Тепловое движение: внутренняя энергия. Тепловое движение. Температура

В данном уроке рассматривается понятие теплового движения и такой физической величины, как температура.

Тепловые явления в жизни человека занимают огромное значение. С ними мы сталкиваемся и во время прогноза погоды, и во время кипячения обычной воды. С тепловыми явлениями связаны такие процессы, как создание новых материалов, плавление металлов, сгорание топлива, создание новых видов топлива для автомобилей и самолетов и т. д.

Температура является одним из важнейших понятий, связанных с тепловыми явлениями, так как зачастую именно температура является важнейшей характеристикой протекания тепловых процессов.

Определение. Тепловые явления - это явления, связанные с нагреванием или охлаждением тел, а также с изменением их агрегатного состояния (рис. 1).

Рис. 1. Плавление льда, нагревание и испарение воды

Все тепловые явления связаны с температурой .

Все тела характеризуются состоянием своего теплового равновесия . Главной характеристикой теплового равновесия является температура.

Определение. Температура - это мера «нагретости» тела.

Поскольку температура является физической величиной, то ее можно и нужно измерить. Для измерения температуры используется прибор, который называется термометр (от греч. термо - «тепло», метрео - «измеряю») (рис. 2).

Рис. 2. Термометр

Первый термометр (а точнее, его аналог) изобрел Галилео Галилей (рис. 3).

Рис. 3. Галилео Галилей (1564-1642)

Изобретение Галилея, которое он представил своим студентам на лекциях в университете в конце XVI века (1597 г.), было названо термоскопом . Действие любого термометр основано на следующем принципе: физические свойства вещества изменяются в зависимости от температуры .

Опыт Галилея состоял в следующем: он взял колбу с длинной ножкой и наполнил ее водой. Затем взял стакан с водой и перевернул колбу ножкой вниз, поставив в стакан. Часть воды, естественно, вылилась, однако в результате в ножке остался определенный уровень воды. Если теперь нагревать колбу (в которой находится воздух), то уровень воды будет опускаться, а если охлаждать, то, наоборот, повышаться. Это связано с тем, что при нагревании вещества (в частности, воздух) имеют свойство расширяться, а при охлаждении - сужаться (именно поэтому рельсы делают несплошными, а провода между столбами иногда немного провисают).

Рис. 4. Опыт Галилея

Эта идея и легла в основу первого термоскопа (рис. 5), который позволял оценивать изменение температуры (точно измерить температуру таким термоскопом нельзя, так как его показания будут сильно зависеть от атмосферного давления).

Рис. 5. Копия термоскопа Галилея

В это же время была введена так называемая градусная шкала. Само слово градус в переводе с латинского означает «ступень».

На сегодняшний день сохранились три основные шкалы.

1. Шкала Цельсия

Наибольшее распространение получение шкала, которая с детства известна каждому - шкала Цельсия.

Андерс Цельсий (рис. 6) - шведский астроном, который предложил следующую шкалу температур: - температура кипения воды; - температура замерзания воды. В настоящее время все мы привыкли к перевернутой шкале Цельсия.

Рис. 6 Андрес Цельсий (1701-1744)

Примечание: сам Цельсий говорил, что такой выбор шкалы вызван простым фактом: зато зимой не будет отрицательной температуры.

2. Шкала Фаренгейта

В Англии, США, Франции, Латинской Америке и некоторых других странах популярностью пользуется шкала Фаренгейта.

Габриель Фаренгейт (рис. 7) - немецкий исследователь, инженер, который впервые применил свою собственную шкалу для изготовления стекла. Шкала Фаренгейта более тонкая: по размерности градус шкалы Фаренгейта меньше градуса шкалы по Цельсию.

Рис. 7 Габриель Фаренгейт (1686-1736)

3. Шкала Реомюра

Техническая шкала придумана французским исследователем Р.А. Реомюром (рис. 8). По этой шкале соответствует температуре замерзания воды, а вот в качестве температуры кипения воды Реомюром была выбрана температура в 80 градусов.

Рис. 8. Рене Антуан Реомюр (1683-1757)

В физике в основном используется так называемая абсолютная шкала - шкала Кельвина (рис. 8). 1 градус по Цельсию равен 1 градусу по Кельвину, однако температура в соответствует приблизительно (рис. 9).

Рис. 9. Уильям Томсон (лорд Кельвин) (1824-1907)

Рис. 10. Температурные шкалы

Напомним, что при изменении температуры тела изменяются его линейные размеры (при нагревании тело расширяется, при охлаждении - сужается). Это связано с поведением молекул. При нагревании увеличивается скорость движения частиц, соответственно, они начинают чаще взаимодействовать и объем увеличивается (рис. 11).

Рис. 11. Изменение линейных размеров

Из этого можно сделать вывод, что температура связана с движением частиц, из которых состоят тела (это относится и к твердым, и к жидким, и к газообразным телам).

Движение частиц в газах (рис. 12) является беспорядочным (так как молекулы и атомы в газах практически не взаимодействуют).

Рис. 12. Движение частиц в газах

Движение частиц в жидкостях (рис. 13) является «скачкообразным», то есть молекулы ведут «оседлый образ жизни», но способны «перепрыгивать» с одного места на другое. Этим определяется текучесть жидкостей.

Рис. 13. Движение частиц в жидкостях

Движение частиц в твердых телах (рис. 14) называется колебательным.

Рис. 14. Движение частиц в твердых телах

Таким образом, все частицы находятся в непрерывном движении. Это движение частиц называется тепловым движением (беспорядочное, хаотическое движение). Это движение никогда не останавливается (пока у тела есть температура). Подтвердил наличие теплового движения в 1827 году английский ботаник Роберт Броун (рис. 15), по имени которого данное движение называют броуновским движением .

Рис. 15. Роберт Броун (1773-1858)

На сегодняшний день известно, что самая низкая температура, которая может быть достигнута, составляет приблизительно . Именно при такой температуре замирает движение частиц (однако не замирает движение внутри самих частиц).

Об опыте Галилея было рассказано ранее, а в заключении рассмотрим еще один опыт - опыт французского ученого Гильома Амонтона (рис. 15), который в 1702 году изобрел так называемый газовый термометр . С небольшими изменениями этот термометр дошел и до наших дней.

Рис. 15. Гийом Амонтон (1663-1705)

Опыт Амонтона

Рис. 16. Опыт Амонтона

Возьмем колбу с водой и заткнем ее пробкой с тонкой трубкой. Если теперь нагревать воду, то за счет расширения воды ее уровень в трубке будет повышаться. По уровню поднятия воды в трубке можно сделать вывод об изменении температуры. Преимущество термометра Амонтона состоит в том, что он не зависит от атмосферного давления.

На этом уроке мы рассмотрели такую важную физическую величину, как температура . Изучили способы ее измерения, характеристики и свойства. На дальнейших уроках мы изучим понятие внутренняя энергия .

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «class-fizika.narod.ru» ()
  2. Интернет-портал «school.xvatit.com» ()
  3. Интернет-портал «ponimai.su» ()

Домашнее задание

1. № 1-4 (параграф 1). Перышкин А.В. Физика 8. - М.: Дрофа, 2010.

2. Почему нельзя проградуировать термоскоп Галилея?

3. Железный гвоздь нагрели на плите:

Как изменилась скорость движения молекул железа?

Как изменится скорость движения молекул, если гвоздь опустить в холодную воду?

Как при этом изменится скорость движения молекул воды?

Как меняется объем гвоздя при этих опытах?

4. Воздушный шарик перенесли из комнаты на мороз:

Как изменится объем шарика?

Как изменится скорость движения молекул воздуха внутри шарика?

Как изменится скорость молекул внутри шарика, если его вернуть в комнату и вдобавок положить к батарее?

В данном уроке рассматривается понятие теплового движения и такой физической величины, как температура.

Тепловые явления в жизни человека занимают огромное значение. С ними мы сталкиваемся и во время прогноза погоды, и во время кипячения обычной воды. С тепловыми явлениями связаны такие процессы, как создание новых материалов, плавление металлов, сгорание топлива, создание новых видов топлива для автомобилей и самолетов и т. д.

Температура является одним из важнейших понятий, связанных с тепловыми явлениями, так как зачастую именно температура является важнейшей характеристикой протекания тепловых процессов.

Определение. Тепловые явления - это явления, связанные с нагреванием или охлаждением тел, а также с изменением их агрегатного состояния (рис. 1).

Рис. 1. Плавление льда, нагревание и испарение воды

Все тепловые явления связаны с температурой .

Все тела характеризуются состоянием своего теплового равновесия . Главной характеристикой теплового равновесия является температура.

Определение. Температура - это мера «нагретости» тела.

Поскольку температура является физической величиной, то ее можно и нужно измерить. Для измерения температуры используется прибор, который называется термометр (от греч. термо - «тепло», метрео - «измеряю») (рис. 2).

Рис. 2. Термометр

Первый термометр (а точнее, его аналог) изобрел Галилео Галилей (рис. 3).

Рис. 3. Галилео Галилей (1564-1642)

Изобретение Галилея, которое он представил своим студентам на лекциях в университете в конце XVI века (1597 г.), было названо термоскопом . Действие любого термометр основано на следующем принципе: физические свойства вещества изменяются в зависимости от температуры .

Опыт Галилея состоял в следующем: он взял колбу с длинной ножкой и наполнил ее водой. Затем взял стакан с водой и перевернул колбу ножкой вниз, поставив в стакан. Часть воды, естественно, вылилась, однако в результате в ножке остался определенный уровень воды. Если теперь нагревать колбу (в которой находится воздух), то уровень воды будет опускаться, а если охлаждать, то, наоборот, повышаться. Это связано с тем, что при нагревании вещества (в частности, воздух) имеют свойство расширяться, а при охлаждении - сужаться (именно поэтому рельсы делают несплошными, а провода между столбами иногда немного провисают).

Рис. 4. Опыт Галилея

Эта идея и легла в основу первого термоскопа (рис. 5), который позволял оценивать изменение температуры (точно измерить температуру таким термоскопом нельзя, так как его показания будут сильно зависеть от атмосферного давления).

Рис. 5. Копия термоскопа Галилея

В это же время была введена так называемая градусная шкала. Само слово градус в переводе с латинского означает «ступень».

На сегодняшний день сохранились три основные шкалы.

1. Шкала Цельсия

Наибольшее распространение получение шкала, которая с детства известна каждому - шкала Цельсия.

Андерс Цельсий (рис. 6) - шведский астроном, который предложил следующую шкалу температур: - температура кипения воды; - температура замерзания воды. В настоящее время все мы привыкли к перевернутой шкале Цельсия.

Рис. 6 Андрес Цельсий (1701-1744)

Примечание: сам Цельсий говорил, что такой выбор шкалы вызван простым фактом: зато зимой не будет отрицательной температуры.

2. Шкала Фаренгейта

В Англии, США, Франции, Латинской Америке и некоторых других странах популярностью пользуется шкала Фаренгейта.

Габриель Фаренгейт (рис. 7) - немецкий исследователь, инженер, который впервые применил свою собственную шкалу для изготовления стекла. Шкала Фаренгейта более тонкая: по размерности градус шкалы Фаренгейта меньше градуса шкалы по Цельсию.

Рис. 7 Габриель Фаренгейт (1686-1736)

3. Шкала Реомюра

Техническая шкала придумана французским исследователем Р.А. Реомюром (рис. 8). По этой шкале соответствует температуре замерзания воды, а вот в качестве температуры кипения воды Реомюром была выбрана температура в 80 градусов.

Рис. 8. Рене Антуан Реомюр (1683-1757)

В физике в основном используется так называемая абсолютная шкала - шкала Кельвина (рис. 8). 1 градус по Цельсию равен 1 градусу по Кельвину, однако температура в соответствует приблизительно (рис. 9).

Рис. 9. Уильям Томсон (лорд Кельвин) (1824-1907)

Рис. 10. Температурные шкалы

Напомним, что при изменении температуры тела изменяются его линейные размеры (при нагревании тело расширяется, при охлаждении - сужается). Это связано с поведением молекул. При нагревании увеличивается скорость движения частиц, соответственно, они начинают чаще взаимодействовать и объем увеличивается (рис. 11).

Рис. 11. Изменение линейных размеров

Из этого можно сделать вывод, что температура связана с движением частиц, из которых состоят тела (это относится и к твердым, и к жидким, и к газообразным телам).

Движение частиц в газах (рис. 12) является беспорядочным (так как молекулы и атомы в газах практически не взаимодействуют).

Рис. 12. Движение частиц в газах

Движение частиц в жидкостях (рис. 13) является «скачкообразным», то есть молекулы ведут «оседлый образ жизни», но способны «перепрыгивать» с одного места на другое. Этим определяется текучесть жидкостей.

Рис. 13. Движение частиц в жидкостях

Движение частиц в твердых телах (рис. 14) называется колебательным.

Рис. 14. Движение частиц в твердых телах

Таким образом, все частицы находятся в непрерывном движении. Это движение частиц называется тепловым движением (беспорядочное, хаотическое движение). Это движение никогда не останавливается (пока у тела есть температура). Подтвердил наличие теплового движения в 1827 году английский ботаник Роберт Броун (рис. 15), по имени которого данное движение называют броуновским движением .

Рис. 15. Роберт Броун (1773-1858)

На сегодняшний день известно, что самая низкая температура, которая может быть достигнута, составляет приблизительно . Именно при такой температуре замирает движение частиц (однако не замирает движение внутри самих частиц).

Об опыте Галилея было рассказано ранее, а в заключении рассмотрим еще один опыт - опыт французского ученого Гильома Амонтона (рис. 15), который в 1702 году изобрел так называемый газовый термометр . С небольшими изменениями этот термометр дошел и до наших дней.

Рис. 15. Гийом Амонтон (1663-1705)

Опыт Амонтона

Рис. 16. Опыт Амонтона

Возьмем колбу с водой и заткнем ее пробкой с тонкой трубкой. Если теперь нагревать воду, то за счет расширения воды ее уровень в трубке будет повышаться. По уровню поднятия воды в трубке можно сделать вывод об изменении температуры. Преимущество термометра Амонтона состоит в том, что он не зависит от атмосферного давления.

На этом уроке мы рассмотрели такую важную физическую величину, как температура . Изучили способы ее измерения, характеристики и свойства. На дальнейших уроках мы изучим понятие внутренняя энергия .

Список литературы

  1. Генденштейн Л.Э, Кайдалов А.Б., Кожевников В.Б. / Под ред. Орлова В.А., Ройзена И.И. Физика 8. - М.: Мнемозина.
  2. Перышкин А.В. Физика 8. - М.: Дрофа, 2010.
  3. Фадеева А.А., Засов А.В., Киселев Д.Ф. Физика 8. - М.: Просвещение.
  1. Интернет-портал «class-fizika.narod.ru» ()
  2. Интернет-портал «school.xvatit.com» ()
  3. Интернет-портал «ponimai.su» ()

Домашнее задание

1. № 1-4 (параграф 1). Перышкин А.В. Физика 8. - М.: Дрофа, 2010.

2. Почему нельзя проградуировать термоскоп Галилея?

3. Железный гвоздь нагрели на плите:

Как изменилась скорость движения молекул железа?

Как изменится скорость движения молекул, если гвоздь опустить в холодную воду?

Как при этом изменится скорость движения молекул воды?

Как меняется объем гвоздя при этих опытах?

4. Воздушный шарик перенесли из комнаты на мороз:

Как изменится объем шарика?

Как изменится скорость движения молекул воздуха внутри шарика?

Как изменится скорость молекул внутри шарика, если его вернуть в комнату и вдобавок положить к батарее?

И. В. Яковлев | Материалы по физике | MathUs.ru

Молекулярная физика и термодинамика

Данное пособие посвящено второму разделу ¾Молекулярная физика. Термодинамика¿ кодификатора ЕГЭ по физике. Оно охватывает следующие темы.

Тепловое движение атомов и молекул вещества. Броуновское движение. Диффузия. Экспериментальные доказательства атомистической теории. Взаимодействие частиц вещества.

Модели строения газов, жидкостей и твёрдых тел.

Модель идеального газа. Связь между давлением и средней кинетической энергией теплового движения молекул идеального газа. Абсолютная температура. Связь температуры газа со средней кинетической энергией его частиц. Уравнение p = nkT . Уравнение Менделеева Клапейрона.

Изопроцессы: изотермический, изохорный, изобарный, адиабатный процессы.

Насыщенные и ненасыщенные пары. Влажность воздуха.

Изменение агрегатных состояний вещества: испарение и конденсация, кипение жидкости, плавление и кристаллизация. Изменение энергии в фазовых переходах.

Внутренняя энергия. Тепловое равновесие. Теплопередача. Количество теплоты. Удельная теплоёмкость вещества. Уравнение теплового баланса.

Работа в термодинамике. Первый закон термодинамики.

Принципы действия тепловых машин. КПД тепловой машины. Второй закон термодинамики. Проблемы энергетики и охрана окружающей среды.

Пособие содержит также некоторый дополнительный материал, не входящий в кодификатор ЕГЭ (но входящий в школьную программу!). Этот материал позволяет лучше понять рассматриваемые темы.

1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Жидкости . . . . . . 10

Основные формулы молекулярной физики

Температура

Термодинамическая система . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Тепловое равновесие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Температурная шкала. Абсолютная температура . . . . . . . . . . . . . . . . . . .

Уравнение состояния идеального газа

Средняя кинетическая энергия частиц газа . . . . . . . . . . . . . . . . . . . . . .

5.2 Основное уравнение МКТ идеального газа . . . . . . . . . . . . . . . . . . . . . . . 16

5.3 Энергия частиц и температура газа . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

6.1 Термодинамический процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.2 Изотермический процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

6.3 Графики изотермического процесса . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

6.4 Изобарный процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

6.5 Графики изобарного процесса . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Изохорный процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Графики изохорного процесса . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

7 Насыщенный пар

7.1 Испарение и конденсация

7.2 Динамическое равновесие . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

7.3 Свойства насыщенного пара . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

8.1 Внутренняя энергия одноатомного идеального газа . . . . . . . . . . . . . . . . . . 29

8.2 Функция состояния . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

8.3 Изменение внутренней энергии: совершение работы . . . . . . . . . . . . . . . . . . 30

8.4 Изменение внутренней энергии: теплопередача . . . . . . . . . . . . . . . . . . . . 30

8.5 Теплопроводность . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Фазовые переходы

10.1 Плавление и кристаллизация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

10.2 График плавления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.3 Удельная теплота плавления . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

10.4 График кристаллизации . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

10.5 Парообразование и конденсация . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

10.6 Кипение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

10.7 График кипения . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.8 График конденсации . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

11 Первый закон термодинамики

11.1 Работа газа в изобарном процессе . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

11.2 Работа газа в произвольном процессе . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.3 Работа, совершаемая над газом . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

11.4 Первый закон термодинамики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

11.5 Применение первого закона термодинамики к изопроцессам . . . . . . . . . . . . . 46

11.6 Адиабатный процесс . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

12.1 Тепловые двигатели . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

12.2 Холодильные машины . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

13.1 Необратимость процессов в природе . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

13.2 Постулаты Клаузиуса и Кельвина . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

1 Основные положения молекулярно-кинетической теории

Великому американскому физику Ричарду Фейнману, автору знаменитого курса ¾Фейнмановские лекции по физике¿, принадлежат замечательные слова:

Если бы в результате какой-то мировой катастрофы все накопленные научные знания оказались бы уничтоженными и к грядущим поколениям живых существ перешла бы только одна фраза, то какое утверждение, составленное из наименьшего количества слов, принесло бы наибольшую информацию? Я считаю, что это атомная гипотеза (можете называть ее не гипотезой, а фактом, но это ничего не меняет): все тела состоят из атомов маленьких телец, которые находятся в беспрерывном движении, притягиваются на небольшом расстоянии, но отталкиваются, если одно из них плотнее прижать к другому. В одной этой фразе. . . содержится невероятное количество информации о мире, стоит лишь приложить к ней немного воображения и чуть соображения.

В этих словах заключена суть молекулярно-кинетической теории (МКТ) строения вещества. А именно, основными положениями МКТ являются следующие три утверждения.

1. Любое вещество состоит из мельчайших частиц молекул и атомов. Они расположены в пространстве дискретно, то есть на некоторых расстояниях друг от друга.

2. Атомы или молекулы вещества находятся в состоянии беспорядочного движения 1 , которое никогда не прекращается.

3. Атомы или молекулы вещества взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами.

Эти положения являются обобщением многочисленных наблюдений и экпериментальных фактов. Давайте рассмотрим подробнее эти положения и приведём их опытное обоснование.

1.1 Атомы и молекулы

Возьмём бумажный листок и начнём делить его на всё более и более мелкие части. На каждом ли шаге мы будем получать кусочки именно бумаги, или на каком-то этапе появится нечто новое?

Первое положение МКТ говорит нам о том, что вещество не является делимым до бесконечности. Рано или поздно мы дойдём до ¾последнего рубежа¿ мельчайших частиц данного вещества. Эти частицы атомы и молекулы. Их также можно разделить на части, но тогда исходное вещество прекратит своё существование.

Атом это наименьшая частица данного химического элемента, сохраняющая все его химические свойства. Химических элементов не так много все они сведены в таблицу Менделеева.

Молекула это наименьшая частица данного вещества (не являющегося химическим элементом), сохраняющая все его химические свойства. Молекула состоит из двух или более атомов одного или нескольких химических элементов.

Например, H2 O это молекула воды, состоящая из двух атомов водорода и одного атома кислорода. Разделив её на атомы, мы перестанем иметь дело в веществом под названием ¾вода¿. Далее, разделив атомы H и O на составные части, мы получим набор протонов, нейтронов и электронов и тем самым потеряем информацию о том, что поначалу это были водород и кислород.

1 Это движение называется тепловым движением.

Размер атома или молекулы (состоящей из небольшого числа атомов) составляет порядка 10 8 см. Это настолько малая величина, что атом невозможно разглядеть ни в какой оптический микроскоп.

Атомы и молекулы называются для краткости просто частицами вещества. Чем именно является частица атомом или молекулой в каждом конкретном случае установить нетрудно. Если речь идёт о химическом элементе, то частицей будет атом; если же рассматривается сложное вещество, то его частица это молекула, состоящая из нескольких атомов.

Далее, первое положение МКТ утверждает, что частицы вещества не заполняют пространство непрерывно. Частицы расположены дискретно, то есть как бы в отдельных точках. Между частицами имеются промежутки, величина которых может меняться в некоторых пределах.

В пользу первого положения МКТ свидетельствует явление теплового расширения тел. А именно, при нагревании увеличиваются расстояния между частицами вещества, и размеры тела возрастают. При охлаждении, наоборот, расстояния между частицами уменьшаются, в результате чего тело сжимается.

Ярким подтверждением первого положения МКТ служит также диффузия взаимное проникновение соприкасающихся веществ друг в друга.

Например, на рис. 1 показан2 процесс диффузии в жидкости. Частицы растворимого вещества помещены в стакан с водой и расположены вначале в верхней левой части стакана. С течением времени частицы перемещаются (как говорят, диффундируют) из области высокой концентрации в область низкой концентрации. В конце концов концентрация частиц становится везде одинаковой частицы равномерно распределяются по всему объёму жидкости.

Рис. 1. Диффузия в жидкости

Как объяснить диффузию с точки зрения молекулярно-кинетической теории? Очень просто: частицы одного вещества проникают в промежутки между частицами другого вещества. Диффузия идёт тем быстрее, чем больше эти промежутки поэтому легче всего смешиваются друг с другом газы (в которых расстояния между частицами много больше размеров самих частиц).

1.2 Тепловое движение атомов и молекул

Напомним ещё раз формулировку второго положения МКТ: частицы вещества совершают беспорядочное движение (называемое также тепловым движением), которое никогда не прекращается.

Опытным подтверждением второго положения МКТ служит опять-таки явление диффузии ведь взаимное проникновение частиц возможно лишь при их беспрерывном движении!

2 Изображение с сайтаen.wikipedia.org .

Но наиболее ярким доказательством вечного хаотического движения частиц вещества является броуновское движение. Так называется непрерывное беспорядочное движение броуновских частиц пылинок или крупинок (размерами 10 5 – 104 см), взвешенных в жидкости или газе.

Броуновское движение получило своё название в честь шотландского ботаника Роберта Броуна, увидевшего в микроскоп беспрерывную пляску взвешенных в воде частиц цветочной пыльцы. В доказательство того, что это движение совершается вечно, Броун нашёл кусок кварца с полостью, заполненной водой. Несмотря на то, что вода попала туда много миллионов лет назад, оказавшиеся там соринки продолжали своё движение, которое ничем не отличалось от того, что наблюдалось в других опытах.

Причина броуновского движения заключается в том, что взвешенная частица испытывает нескомпенсированные удары со стороны молекул жидкости (газа), причём в силу хаотичности движения молекул величина и направление результирующего воздействия абсолютно непредсказуемы. Поэтому броуновская частица описывает сложные зигзагообразные траектории (рис. 2 )3 .

Рис. 2. Броуновское движение

Размеры броуновских частиц в 1000–10000 раз превышают размер атома. С одной стороны, броуновская частица достаточна мала и пока ещё ¾чувствует¿, что в разных направлениях по ней бьёт различное количество молекул; это различие в числе ударов приводит к заметным перемещениям броуновской частицы. С другой стороны, броуновские частицы достаточно велики для того, чтобы их можно было разглядеть в микроскоп.

Кстати говоря, броуновское движение может рассматриваться и как доказательство самого факта существования молекул, т. е. также может служить опытным обоснованием первого положения МКТ.

1.3 Взаимодействие частиц вещества

Третье положение МКТ говорит о взаимодействии частиц вещества: атомы или молекулы взаимодействуют друг с другом силами притяжения и отталкивания, которые зависят от расстояний между частицами: при увеличении расстояний начинают преобладать силы притяжения, при уменьшении силы отталкивания.

О справедливости третьего положения МКТ свидетельствуют силы упругости, возникающие при деформациях тел. При растяжении тела увеличиваются расстояния между его частицами, и начинают преобладать силы притяжения частиц друг к другу. При сжатии тела расстояния между частицами уменьшаются, и в результате преобладают силы отталкивания. В обоих случаях упругая сила направлена в сторону, противоположную деформации.

3 Изображение с сайта nv-magadan.narod.ru .

Другим подтверждением существования сил межмолекулярного взаимодействия служит наличие трёх агрегатных состояний вещества.

В газах молекулы удалены друг от друга на расстояния, значительно превышающие размеры самих молекул (в воздухе при нормальных условиях примерно в 1000 раз). На таких расстояниях силы взаимодействия между молекулами практически отсутствуют, поэтому газы занимают весь предоставленный им объём и легко сжимаются.

В жидкостях промежутки между молекулами сравнимы с размерами молекул. Силы молекулярного притяжения весьма ощутимы и обеспечивают сохранение жидкостями объёма. Но для сохранения жидкостями ещё и формы эти силы недостаточно велики жидкости, как и газы, принимают форму сосуда.

В твёрдых телах силы притяжения между частицами очень велики: твёрдые тела сохраняют не только объём, но и форму.

Переход вещества из одного агрегатного состояния в другое является результатом изменения величины сил взаимодействия между частицами вещества. Сами частицы остаются при этом неизменными.

Для изучения темы «Тепловое движение» нам необходимо повторить:

В окружающем нас мире происходят различного рода физические явления, которые напрямую связанны с изменением температуры тел.

Еще с детства мы помним, что вода в озере сначала холодная, потом едва теплая и только спустя время становится пригодной для купания

Такими словами как «холодный», «горячий», « чуть-чуть теплый», мы определяем различную степень «нагретости» тел, или, если говорить языком физики на различную температуру тел.

Если сравнивать температуру в озере летом и поздней осенью, то разница очевидна. Температура теплой воды немного выше температуры ледяной воды.

Как известно, диффузия при более высокой температуре происходит быстрее. Из этого следует, что скорость перемещения молекул и температура глубоко взаимосвязаны между собой.

Проведите опыт: Возьмите три стакана и наполните их холодной, теплой и горячей водой, а теперь положите в каждый стакан чайный пакетик и пронаблюдайте, как изменится цвет воды? Где это изменение будет происходить интенсивнее?

Если увеличить температуру, то скорость движения молекул увеличится, если уменьшить – понизится. Таким образом, делаем вывод: температура тела напрямую зависит от скорости перемещения молекул.

Горячая вода состоит из абсолютно таких же молекул, как и холодная. Разница между ними состоит лишь в скорости передвижения молекул.

Явления, которые имеют отношение к нагреву или охлаждению тел, изменению температуры, получили название тепловые . К ним можно отнести нагревание или охлаждение не только жидких тел, но и газообразных и твердых воздуха.

Еще примеры тепловых явлений: плавка метала, таяние снега.

Молекулы, либо атомы, которые являются основой всех тел, находятся в бесконечном хаотичном движении. Движение молекул в разных телах происходит по-разному. Молекулы газов беспорядочно движутся с большими скоростями по очень сложной траектории. Сталкиваясь, они отскакивают друг от друга, изменяя величину и направление скоростей.

Молекулы жидкости колеблются около равновесных положений (т.к. расположены почти вплотную друг к другу) и сравнительно редко перескакивают из одного равновесного положения в другое. Движение молекул в жидкостях является менее свободным, чем в газах, но более свободным, чем в твердых телах.

В твердых телах молекулы и атомы колеблются около некоторых средних положениях.

С ростом температуры скорость частиц увеличивается, поэтому хаотическое движение частиц принято называть тепловым.

Интересно:

Какова точная высота Эйфелевой башни? А это зависит от температуры окружающей среды!

Дело в том, что высота башни колеблется на целых 12 сантиметров.

и температура балок может доходить до 40 градусов по Цельсию.

А как известно, вещества могут расширяться под воздействием высокой температуры.

Хаотичность является важнейшей чертой теплового движения. Одним из самых главных доказательств движения молекул является диффузия и Броуновское движение. (Броуновское движение – движение мельчайших твердых частиц в жидкости под воздействием ударов молекул. Как показывает наблюдение, Броуновское движение не может прекратиться). Броуновское движение было открыто английским ботаником Робертом Броуном (1773-1858гг.)

В тепловом движении молекул и атомов участвуют абсолютно все молекулы тела, именно поэтому с изменением теплового движения меняется и состояние самого тела, его различные свойства.

Вспомним как меняются свойства воды при изменении температуры.

Температура тела напрямую зависит от средней кинетической энергии молекул. Делаем очевидный вывод: чем выше температура тела, тем больше средняя кинетическая энергия его молекул. И, наоборот, при понижении температуры тела, средняя кинетическая энергия его молекул уменьшается.

Температура- величина, которая характеризует тепловое состояние тела или иначе мера «нагретости» тела.

Чем выше температура тела, тем большую в среднем энергию имеют его атомы и молекулы.

Температура измеряется термометрами , т.е. приборами для измерения температуры

Температура непосредственно не измеряется! Измеряется величина, зависящая от температуры!

В настоящее время существуют жидкостные и электрические термометры.

В современных жидкостных термометрах - это объем спирта или ртути. Термометр измеряет собственную температуру! А, если мы хотим измерить с помощью термометра температуру какого-либо другого тела, надо подождать некоторое время, пока температуры тела и термометра уравняются, т.е. наступит тепловое равновесие между термометром и телом. Домашнему термометру «градуснику» нужно время, чтобы дать точнее значение температуры больного.

В этом состоит закон теплового равновесия:

у любой группы изолированных тел через какое-то время температуры становятся одинаковыми,

т.е. наступает состояние теплового равновесия.

Температура тел измеряется с помощью термометра и чаще всего выражается в градусах Цельсия (°C). Существуют еще и другие единицы измерения: Фаренгейт, Кельвин и Реомюр.

Чаще всего физики измеряют температуру по шкале Кельвина. 0 градусов по шкале Цельсия = 273 градусам по шкале Кельвина

Атомы и молекулы, из которых состоят различные вещества, находятся в состоянии непрерывного теплового движения.

Первой особенностью теплового движения является его хаотичность; ни одно направление движения молекул не выделяется среди других направлений. Поясним это: если проследить за движением одной молекулы, то с течением времени вследствие столкновений с другими молекулами величина скорости и направление движения этой молекулы изменяются совершенно беспорядочно; далее, если в какой-нибудь момент времени зафиксировать скорости движения всех молекул, то по направлению эти скорости оказываются равномерно разбросанными в пространстве, а по величине - имеют самые разнообразные значения.

Второй особенностью теплового движения является существование обмена энергией между молекулами, а также между различными видами движения; энергия поступательного движения молекул может переходить в энергию их вращательного или колебательного движения и обратно.

Обмен энергией между молекулами, а также между различными видами их теплового движения происходит благодаря взаимодействию молекул (столкновениям между ними). На больших расстояниях силы взаимодействия между молекулами очень малы и ими можно пренебрегать; на малых расстояниях эти силы оказывают заметное действие. В газах молекулы большую часть времени пребывают на сравнительно больших расстояниях друг от друга; лишь в течение весьма малых промежутков времени, оказавшись достаточно близко друг к другу, они взаимодействуют между собой, изменяя скорости своих движений и обмениваясь энергиями. Такие кратковременные взаимодействия молекул называются столкновениями. Различают два вида столкновений между молекулами:

1) столкновения, или удары, первого рода, в результате которых изменяются только скорости и кинетические энергии соударяющихся частиц; состав или структура самих молекул не испытывают никаких изменений;

2) столкновения, или удары, второго рода, в результате которых происходят изменения внутри молекул, например изменяется их состав или относительное расположение атомов внутри этих молекул. При этих столкновениях часть кинетической энергии молекул затрачивается на совершение работы против сил, действующих внутри молекул. В некоторых случаях, наоборот, может выделиться некоторое количество энергии за счет уменьшения внутренней потенциальной энергии молекул.

В дальнейшем мы будем иметь в виду только столкновения первого рода, происходящие между молекулами газов. Обмен энергиями при тепловых движениях в твердых и жидких телах является более сложным процессом и рассматривается в специальных разделах физики. Столкновения второго рода используются для объяснения электропроводности газов и жидкостей, а также теплового излучения тел.

Для описания каждого вида теплового движения молекул (поступательного, вращательного или колебательного) необходимо задать ряд величин. Например, для поступательного движения молекулы необходимо знать величину и направление ее скорости. Для этой цели достаточно указать три величины: значение скорости и два угла и между направлением скорости и координатными плоскостями или же три проекции скорости на координатные оси: (рис. 11.1, а). Заметим, что эти три величины независимы: при данном углы и могут иметь любые значения и, наоборот, при заданном, например, угле значения и могут быть любыми. Точно так же задание определенного значения не накладывает никаких ограничений на значения наоборот. Таким образом, для описания поступательного движения молекулы в пространстве необходимо задать три независимые друг от друга величины: и или Энергия, поступательного движения молекулы будет состоять из трех независимых компонент:

Для описания вращательного движения молекулы вокруг своей оси необходимо указать величину и направление угловой скорости вращения , т. е. опять-таки три независимые друг от друга величины: и в или (рис. II. 1, б). Энергия вращательного движения молекулы также будет состоять из трех независимых компонент:

где моменты инерции молекулы относительно трех взаимно перпендикулярных координатных осей. У одноатомной молекулы все эти моменты инерции очень малы, поэтому энергией ее вращательного движения пренебрегают. У двухатомной молекулы (рис. II.1, в) пренебрегают энергией вращательного движения относительно оси, проходящей через центры атомов, поэтому, например,

Для описания колебательного движения атомов в молекуле необходимо сначала разделить это движение на простые колебания, происходящие вдоль определенных направлений. Сложное колебание удобно разложить на простые прямолинейные колебания, происходящие по трем взаимно перпендикулярным направлениям. Эти колебания независимы друг от друга, т. е. частоте и амплитуде колебаний в одном из этих направлений могут соответствовать любая частота и амплитуда колебаний в других направлениях. Если каждое из этих прямолинейных колебаний гармоническое, то его можно описать при помощи формулы

Таким образом, для описания отдельного прямолинейного колебания атомов необходимо задать две величины: частоту колебания со и амплитуду колебания Эти две величины также независимы друг от друга: при данной частоте амплитуда колебания не связывается никакими условиями, и наоборот. Следовательно, для описания сложного колебательного движения молекулы вокруг точки (т. е. своего положения равновесия) необходимо задать шесть независимых друг от друга величин: три частоты и амплитуды колебании по трем взаимно перпендикулярным направлениям.

Независимые друг от друга величины, определяющие состояние данной физической системы, называются степенями свободы этой системы. При изучении теплового движения в телах (для расчета энергии этого движения) определяют число степеней свободы каждой молекулы этого тела. При этом подсчитываются только те степени свободы, между которыми происходит обмен энергиями. Молекула одноатомного газа обладает тремя степенями свободы поступательного движения; двухатомная молекула имеет три степени свободы поступательного и две степени свободы вращательного движения (третья степень свободы, соответствующая вращению вокруг оси, проходящей через центры атомов, не учитывается). Молекулы, содержащие три

атома и больше, обладают тремя поступательными и тремя вращательными степенями свободы. Если в обмене энергиями участвует и колебательное движение, то на каждое независимое прямолинейное колебание добавляют две степени свободы.

Рассматривая раздельно поступательное, вращательное и колебательное движения молекул, можно найти среднюю энергию, которая приходится на каждую степень свободы этих видов движения. Рассмотрим сначала поступательное движение молекул: допустим, молекула обладает кинетической энергией масса молекулы). Сумма есть энергия поступательного движения всех молекул. Разделив на степеней свободы, получим среднюю энергию, приходящуюся на одну степень свободы поступательного движения молекул:

Так же можно рассчитать средние энергии, приходящиеся на одну степень свободы вращательного евращ и колебательного еколеб движений. Если каждая молекула обладает степенями свободы поступательного, степенями свободы вращательного и степенями свободы колебательного движений, то полная энергия теплового движения всех молекул будет равна

 
Статьи по теме:
Шашлык с дымком в духовке
Когда появляется желание полакомиться ароматным шашлыком, а за окном дождь или вообще зима, а очень хочется почувствовать запах лета и насладиться мясом с «дымком», тогда и вынимается из рукава вот этот рецепт. Домашний шашлык с запахом костра в «быстром»
Значение рыси в славянской культуре Работа с энергией тотема
...фигню всякую про вас думаю...:-)))Тотем Рысь... Будьте молчаливым.Станьте наблюдателем.Почитайте секрет мудрости,которую Вы храните! СЕКРЕТЫ Если Вы хотите узнать секрет, просите помощь у Рыси. К сожалению, трудно уговорить тихую Рысь, заговорить. Ры
Житийная литература «Сказание о Борисе и Глебе»
В XIX веке жанр жития переживал упадок. Казалось, что за двести лет на русской земле, прежде столь щедрой на подвижников, молчальников, святителей, юродивых, перевелись святые. За время существования Священного Синода, с 1721 по 1917 год, коронация в Росс
Что такое проектно-сметная документация
Капитальный ремонт объекта капитального строительства – одновременная разработка рабочего проекта и сметы, чертежи и расчеты производятся после утверждения проектного задания. состав:Раздел 5. "Сведения об инженерном оборудовании, о сетях инженерно – те