этот метод незаменим и тогда, когда некоторые из прямых, содержащих стороны основания многогранника, пересекают след за пределами чертежа. Рассмотрим применение метода на примерах.

Задача 4. Дано изображение шестиугольной призмы и трех точек, лежащих в трех боковых гранях, никакие две из которых не являются смежными. Построить сечение призмы плоскостью, проходящей через заданные точки.

Решение. Пусть заданные точки М , L , K лежат в гранях , , , а ,, – их вторичные проекции
(рис. 36).

Найдем точку, в которой секущая плоскость пересекает боковое ребро . Для этого с помощью внутреннего проектирования для точки найдем основную проекцию Х , лежащую в секущей плоскости. Искомая точка Х является точкой пересечения прямой, проходящей через точку Х¢ параллельно боковым ребрам призмы, и прямой ML , лежащей в секущей плоскости. Точка Х позволяет построить вершину , а затем сторону QR сечения. Аналогично, используя точку , строим точку Y , прямую KY и находим вершину Р сечения. Далее строятся стороны PQ и PO сечения.

Оставшиеся построения выполняем в следующей последовательности:

1) строим точку Z¢=AK¢ ÇBD ;

2) находим точку Z (Z ÎPK );

3) проводим прямую OZ и находим вершину S (S ÎDD 1) сечения;

4) последовательно строим стороны SR , ST и TO сечения.

Задача 5. Дано изображение четырехугольной пирамиды и трех точек, лежащих на ее боковых ребрах. Построить сечение, проходящее через заданные точки.

Решение. Пусть SABCD – данная пирамида, а M , N , K – данные точки (рис. 37). Вторичными проекциями точек M , N , K во внутреннем центральном проектировании из вершины S на плоскость основания являются точки A , C и D соответственно. Заметим, что в данной задаче стороны и KN сечения сразу строятся. Остается найти только вершину сечения L , лежащую на боковом ребре SB . Для этого построим точку и «поднимем» ее в секущую плоскость с помощью внутреннего проектирования. Прообразом точки Х¢ при этом центральном проектировании будет точка Х=Х¢S ÇMN. Вершина L , принадлежащая ребру SB , лежит на прямой KX.

6. Комбинированный метод . Суть этого метода заключается в сочетании метода следов или метода внутреннего проектирования с построениями, выполняемыми на основе свойств параллельных прямых и плоскостей.

Рассмотрим следующий пример.

Задача 6. Точка М является серединой ребра AD куба ABCDA 1 B 1 C 1 D 1 . Построить сечение куба плоскостью, проходящей через точку М параллельно диагонали ВD основания и диагонали АВ 1 боковой грани АА 1 В 1 В .

Решение. Секущая плоскость a параллельна диагонали BD основания и проходит через точку М , также лежащую в основании, поэтому она пересекает основание по прямой
(рис. 38).

Прямая l будет следом плоскости a на плоскости нижнего основания куба. Обозначим . След m плоскости a на плоскости грани АВВ 1 А 1 строится аналогично. Этот след проходит через точку N , параллельно АВ 1 . Обозначим .

Можно продолжить построение сечения, не прибегая к специальным методам. Однако мы воспользуемся методом следов. Пусть прямая ВС пересекает след l в точке Х . Точки Х и искомой плоскости a лежат и в плоскости грани ВСС 1 В 1 . Обозначим через L точку пересечения прямой и ребра В 1 С 1 . Далее удобно воспользоваться теоремой о пересечении двух параллельных плоскостей третьей плоскостью. В силу этой теоремы , . Здесь R ÎDD 1 , P ÎC 1 D 1 .

Докажите, что полученный в сечении шестиугольник является правильным.

Изображение окружности

1. Эллипс и его свойства. При изображении цилиндра, конуса и шара (сферы) нам придется вычерчивать эллипсы. Эллипс можно определить различными способами. Приведем определение с помощью сжатия плоскости к прямой.


Эллипсом называется линия, которая является образом окружности при сжатии плоскости к прямой, проходящей через центр окружности (рис. 39).

Если заданы окружность, прямая, проходящая через ее центр, и коэффициент сжатия, с помощью приведенного определения легко построить образ любой точки заданной окружности. Выполнив построение нескольких точек-образов и соединив их плавной линией, можно вычертить эллипс, который является образом окружности.

Oxy так, чтобы ее ось Ox совпала с прямой сжатия l , а начало О было центром окружности w радиуса a (рис. 40). В этой системе координат окружность w определяется уравнением: или

Это значит, что любая точка , координаты которой удовлетворяют уравнению (1), принадлежит окружности w , а точка, координаты которой не удовлетворяют (1) – не принадлежит.

Пусть – коэффициент сжатия, – произвольная точка плоскости, а М 0 – ее проекция на прямую l . При сжатии к точка М переходит в точку такую, что . Так как прямая ММ 1 параллельна оси Oy , то , а проекция М 0 этих точек на прямую сжатия Ox определяется координатами .

Отсюда , . Поэтому формулы сжатия имеют вид

Обратно, формулы (2) определяют сжатие плоскости к оси Ox с коэффициентом сжатия , в котором точка переходит в точку .

Из этих формул , . Подставляя x и y в уравнение (1), получим: . Значит, координаты точки М 1 , являющейся образом точки окружности, удовлетворяют уравнению

где . Это уравнение в системе Oxy определяет эллипс g , который получается при сжатии окружности w к оси Ox . Напомним, что уравнение (3) называется каноническим уравнением эллипса.

Используя каноническое уравнение эллипса, можно изучать его геометрические свойства. Вспомним некоторые понятия, связанные с эллипсом, и его свойства.

Пусть эллипс g задан в прямоугольной системе координат каноническим уравнением (3). Так как x и y входят в это уравнение во второй степени, то можно сделать следующие выводы.

Если , то Îg (рис. 41). Отсюда следует, что начало координат О является центром симметрии эллипса. Центр симметрии эллипса называется его центром .

Если , то , . Отсюда следует, что прямые Ox и Oy являются осями симметрии эллипса. Оси симметрии эллипса называются его осями . Каждая из осей пересекает эллипс в двух точках. Ось Ox имеет уравнение , поэтому из уравнения (3) для абсцисс точек А 1 , А 2 пересечения имеем . Отсюда А 1 (a ;0), А 2 (–a ;0). Аналогично находим, что ось Oy пересекает эллипс в точках В 1 (0;b ) и В 2 (0;–b ). Точки пересечения эллипса с его осями называются вершинами эллипса. Отрезки А 1 А 2 и В 1 В 2 также называются осями эллипса . Центр эллипса О является общей серединой каждого из этих отрезков.



Отрезок, концы которого принадлежат эллипсу,называется хордой этого эллипса. Хорда эллипса, проходящая через его центр, называется диаметром эллипса . Значит, оси эллипса являются его взаимно перпендикулярными диаметрами.

Заметим, что при , имеем . В этом случае A 1 A 2 >B 1 B 2 и отрезки A 1 A 2 , B 1 B 2 называются соответственно большой и малой осями эллипса. При этом числа , называются соответственно большой и малой полуосями эллипса. При , наоборот, . Здесь названия осей меняются соответствующим образом.

Рассмотрим параметрические уравнения эллипса и основанный на них способ построения точек эллипса.

Пусть отрезки А 1 А 2 и В 1 В 2 являются осями эллипса. Построим на них, как на диаметрах, концентрические окружности w 1 и w 2 соответственно (рис. 42). Рассмотрим луч h с началом в точке О . Этот луч пересекает окружности w 1 и w 2 в точках М 1 и М 2 . Через точку М 1 проведем прямую, параллельную малой оси В 1 В 2 , а через точку М 2 – прямую, параллельную большой оси А 1 А 2 . Покажем, что точка М пересечения этих прямых принадлежит эллипсу с заданными осями.

Выберем прямоугольную систему координат Oxy с началом в точке О . Пусть в этой системе точка М имеет координаты (x ;y ). Далее, пусть луч h образует с лучом ОА 1 угол t. Если , то , . Поскольку точки М и М 1 имеют равные абсциссы, а точки М и М 2 – равные ординаты,

Из равенств (4) , , поэтому в силу основного тригонометрического тождества имеем , т.е. построенная точка принадлежит эллипсу с полуосями a и b .

Для любого значения t Î}

 
Статьи по теме:
Тематическое занятие на тему:
Урок мужества «Давайте, люди, никогда об этом не забудем...» Оформление доски : плакаты с цитатами о Сталинграде; Сталинградской битве; рисунки детей, посвященные годовщине разгрома немецко-фашистских войск под Сталинградом. Подсчитайте, живые, Сколько ср
Конспект НОД по познавательно-исследовательской деятельности «Губка- губочка Эксперименты с губками
Евгения Куваева Конспект занятия по познавательно-исследовательской деятельности в младшей группе «Грибы» Конспект занятия по познавательно-исследовательской деятельности в младшей группе на тему «Грибы » . Цель : дать представление о грибах и ягодах ,
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение