Формула нахождения удельной теплоемкости в физике. Удельная теплоемкость: для чего она нужна и в чем ее смысл

Количество энергии, которое необходимо сообщить 1 г какого либо вещества, чтобы повысить его температуру на 1°С. По определению, для того чтобы повысить температуру 1 г воды на 1°С, требуется 4,18 Дж. Экологический энциклопедический словарь.… … Экологический словарь

удельная теплоёмкость - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heatSH …

УДЕЛЬНАЯ ТЕПЛОЁМКОСТЬ - физ. величина, измеряемая количеством теплоты, необходимым для нагревания 1 кг вещества на 1 К (см.). Единица удельной темплоёмкости в СИ (см.) на килограмм кельвин (Дж кг∙К)) … Большая политехническая энциклопедия

удельная теплоёмкость - savitoji šiluminė talpa statusas T sritis fizika atitikmenys: angl. heat capacity per unit mass; massic heat capacity; specific heat capacity vok. Eigenwärme, f; spezifische Wärme, f; spezifische Wärmekapazität, f rus. массовая теплоёмкость, f;… … Fizikos terminų žodynas

См. Теплоёмкость … Большая советская энциклопедия

удельная теплоёмкость - удельная теплотаCловарь химических синонимов I

удельная теплоёмкость газа - — Тематики нефтегазовая промышленность EN gas specific heat … Справочник технического переводчика

удельная теплоёмкость нефти - — Тематики нефтегазовая промышленность EN oil specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном давлении - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant pressurecpconstant pressure specific heat … Справочник технического переводчика

удельная теплоёмкость при постоянном объёме - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN specific heat at constant volumeconstant volume specific heatCv … Справочник технического переводчика

Книги

  • Физические и геологические основы изучения движения вод в глубоких горизонтах , Трушкин В.В.. В целом книга посвящена закону авторегулирования температуры воды с вмещающим телом, открытому автором в 1991 г. В начале книги проведен обзор состояния изученностипроблемы движения глубоких…

Удельная теплоемкость является характеристикой вещества. То есть у разных веществ она различна. Кроме того, одно и то же вещество, но в разных агрегатных состояниях обладает разной удельной теплоемкостью. Таким образом, правильно говорить об удельной теплоемкости вещества (удельная теплоемкость воды, удельная теплоемкость золота, удельная теплоемкость древесины и т. д.).

Удельная теплоемкость конкретного вещества показывает, сколько тепла (Q) надо ему передать, чтобы нагреть 1 килограмм этого вещества на 1 градус Цельсия. Удельную теплоемкость обозначают латинской буквой c . То есть, c = Q/mt. Учитывая, что t и m равны единице (1 кг и 1 °C), то удельная теплоемкость численно равна количеству теплоты.

Однако теплота и удельная теплоемкость имеют разные единицы измерения. Теплота (Q) в системе Си измеряется в Джоулях (Дж). А удельная теплоемкость - в Джоулях, деленных на килограмм, умноженный на градус Цельсия: Дж/(кг · °C).

Если удельная теплоемкость какого-то вещества равна, например, 390 Дж/(кг · °C), то это значит, что если 1 кг этого вещества нагреется на 1 °C, то оно поглотит 390 Дж тепла. Или, другими словами, чтобы нагреть 1 кг этого вещества на 1 °C, ему надо передать 390 Дж тепла. Или, если 1 кг этого вещества охладится на 1 °C, то оно отдаст 390 Дж тепла.

Если же на 1 °C нагревается не 1, а 2 кг вещества, то ему надо передать в два раза больше тепла. Так для примера выше это уже будет 780 Дж. То же самое будет, если нагреть на 2 °C 1 кг вещества.

Удельная теплоемкость вещества не зависит от его начальной температуры. То есть если например, жидкая вода имеет удельную теплоемкость 4200 Дж/(кг · °C), то нагревание на 1 °C хоть двадцатиградусной, хоть девяностоградусной воды одинаково потребует 4200 Дж тепла на 1 кг.

А вот лед имеет удельную теплоемкость отличную от жидкой воды, почти в два раза меньше. Однако, чтобы и его нагреть на 1 °C потребуется одинаковое количество теплоты на 1 кг, независимо от его начальной температуры.

Удельная теплоемкость также не зависит от формы тела, которое изготовлено из данного вещества. Стальной брусок и стальной лист, имеющие одинаковую массу, потребуют одинаковое количество теплоты для нагревания их на одинаковое количество градусов. Другое дело, что при этом следует пренебречь обменом теплом с окружающей средой. У листа поверхность больше, чем у бруска, а значит, лист больше отдает тепла, и поэтому быстрее будет остывать. Но в идеальных условиях (когда можно пренебречь потерей тепла) форма тела не играет роли. Поэтому говорят, что удельная теплоемкость - это характеристика вещества, но не тела.

Итак, удельная теплоемкость у разных веществ различна. Это значит, что если даны различные вещества одинаковой массы и с одинаковой температурой, то чтобы нагреть их до другой температуры, им надо передать разное количество тепла. Например, килограмму меди потребуется тепла примерно в 10 раз меньше, чем воде. То есть у меди удельная теплоемкость примерно в 10 раз меньше, чем у воды. Можно сказать, что в «медь помещается меньше тепла».

Количество теплоты, которое надо передать телу, чтобы нагреть его от одной температуры до другой, находят по следующей формуле:

Q = cm(t к – t н)

Здесь t к и t н - конечная и начальная температуры, m - масса вещества, c - его удельная теплоемкость. Удельную теплоемкость обычно берут из таблиц. Из этой формулы можно выразить удельную теплоемкость.

На сегодняшнем уроке мы введем такое физическое понятие как удельнаятеплоемкость вещества. Узнаем, что она зависит от химических свойств вещества, а ее значение, которое можно найти в таблицах, различно для различных веществ. Затем выясним единицы измерения и формулу нахождения удельной теплоемкости, а также научимся анализировать тепловые свойства веществ по значению их удельной теплоемкости.

Калориметр (от лат. calor – тепло и metor – измерять) – прибор для измерения количества теплоты , выделяющейся или поглощающейся в каком-либо физическом, химическом или биологическом процессе. Термин «калориметр» был предложен А. Лавуазье и П. Лапласом.

Состоит калориметр из крышки, внутреннего и внешнего стакана. Очень важным в конструкции калориметра является то, что между меньшим и большим сосудами существует прослойка воздуха, которая обеспечивает из-за низкой теплопроводности плохую теплопередачу между содержимым и внешней средой. Такая конструкция позволяет рассматривать калориметр как своеобразный термос и практически избавиться от воздействий внешней среды на протекание процессов теплообмена внутри калориметра.

Предназначен калориметр для более точных, чем указано в таблице, измерений удельных теплоемкостей и других тепловых параметров тел.

Замечание. Важно отметить, что такое понятие, как количество теплоты, которым мы очень часто пользуемся, нельзя путать с внутренней энергией тела. Количество теплоты определяет именно изменение внутренней энергии, а не его конкретное значение.

Отметим, что удельная теплоемкость у разных веществ разная, что можно увидеть по таблице (рис. 3). Например, у золота удельная теплоемкость . Как мы уже указывали ранее, физический смысл такого значения удельной теплоемкости означает, что для нагревания 1 кг золота на 1 °С ему необходимо сообщить 130 Дж теплоты (рис. 5).

Рис. 5. Удельная теплоемкость золота

На следующем уроке мы обсудим вычисление значения количества теплоты.

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «vactekh-holod.ru» ()

Домашнее задание

Введем теперь очень важную термодинамическую характеристику, называемую теплоемкостью системы (традиционно обозначается буквой С с различными индексами).

Теплоемкость - величина аддитивная , она зависит от количества вещества в системе. Поэтому вводят также удельную теплоемкость

Удельная теплоемкость - это теплоемкость единицы массы вещества

и молярную теплоемкость

Молярная теплоемкость - это теплоемкость одного моля вещества

Поскольку количество теплоты не есть функция состояния и зависит от процесса, теплоемкость также будет зависеть от способа подвода тепла к системе. Чтобы понять это, вспомним первое начало термодинамики. Разделив равенство (2.4) на элементарное приращение абсолютной температуры dT, получим соотношение

Второе слагаемое, как мы убедились, зависит от вида процесса. Отметим, что в общем случае неидеальной системы, взаимодействием частиц которой (молекул, атомов, ионов и т. п.) пренебречь нельзя (см., например, § 2.5 ниже, в котором рассматривается ван–дер–ваальсовский газ), внутренняя энергия зависит не только от температуры, но и от объема системы. Это объясняется тем, что энергия взаимодействия зависит от расстояния между взаимодействующими частицами. При изменении объема системы меняется концентрация частиц, соответственно, меняется среднее расстояние между ними и, как следствие, меняется энергия взаимодействия и вся внутренняя энергия системы. Другими словами, в общем случае неидеальной системы

Поэтому, в общем случае первое слагаемое нельзя писать в виде полной производной, полную производную необходимо заменить на частную производную с дополнительным указанием на то, при какой постоянной величине она вычисляется. Например, для изохорного процесса:

.

Или для изобарного процесса

Входящая в это выражение частная производная вычисляется с помощью уравнения состояния системы, записанного в виде . Например, в частном случае идеального газа

эта производная равна

.

Мы рассмотрим два частных случая, соответствующих процессу подведения теплоты:

В первом случае работа dА = 0 и мы получаем теплоемкость С V идеального газа при постоянном объеме:

С учетом сделанной выше оговорки, для неидеальной системы соотношение (2.19) необходимо записать в следующем общем виде

Заменив в 2.7 на , а на немедленно получаем:

.

Для вычисления теплоемкости идеального газа С p при постоянном давлении (dp = 0 ) мы учтем, что из уравнения (2.8) следует выражение для элементарной работы при бесконечно малом изменении температуры

Получаем в итоге

Разделив это уравнение на число молей вещества в системе, получаем аналогичное соотношение для молярных теплоемкостей при постоянном объеме и давлении, называемое соотношением Майера

Приведем для справки общую формулу - для произвольной системы - связывающую изохорную и изобарную теплоемкости:

Выражения (2.20) и (2.21) получаются из этой формулы путем подстановки в неё выражения для внутренней энергии идеального газа и использования его уравнения состояния (см. выше):

.

Теплоемкость данной массы вещества при постоянном давлении больше теплоемкости при постоянном объеме, так как часть подведенной энергии тратится на совершение работы и для такого же нагревания требуется подвести больше теплоты. Отметим, что из (2.21) следует физический смысл газовой постоянной:

Таким образом, теплоемкость оказывается зависящей не только от рода вещества, но и от условий, в которых происходит процесс изменения температуры.

Как мы видим, изохорная и изобарная теплоемкости идеального газа от температуры газа не зависят, для реальных веществ эти теплоемкости зависят, вообще говоря, также и от самой температуры Т .

Изохорную и изобарную теплоемкости идеального газа можно получить и непосредственно из общего определения, если воспользоваться полученными выше формулами (2.7) и (2.10 ) для количества теплоты, получаемого идеальным газом при указанных процессах.

Для изохорного процесса выражение для С V следует из (2.7):

Для изобарного процесса выражение для С р вытекает из (2.10 ):

Для молярных теплоемкостей отсюда получаются следующие выражения

Отношение теплоемкостей равно показателю адиабаты:

На термодинамическом уровне нельзя предсказать численное значение g ; нам удалось это сделать лишь при рассмотрении микроскопических свойств системы (см. выражение (1.19 ), а также (1.28) для смеси газов). Из формул (1.19 ) и (2.24) следуют теоретические предсказания для молярных теплоемкостей газов и показателя адиабаты.

Одноатомные газы (i = 3 ):

Двухатомные газы (i = 5 ):

Многоатомные газы (i = 6 ):

Экспериментальные данные для различных веществ приведены в таблице 1.

Таблица 1

Вещество

g

Видно, что простая модель идеальных газов в целом неплохо описывает свойства реальных газов. Обращаем внимание, что совпадение было получено без учета колебательных степеней свободы молекул газа.

Мы привели также значения молярной теплоемкости некоторых металлов при комнатной температуре. Если представить кристаллическую решетку металла как упорядоченный набор твердых шариков, соединенных пружинками с соседними шариками, то каждая частица может только колебаться в трех направлениях (i кол = 3 ), и с каждой такой степенью свободы связаны кинетическая k В Т/2 и такая же потенциальная энергия. Поэтому на частицу кристалла приходится внутренняя (колебательная) энергия k В Т. Умножая на число Авогадро, получим внутреннюю энергию одного моля

откуда вытекает значение молярной теплоемкости

(Вследствие малого коэффициента теплового расширения твердых тел для них не различают с р и c v ). Приведенное соотношение для молярной теплоемкости твердых тел называется законом Дюлонга и Пти, и из таблицы видно хорошее совпадение расчетного значения

с экспериментом.

Говоря о неплохом соответствии приведенных соотношений и данных опытов, следует отметить, что оно наблюдается лишь в определенном диапазоне температур. Иначе говоря, теплоемкость системы зависит от температуры, и формулы (2.24) имеют ограниченную область применения. Рассмотрим сначала рис. 2.10, на котором изображена экспериментальная зависимость теплоемкости с тV газообразного водорода от абсолютной температуры Т.

Рис. 2.10. Молярная теплоемкость газообразного водорода Н 2 при постоям ном объеме как функция температуры (экспериментальные данные)

Ниже, для краткости, говорится об отсутствии у молекул тех или иных степеней свободы в определенных температурных интервалах. Еще раз напомним, что речь в действительности идет о следующем. По квантовым причинам, относительный вклад во внутреннюю энергию газа отдельных видов движения действительно зависит от температуры и в определенных температурных интервалах может быть мал настолько, что в эксперименте - всегда выполняемом с конечной точностью - он незаметен. Результат эксперимента выглядит так, как будто этих видов движения нет, нет и соответствующих степеней свободы. Число и характер степеней свободы определяются структурой молекулы и трехмерностью нашего пространства - от температуры они зависеть не могут.

Вклад во внутреннюю энергию от температуры зависит и может быть мал.

При температурах ниже 100 К теплоемкость

что указывает на отсутствие у молекулы как вращательных, так и колебательных степеней свободы. Далее с ростом температуры теплоемкость быстро возрастает до классического значения

характерного для двухатомной молекулы с жесткой связью, в которой нет колебательных степеней свободы. При температурах свыше 2 000 К теплоемкость обнаруживает новый скачок до значения

Этот результат свидетельствует о появлении еще и колебательных степеней свободы. Но все это пока выглядит необъяснимым. Почему молекула не может вращаться при низких температурах? И почему колебания в молекуле возникают лишь при очень высоких температурах? В предыдущей главе дано краткое качественное рассмотрение квантовых причин подобного поведения. А сейчас можно лишь повторить, что все дело сводится к специфически квантовым явлениям, не объяснимым с позиций классической физики. Эти явления подробно рассмотрены в последующих разделах курса.

Дополнительная информация

http://www.plib.ru/library/book/14222.html - Яворский Б.М., Детлаф А.А. Справочник по физике, Наука, 1977 г. - стр. 236 - таблица характеристических температур «включения» колебательных и вращательных степеней свободы молекул для некоторых конкретных газов;

Обратимся теперь к рис. 2.11, представляющему зависимость молярных теплоемкостей трех химических элементов (кристаллов) от температуры. При высоких температурах все три кривые стремятся к одному и тому же значению

соответствующему закону Дюлонга и Пти. Свинец (Рb) и железо (Fe) практически имеют это предельное значение теплоемкости уже при комнатной температуре.

Рис. 2.11. Зависимость молярной теплоемкости для трех химических элементов - кристаллов свинца, железа и углерода (алмаза) - от температуры

Для алмаза же (С) такая температура еще не достаточно высока. А при низких температурах все три кривые демонстрируют значительное отклонение от закона Дюлонга и Пти. Это еще одно проявление квантовых свойств материи. Классическая физика оказывается бессильной объяснить многие наблюдаемые при низких температурах закономерности.

Дополнительная информация

http://eqworld.ipmnet.ru/ru/library/physics/thermodynamics.htm - Я. де Бур Введение в молекулярную физику и термодинамику, Изд. ИЛ, 1962 г. - стр. 106–107, ч. I, § 12 - вклад электронов в теплоемкость металлов при температурах близких к абсолютному нулю;

http://ilib.mirror1.mccme.ru/djvu/bib-kvant/kvant_82.htm - Перельман Я.И. Знаете ли вы физику? Библиотечка «Квант», выпуск 82, Наука,1992г. Стр. 132, вопрос 137: какие тела обладают наибольшей теплоемкостью (ответ смотри на стр. 151);

http://ilib.mirror1.mccme.ru/djvu/bib-kvant/kvant_82.htm - Перельман Я.И. Знаете ли вы физику? Библиотечка «Квант», выпуск 82, Наука,1992г. Стр. 132, вопрос 135: о нагревании воды в трех состояниях - твердом, жидком и парообразном (ответ смотри на стр. 151);

http://www.femto.com.ua/articles/part_1/1478.html - физическая энциклопедия. Калориметрия. Описаны методы измерения теплоемкостей.

(или теплопередаче).

Удельная теплоемкость вещества.

Теплоемкость — это количество теплоты, поглощаемой телом при нагревании на 1 градус .

Теплоемкость тела обозначается заглавной латинской буквой С .

От чего зависит теплоемкость тела? Прежде всего, от его массы . Ясно, что для нагрева, напри-мер, 1 килограмма воды потребуется больше тепла, чем для нагрева 200 граммов .

А от рода вещества? Проделаем опыт. Возьмем два одинаковых сосуда и, налив в один из них воду массой 400 , а в другой — растительное масло массой 400 г, начнем их нагревать с помощью одинаковых горелок. Наблюдая за показаниями термометров, мы увидим, что масло нагревается быстрое. Чтобы нагреть воду и масло до одной и той же температуры, воду следует нагревать дольше. Но чем дольше мы нагреваем воду, тем большее количество теплоты она получает от горелки.

Таким образом, для нагревания одной и той же массы разных веществ до одинаковой темпе-ратуры требуется разное количество теплоты. Количество теплоты, необходимое для нагревания тела и, следовательно, его теплоемкость зависят от рода вещества, из которого состоит это тело.

Так, например, чтобы увеличить на 1°С температуру воды массой 1 кг , требуется количество теплоты, равное 4200 Дж , а для нагревания на 1 °С такой же массы подсолнечного масла необхо-димо количество теплоты, равное 1700 Дж.

Физическая величина, показывающая, какое количество теплоты требуется для нагревания 1 кг вещества на 1 ºС, называется удельной теплоемкостью этого вещества.

У каждого вещества своя удельная теплоемкость, которая обозначается латинской буквой с и измеряется в джоулях на килограмм-градус (Дж/(кг ·°С)).

Удельная теплоемкость одного и того же вещества в разных агрегатных состояниях (твердом, жидком и газообразном) различна. Например, удельная теплоемкость воды равна 4200 Дж/(кг · ºС), а удельная теплоемкость льда 2100 Дж/(кг · °С); алюминий в твердом состоянии имеет удельную теплоемкость, равную 920 Дж/(кг - °С), а в жидком — 1080 Дж/(кг - °С).

Заметим, что вода имеет очень большую удельную теплоемкость. Поэтому вода в морях и океанах, нагреваясь летом, поглощает из воздуха большое количество тепла. Благодаря этому в тех местах, которые расположены вблизи больших водоемов, лето не бывает таким жарким, как в местах, удаленных от воды.

Расчет количества теплоты, необходимого для нагревания тела или выделяемого им при охлаждении.

Из вышеизложенного ясно, что количество теплоты, необходимое для нагревания тела, зависит от рода вещества, из которого состоит тело (т. е. его удельной теплоемкости), и от массы тела. Ясно также, что количество теплоты зависит от того, на сколько градусов мы собираемся увеличить температуру тела.

Итак, чтобы определить количество теплоты, необходимое для нагревания тела или выделяемое им при охлаждении, нужно удельную теплоемкость тела умножить на его массу и на разность между его конечной и начальной температурами:

Q = cm (t 2 - t 1 ) ,

где Q — количество теплоты, c — удельная теплоемкость, m — масса тела , t 1 — начальная темпе-ратура, t 2 — конечная температура.

При нагревании тела t 2 > t 1 и, следовательно, Q > 0 . При охлаждении тела t 2и < t 1 и, следовательно, Q < 0 .

В случае, если известна теплоемкость всего тела С , Q определяется по формуле:

Q = C (t 2 - t 1 ) .

 
Статьи по теме:
Александр толстой произведение петр 1 краткое содержание
«Петр Первый» — исторический роман. Жанровая специфика исторического романа предопределена временной дистанцией между моментом создания произведения и тем, к которому обращается автор. В отличие от романа о современности, обращенного к реалиям сегодняшнег
Презентация по теме безопасность опасные предметы
Причины возникновения пожара Неосторожное обращение с огнем: разведение костров и небрежное обращение с ними, разогревание горючих веществ на газовых или электрических плитах и т. п. Нарушение правил эксплуатации бытовых электроприборов: телевизор перегре
Основные идеи философии эпикура
15. Эпикур и эпикурейцыВыдающимися представителями эпикуреизма являются Эпикур (341–270 до н. э.) и Лукреций Кар (ок. 99–55 до н. э.). Это философское направление относится к рубежу старой и новой эры. Эпикурейцев интересовали вопросы устроения, комфорта
Распространение тюркских языков Сильная ветвь алтайского дерева
Расселены на огромной территории нашей планеты, начиная от бассейна холодной Колымы до юго-западного побережья Средиземного моря. Тюрки не принадлежат к какому-то определенному расовому типу, даже среди одного народа встречаются как европеоиды, так и монг