Что такое синус угла. Прямоугольный треугольник. Полный иллюстрированный гид (2019)

Понятия синуса (), косинуса (), тангенса (), котангенса () неразрывно связаны с понятием угла. Чтобы хорошо разобраться в этих, на первый взгляд, сложных понятиях (которые вызывают у многих школьников состояние ужаса), и убедиться, что «не так страшен черт, как его малюют», начнём с самого начала и разберёмся в понятии угла.

Понятие угла: радиан, градус

Давай посмотрим на рисунке. Вектор «повернулся» относительно точки на некую величину. Так вот мерой этого поворота относительно начального положения и будет выступать угол .

Что же ещё необходимо знать о понятии угла? Ну, конечно же, единицы измерения угла!

Угол, как в геометрии, так и в тригонометрии, может измеряться в градусах и радианах.

Углом в (один градус) называют центральный угол в окружности, опирающийся на круговую дугу, равную части окружности. Таким образом, вся окружность состоит из «кусочков» круговых дуг, или угол, описываемый окружностью, равен.

То есть на рисунке выше изображён угол, равный, то есть этот угол опирается на круговую дугу размером длины окружности.

Углом в радиан называют центральный угол в окружности, опирающийся на круговую дугу, длина которой равна радиусу окружности. Ну что, разобрался? Если нет, то давай разбираться по рисунку.

Итак, на рисунке изображён угол, равный радиану, то есть этот угол опирается на круговую дугу, длина которой равна радиусу окружности (длина равна длине или радиус равен длине дуги). Таким образом, длина дуги вычисляется по формуле:

Где - центральный угол в радианах.

Ну что, можешь, зная это, ответить, сколько радиан содержит угол, описываемый окружностью? Да, для этого надо вспомнить формулу длины окружности. Вот она:

Ну вот, теперь соотнесём эти две формулы и получим, что угол, описываемый окружностью равен. То есть, соотнеся величину в градусах и радианах, получаем, что. Соответственно, . Как можно заметить, в отличие от «градусов», слово «радиан» опускается, так как единица измерения обычно ясна из контекста.

А сколько радиан составляют? Всё верно!

Уловил? Тогда вперёд закреплять:

Возникли трудности? Тогда смотри ответы :

Прямоугольный треугольник: синус, косинус, тангенс, котангенс угла

Итак, с понятием угла разобрались. А что же всё-таки такое синус, косинус, тангенс, котангенс угла? Давай разбираться. Для этого нам поможет прямоугольный треугольник.

Как называются стороны прямоугольного треугольника? Всё верно, гипотенуза и катеты: гипотенуза - это сторона, которая лежит напротив прямого угла (в нашем примере это сторона); катеты - это две оставшиеся стороны и (те, что прилегают к прямому углу), причём, если рассматривать катеты относительно угла, то катет - это прилежащий катет, а катет - противолежащий. Итак, теперь ответим на вопрос: что такое синус, косинус, тангенс и котангенс угла?

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

В нашем треугольнике.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

В нашем треугольнике.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

В нашем треугольнике.

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

В нашем треугольнике.

Эти определения необходимо запомнить ! Чтобы было проще запомнить какой катет на что делить, необходимо чётко осознать, что в тангенсе и котангенсе сидят только катеты, а гипотенуза появляется только в синусе и косинусе . А дальше можно придумать цепочку ассоциаций. К примеру, вот такую:

Косинус→касаться→прикоснуться→прилежащий;

Котангенс→касаться→прикоснуться→прилежащий.

В первую очередь, необходимо запомнить, что синус, косинус, тангенс и котангенс как отношения сторон треугольника не зависят от длин этих сторон (при одном угле). Не веришь? Тогда убедись, посмотрев на рисунок:

Рассмотрим, к примеру, косинус угла. По определению, из треугольника: , но ведь мы можем вычислить косинус угла и из треугольника: . Видишь, длины у сторон разные, а значение косинуса одного угла одно и то же. Таким образом, значения синуса, косинуса, тангенса и котангенса зависят исключительно от величины угла.

Если разобрался в определениях, то вперёд закреплять их!

Для треугольника, изображённого ниже на рисунке, найдём.

Ну что, уловил? Тогда пробуй сам: посчитай то же самое для угла.

Единичная (тригонометрическая) окружность

Разбираясь в понятиях градуса и радиана, мы рассматривали окружность с радиусом, равным. Такая окружность называется единичной . Она очень пригодится при изучении тригонометрии. Поэтому остановимся на ней немного подробней.

Как можно заметить, данная окружность построена в декартовой системе координат. Радиус окружности равен единице, при этом центр окружности лежит в начале координат, начальное положение радиус-вектора зафиксировано вдоль положительного направления оси (в нашем примере, это радиус).

Каждой точке окружности соответствуют два числа: координата по оси и координата по оси. А что это за числа-координаты? И вообще, какое отношение они имеют к рассматриваемой теме? Для этого надо вспомнить про рассмотренный прямоугольный треугольник. На рисунке, приведённом выше, можно заметить целых два прямоугольных треугольника. Рассмотрим треугольник. Он прямоугольный, так как является перпендикуляром к оси.

Чему равен из треугольника? Всё верно. Кроме того, нам ведь известно, что - это радиус единичной окружности, а значит, . Подставим это значение в нашу формулу для косинуса. Вот что получается:

А чему равен из треугольника? Ну конечно, ! Подставим значение радиуса в эту формулу и получим:

Так, а можешь сказать, какие координаты имеет точка, принадлежащая окружности? Ну что, никак? А если сообразить, что и - это просто числа? Какой координате соответствует? Ну, конечно, координате! А какой координате соответствует? Всё верно, координате! Таким образом, точка.

А чему тогда равны и? Всё верно, воспользуемся соответствующими определениями тангенса и котангенса и получим, что, а.

А что, если угол будет больше? Вот, к примеру, как на этом рисунке:

Что же изменилось в данном примере? Давай разбираться. Для этого опять обратимся к прямоугольному треугольнику. Рассмотрим прямоугольный треугольник: угол (как прилежащий к углу). Чему равно значение синуса, косинуса, тангенса и котангенса для угла? Всё верно, придерживаемся соответствующих определений тригонометрических функций:

Ну вот, как видишь, значение синуса угла всё так же соответствует координате; значение косинуса угла - координате; а значения тангенса и котангенса соответствующим соотношениям. Таким образом, эти соотношения применимы к любым поворотам радиус-вектора.

Уже упоминалось, что начальное положение радиус-вектора - вдоль положительного направления оси. До сих пор мы вращали этот вектор против часовой стрелки, а что будет, если повернуть его по часовой стрелке? Ничего экстраординарного, получится так же угол определённой величины, но только он будет отрицательным. Таким образом, при вращении радиус-вектора против часовой стрелки получаются положительные углы , а при вращении по часовой стрелке - отрицательные.

Итак, мы знаем, что целый оборот радиус-вектора по окружности составляет или. А можно повернуть радиус-вектор на или на? Ну конечно, можно! В первом случае, таким образом, радиус-вектор совершит один полный оборот и остановится в положении или.

Во втором случае, то есть радиус-вектор совершит три полных оборота и остановится в положении или.

Таким образом, из приведённых примеров можем сделать вывод, что углы, отличающиеся на или (где - любое целое число), соответствуют одному и тому же положению радиус-вектора.

Ниже на рисунке изображён угол. Это же изображение соответствует углу и т.д. Этот список можно продолжить до бесконечности. Все эти углы можно записать общей формулой или (где - любое целое число)

Теперь, зная определения основных тригонометрических функций и используя единичную окружность, попробуй ответить, чему равны значения:

Вот тебе в помощь единичная окружность:

Возникли трудности? Тогда давай разбираться. Итак, мы знаем, что:

Отсюда, мы определяем координаты точек, соответствующих определённым мерам угла. Ну что же, начнём по порядку: углу в соответствует точка с координатами, следовательно:

Не существует;

Дальше, придерживаясь той же логики, выясняем, что углам в соответствуют точки с координатами, соответственно. Зная это, легко определить значения тригонометрических функций в соответствующих точках. Сначала попробуй сам, а потом сверяйся с ответами.

Ответы:

Не существует

Не существует

Не существует

Не существует

Таким образом, мы можем составить следующую табличку:

Нет необходимости помнить все эти значения. Достаточно помнить соответствие координат точек на единичной окружности и значений тригонометрических функций:

А вот значения тригонометрических функций углов в и, приведённых ниже в таблице, необходимо запомнить :

Не надо пугаться, сейчас покажем один из примеров довольно простого запоминания соответствующих значений :

Для пользования этим методом жизненно необходимо запомнить значения синуса для всех трёх мер угла (), а также значение тангенса угла в. Зная эти значения, довольно просто восстановить всю таблицу целиком -значения косинуса переносятся в соответствии со стрелочками, то есть:

Зная это можно восстановить значения для. Числитель « » будет соответствовать, а знаменатель « » соответствует. Значения котангенса переносятся в соответствии со стрелочками, указанными на рисунке. Если это уяснить и запомнить схему со стрелочками, то будет достаточно помнить всего значения из таблицы.

Координаты точки на окружности

А можно ли найти точку (её координаты) на окружности, зная координаты центра окружности, её радиус и угол поворота ?

Ну, конечно, можно! Давай выведем общую формулу для нахождения координат точки .

Вот, к примеру, перед нами такая окружность:

Нам дано, что точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом точки на градусов.

Как видно из рисунка, координате точки соответствует длина отрезка. Длина отрезка соответствует координате центра окружности, то есть равна. Длину отрезка можно выразить, используя определение косинуса:

Тогда имеем, что для точки координата.

По той же логике находим значение координаты y для точки. Таким образом,

Итак, в общем виде координаты точек определяются по формулам:

Координаты центра окружности,

Радиус окружности,

Угол поворота радиуса вектора.

Как можно заметить, для рассматриваемой нами единичной окружности эти формулы значительно сокращаются, так как координаты центра равны нулю, а радиус равен единице:

Ну что, попробуем эти формулы на вкус, поупражняясь в нахождении точек на окружности?

1. Найти координаты точки на единичной окружности, полученной поворотом точки на.

2. Найти координаты точки на единичной окружности, полученной поворотом точки на.

3. Найти координаты точки на единичной окружности, полученной поворотом точки на.

4. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

5. Точка - центр окружности. Радиус окружности равен. Необходимо найти координаты точки, полученной поворотом начального радиус-вектора на.

Возникли проблемы в нахождении координот точки на окружности?

Реши эти пять примеров (или разберись хорошо в решении) и ты научишься их находить!

1.

Можно заметить, что. А мы ведь знаем, что соответствует полному обороту начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

2. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Мы знаем, что соответствует двум полным оборотам начальной точки. Таким образом, искомая точка будет находиться в том же положении, что и при повороте на. Зная это, найдём искомые координаты точки:

Синус и косинус - это табличные значения. Вспоминаем их значения и получаем:

Таким образом, искомая точка имеет координаты.

3. Окружность единичная с центром в точке, значит, мы можем воспользоваться упрощёнными формулами:

Можно заметить, что. Изобразим рассматриваемый пример на рисунке:

Радиус образует с осью углы, равные и. Зная, что табличные значения косинуса и синуса равны, и определив, что косинус здесь принимает отрицательное значение, а синус положительное, имеем:

Подробней подобные примеры разбираются при изучении формул приведения тригонометрических функций в теме .

Таким образом, искомая точка имеет координаты.

4.

Угол поворота радиуса вектора (по условию,)

Для определения соответствующих знаков синуса и косинуса построим единичную окружность и угол:

Как можно заметить, значение, то есть положительно, а значение, то есть - отрицательно. Зная табличные значения соответствующих тригонометрических функций, получаем, что:

Подставим полученные значения в нашу формулу и найдём координаты:

Таким образом, искомая точка имеет координаты.

5. Для решения данной задачи воспользуемся формулами в общем виде, где

Координаты центра окружности (в нашем примере,

Радиус окружности (по условию,)

Угол поворота радиуса вектора (по условию,).

Подставим все значения в формулу и получим:

и - табличные значения. Вспоминаем и подставляем их в формулу:

Таким образом, искомая точка имеет координаты.

КРАТКОЕ ИЗЛОЖЕНИЕ И ОСНОВНЫЕ ФОРМУЛЫ

Синус угла - это отношение противолежащего (дальнего) катета к гипотенузе.

Косинус угла - это отношение прилежащего (близкого) катета к гипотенузе.

Тангенс угла - это отношение противолежащего (дальнего) катета к прилежащему (близкому).

Котангенс угла - это отношение прилежащего (близкого) катета к противолежащему (дальнему).

Для начала рассмотрим круг с радиусом 1 и с центром в (0;0). Для любого αЄR можно провести радиус 0A так, что радианная мера угла между 0A и осью 0x равна α. Направление против часовой стрелки считается положительным. Пусть конец радиуса А имеет координаты (a,b).

Определение синуса

Определение: Число b, равное ординате единичного радиуса, построенного описанным способом, обозначается sinα и называется синусом угла α.

Пример: sin 3π cos3π/2 = 0 0 = 0

Определение косинуса

Определение: Число a, равное абсциссе конца единичного радиуса, построенного описанным способом, обозначается cosα и называется косинусом угла α.

Пример: cos0 cos3π + cos3,5π = 1 (-1) + 0 = 2

Эти примеры используют определение синуса и косинуса угла через координаты конца единичного радиуса и единичной окружности. Для более наглядного представления необходимо нарисовать единичную окружность и отложить на ней соответствующие точки, а затем посчитать их абсциссы для вычисления косинуса и ординаты для вычисления синуса.

Определение тангенса

Определение: Функция tgx=sinx/cosx при x≠π/2+πk, kЄZ, называется котангенсом угла x. Область определения функции tgx это все действительные числа, кроме x=π/2+πn, nЄZ.

Пример: tg0 tgπ = 0 0 = 0

Этот пример аналогичен предыдущему. Для вычисления тангенса угла нужно поделить ординату точки на её абсциссу.

Определение котангенса

Определение: Функция ctgx=cosx/sinx при x≠πk, kЄZ называется котангенсом угла x. Область определения функции ctgx = -все действительные числа кроме точек x=πk, kЄZ.

Рассмотрим пример на обычном прямоугольном треугольнике

Чтобы было понятнее, что же такое косинус, синус, тангенс и котангенс. Рассмотрим пример на обычном прямоугольном треугольнике с углом y и сторонами a,b,c . Гипотенуза с, катеты соответственно a и b. Угол между гипотенузой c и катетом b y.

Определение: Синус угла y - это отношение противолежащего катета к гипотенузе: siny = а/с

Определение: Косинус угла y это отношение прилежащего катета к гипотенузе: сosy= в/с

Определение: Тангенс угла у - это отношение противолежащего катета к прилежащему: tgy = а/в

Определение: Котангенс угла y -это отношение прилежащего катета к противолежащему: ctgy= в/а

Cинус, косинус, тангенс и котангенс называют ещё тригонометрическими функциями. У каждого угла есть свой синус и косинус. И практически у каждого есть свой тангенс и котангенс.

Считается, что если нам дан угол, то его синус, косинус, тангенс и котангенс нам известны! И наоборот. Дан синус, или любая другая тригонометрическая функция соответственно, мы знаем угол. Созданы даже специальные таблицы, где расписаны тригонометрические функции для каждого угла.

Косинус – это всем известная тригонометрическая функция, которая к тому же является еще и одной из основных функций тригонометрии. Косинус угла в треугольнике прямоугольного типа - это отношение прилежащего катета треугольника к гипотенузе треугольника. Наиболее часто определение косинуса связывают с треугольником именно прямоугольного типа. Но бывает и так, что тот угол, для которого необходимо вычислить в треугольнике прямоугольного типа косинус, в этом самом треугольнике прямоугольного типа не расположен. Что же тогда делать? Как найти косинус угла треугольника?

Если требуется вычислить косинус угла именно в треугольнике прямоугольного типа, то тут все очень просто. Нужно лишь вспомнить определение косинуса, в котором и кроется решение данной задачи. Просто требуется найти то самое отношение между прилежащим катетом, а также гипотенузой треугольника. Действительно здесь нетрудно выразить косинус угла. Формула выглядит следующим образом: - cosα = a/c, здесь "а" – это длина катета, а сторона "с", соответственно, длина гипотенузы. К примеру, косинус острого угла прямоугольного треугольника можно найти по этой формуле.

Если Вас интересует, чему равен косинус угла в произвольном треугольнике, то на помощь приходит теорема косинусов, которой и стоит воспользоваться в подобных случаях. Теорема косинусов гласит о том, что квадрат стороны треугольника априори равен сумме квадратов остальных сторон того же треугольника, но уже без удвоенного произведения этих сторон на косинус того угла, который расположен между ними.

  1. Если в треугольнике необходимо найти косинус острого угла, то нужно воспользоваться такой формулой: cosα = (a 2 + b 2 – c 2)/(2ab).
  2. Если же в треугольнике необходимо найти косинус тупого угла, то нужно воспользоваться такой формулой: cosα = (с 2 – a 2 – b 2)/(2ab). Обозначения в формуле – а и b – это длины сторон, которые являются прилежащими к искомому углу, с – это длинна стороны, которая является противолежащей искомому углу.

Также косинус угла можно вычислять при помощи теоремы синусов. Она гласит, что все стороны треугольника пропорциональны синусам углов, которые противоположны. При помощи теоремы синусов можно вычислять остальные элементы треугольника, имея сведения лишь о двух сторонах и угле, который является противолежащим одно стороне, или же по двум углам и одной стороне. Рассмотри на примере. Условия задачи: а=1; b=2; с=3. Угол, который противоположен стороне "А", обозначаем - α, тогда, согласно формулам, имеем: соsα=(b²+c²-а²)/(2*b*c)=(2²+3²-1²)/(2*2*3)=(4+9-1)/12=12/12=1. Ответ: 1.

Если же косинус угла нужно вычислить не в треугольнике, а в какой-то другой произвольной геометрической фигуре, то тут все становится немного сложнее. Величину угла вначале нужно определить в радианах или же градусах, а уже потом вычислять косинус по этой величине. Косинус по числовому значению определяется при помощи таблиц Брадиса, инженерных калькуляторов или специальных математических приложений.

Специальные математические приложения могут иметь такие функции, как автоматический подсчет косинусов углов в той или иной фигуре. Прелесть таких приложений заключается в том, что они дают правильный ответ, а пользователь не затрачивает свое время на решение порой довольно сложных задач. С другой стороны, при постоянном использовании исключительно приложений для решения задач, теряются все навыки по работе с решением математических задач на нахождение косинусов углов в треугольниках, а также других произвольных фигурах.

Урок по теме «Синус, косинус и тангенс острого угла прямоугольного треугольника»

Цели урока:

    образовательные – ввести понятие синус, косинус, тангенс острого угла в прямоугольном треугольнике, исследовать зависимости и соотношения между этими величинами;

    развивающие – формирование понятия о синусе, косинусе, тангенсе как функциях от угла, области определения тригонометрических функций, развитие логического мышления, развитие правильной математической речи;

    воспитательные – развитие навыка самостоятельной работы, культуры поведения, аккуратности в ведении записей.

Ход урок:

1. Организационный момент

«Образование – это не количество прослушанных уроков, а количество понятых. Так что, если хотите идти вперед, то поспешайте медленно и будьте внимательны»

2. Мотивация урока.

Один мудрец сказал: « Высшее проявление духа – это разум. Высшее проявление разума – это геометрия. Клетка геометрии – это треугольник. Он так же неисчерпаем, как и Вселенная. Окружность – душа геометрии. Познайте окружность, и вы не только познаете душу геометрии, но возвысите свою душу».

Мы вместе с вами попробуем провести небольшое исследование. Давайте делиться своими идеями, которые придут вам в голову, и не бойтесь ошибиться, любая мысль может дать нам новое направление поиска. Пусть наши достижения и не покажутся кому-то крупными, но ведь это будут наши собственные достижения!

3. Актуализация опорных знаний.

    Какие могут быть углы?

    Что такое треугольники?

    Основные элементы определяющие треугольник?

    Какие бывают треугольники в зависимости от сторон?

    Какие бывают треугольники в зависимости от углов?

    Что такое катет?

    Что такое гипотенуза?

    Как называются стороны прямоугольного треугольника?

    Какие соотношения между сторонами и углами этого треугольника вы знаете?

    Зачем надо знать соотношения между сторонами и углами?

    Какие задачи из жизни могут привести к необходимости вычислять неизвестные стороны в треугольнике?

Термин «гипотенуза» происходит от греческого слова «ипонейноуза», обозначающее «тянущаяся над чем-либо», «стягивающая». Слово берет начало от образа древнегреческих арф, на которых струны натягиваются на концах двух взаимно-перпендикулярных подставок. Термин «катет» происходит от греческого слова «катетос», которое означает начало «отвес», «перпендикуляр».

Евклид говорил: «Катеты – это стороны, заключающие прямой угол».

В Древней Греции уже был известен способ построения прямоугольного треугольника на местности. Для этого использовали веревку, на которой были завязаны 13 узелков, на одинаковом расстоянии друг от друга. При строительстве пирамид в Египте именно так изготавливали прямоугольные треугольники. Наверно поэтому прямоугольный треугольник со сторонами 3,4,5 и назвали египетским треугольником.

4. Изучение нового материала.

В древности люди следили за светилами и по этим наблюдениям вели календарь, рассчитывали сроки сева, время разлива рек; корабли на море, караваны на суше ориентировались в пути по звездам. Все это привело к потребности научиться вычислять стороны в треугольнике, две вершины которого находятся на земле, а третья представляется точкой на звездном небе. Исходя из этой потребности и возникла наука – тригонометрия – наука, изучающая связи между сторонами в треугольнике.

Как вы думаете, достаточно ли уже известных нам соотношений для решения таких задач?

Цель сегодняшнего урока – исследовать новые связи и зависимости, вывести соотношения, применяя которые на следующих уроках геометрии, вы сможете такие задачи решать.

Давайте почувствуем себя в роли научных работников и вслед за гениями древности Фалесом, Евклидом, Пифагором пройдем путь поиска истины.

Для этого нам нужна теоретическая база.

Выделите красным цветом угол А и катет ВС.

Выделите зеленым цветом катет АС.

Вычислим, какую часть составляет противолежащий катет для острого угла А к его гипотенузе, для этого составим отношение противолежащего катета к гипотенузе:

Это отношение носит особое название – такое, что каждый человек в каждой точке планеты понимает, что речь идет о числе, представляющем отношение противолежащего катета острого угла к гипотенузе. Это слово синус. Запишите его. Так как слово синус без названия угла теряет всякий смысл, то математическая запись такова:

Теперь составьте отношение прилежащего катета к гипотенузе для острого угла А:

Это отношение имеет название косинус. Его математическая запись:

Рассмотрим еще одно отношение для острого угла А: отношение противолежащего катета к прилежащему катету:

Это отношение носит название тангенс. Его математическая запись:

5. Закрепление нового материала.

Давайте закрепим наши промежуточные открытия.

Синус – это …

Косинус – это …

Тангенс – это..



sin A =

sin О =

sin A 1 =

cos A =

cos О =

cos A 1 =

tg A =

tg О =

tg A 1 =

Решить устно № 88, 889, 892(работа в парах).

Использование полученных знаний для решения практической задачи:

«С башни маяка высотой 70 м виден корабль под углом 3 к горизонту. Каково

расстояние от маяка до корабля?»

Задача решается фронтально. В ходе обсуждения делаем чертеж и необходимые записи на доске и в тетрадях.

При решении задачи используются таблицы Брадиса.

Рассмотреть решение задачи с.175.

Решить №902(1).

6. Физминутка для глаз.

Не поворачивая головы, обведите взглядом стену класса по периметру по часовой стрелке, классную доску по периметру против часовой стрелки, треугольник, изображенный на стенде по часовой стрелке и равный ему треугольник против часовой стрелки. Поверните голову налево и посмотрите на линию горизонта, а теперь на кончик своего носа. Закройте глаза, сосчитайте до 5, откройте глаза и …

Мы ладонь к глазам приставим,
Ноги крепкие расставим.
Поворачиваясь вправо,
Оглядимся величаво.
И налево надо тоже
Поглядеть из под ладошек.
И – направо! И еще
Через левое плечо!
а теперь продолжим работу.

7. Самостоятельная работа учащихся.

Решить № .

8.Итоги урока. Рефлексия. Д/з.

Что вы узнали нового? На уроке:

    вы рассматривали …

    вы анализировали …

    вы получили …

    вы сделали вывод …

    вы пополнили словарный запас следующими терминами …

Мировая наука начиналась с геометрии. Человек не может по настоящему развиваться культурно и духовно, если он не изучал в школе геометрию. Геометрия возникла не только из практических, но и духовных потребностей человека.

Вот как поэтично объяснилась в любви к геометрии

Геометрию люблю…

Геометрию учу, потому что я люблю

Геометрия нужна, без нее нам никуда.

Синус, косинус, окружность – все здесь важно,

Все здесь нужно,

Только надо очень четко все учить и познавать,

Делать вовремя заданья и контрольные решать.

Где были рассмотрены задачи на решение прямоугольного треугольника, я пообещал изложить приём запоминания определений синуса и косинуса. Используя его, вы всегда быстро вспомните – какой катет относится к гипотенузе (прилежащий или противолежащий). Решил в «долгий ящик не откладывать», необходимый материал ниже, прошу ознакомиться 😉

Дело в том, что я не раз наблюдал, как учащиеся 10-11 классов с трудом вспоминают данные определения. Они прекрасно помнят, что катет относится к гипотенузе, а вот какой из них - забывают и путают. Цена ошибки, как вы знаете на экзамене – это потерянный бал.

Информация, которую я представлю непосредственно к математике не имеет никакого отношения. Она связана с образным мышлением, и с приёмами словесно-логической связи. Именно так, я сам, раз и на всегда запомнил данные определения. Если вы их всё же забудете, то при помощи представленных приёмов всегда легко вспомните.

Напомню определения синуса и косинуса в прямоугольном треугольнике:

Косинус острого угла в прямоугольном треугольнике - это отношение прилежащего катета к гипотенузе:

Синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе:

Итак, какие ассоциации у вас вызывает слово косинус?

Наверное, у каждого свои 😉 Запоминайте связку:

Таким образом, у вас сразу в памяти возникнет выражение –

«… отношение ПРИЛЕЖАЩЕГО катета к гипотенузе ».

Проблема с определением косинуса решена.

Если нужно вспомнить определение синуса в прямоугольном треугольнике, то вспомнив определение косинуса, вы без труда установите, что синус острого угла в прямоугольном треугольнике - это отношение противолежащего катета к гипотенузе. Ведь катетов всего два, если прилежащий катет «занят» косинусом, то синусу остаётся только противолежащий.

Как быть с тангенсом и котангенсом? Путаница та же. Учащиеся знают, что это отношение катетов, но проблема вспомнить какой к которому относится – то ли противолежащий к прилежащему, то ли наоборот.

Определения:

Тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему:

Котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему:

Как запомнить? Есть два способа. Один так же использует словесно-логическую связь, другой – математический.

СПОСОБ МАТЕМАТИЧЕСКИЙ

Есть такое определение – тангенсом острого угла называется отношение синуса угла к его косинусу:

*Запомнив формулу, вы всегда сможете определить, что тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему.

Аналогично. Котангенсом острого угла называется отношение косинуса угла к его синусу:

Итак! Запомнив указанные формулы вы всегда сможете определить, что:

— тангенс острого угла в прямоугольном треугольнике - это отношение противолежащего катета к прилежащему

— котангенс острого угла в прямоугольном треугольнике - это отношение прилежащего катета к противолежащему.

СПОСОБ СЛОВЕСНО-ЛОГИЧЕСКИЙ

О тангенсе. Запомните связку:

То есть если потребуется вспомнить определение тангенса, при помощи данной логической связи, вы без труда вспомните, что это

«… отношение противолежащего катета к прилежащему»

Если речь зайдёт о котангенсе, то вспомнив определение тангенса вы без труда озвучите определение котангенса –

«… отношение прилежащего катета к противолежащему»

Есть интересный приём по запоминанию тангенса и котангенса на сайте " Математический тандем " , посмотрите.

СПОСОБ УНИВЕРСАЛЬНЫЙ

Можно просто зазубрить. Но как показывает практика, благодаря словесно-логическим связкам человек запоминает информацию надолго, и не только математическую.

Надеюсь, материал был вам полезен.

С уважением, Александр Крутицких

P.S: Буду благодарен Вам, если расскажете о сайте в социальных сетях.

 
Статьи по теме:
Презентация по теме безопасность опасные предметы
Причины возникновения пожара Неосторожное обращение с огнем: разведение костров и небрежное обращение с ними, разогревание горючих веществ на газовых или электрических плитах и т. п. Нарушение правил эксплуатации бытовых электроприборов: телевизор перегре
Основные идеи философии эпикура
15. Эпикур и эпикурейцыВыдающимися представителями эпикуреизма являются Эпикур (341–270 до н. э.) и Лукреций Кар (ок. 99–55 до н. э.). Это философское направление относится к рубежу старой и новой эры. Эпикурейцев интересовали вопросы устроения, комфорта
Распространение тюркских языков Сильная ветвь алтайского дерева
Расселены на огромной территории нашей планеты, начиная от бассейна холодной Колымы до юго-западного побережья Средиземного моря. Тюрки не принадлежат к какому-то определенному расовому типу, даже среди одного народа встречаются как европеоиды, так и монг
Куда ехать за исполнением желаний в Курской области
Отец Вениамин служит в одном из храмов Коренной пустыни. Несколько раз в неделю священник проводит молебны, на которые съезжается множество людей. Летом службы часто проходят на улице, так как все желающие не умещаются в крохотной церквушке. Прихожане уве