График сложной показательной функции. Показательные уравнения и неравенства

Найдем значение выражения при различных рациональных значениях переменной х=2; 0; -3; -

Заметим, какое бы число вместо переменной икс мы не подставили, всегда можно найти значение данного выражения. Значит, мы рассматриваем показательную функцию (игрек равен три в степени икс), определенную на множестве рациональных чисел: .

Построим график данной функции, составив таблицу ее значений.

Проведем плавную линию, проходящую через данные точки (рис 1)

Используя график данной функции, рассмотрим ее свойства:

3.Возрастает на всей области определения.

  1. область значения от нуля до плюс бесконечности.

8. Функция выпукла вниз.

Если в одной системе координат построить графики функций; у=(игрек равен два в степени икс, игрек равен пять в степени икс, игрек равен семь в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен трем в степени икс) (рис.2), то есть такими свойствами будут обладать все функции вида у=(игрек равен а в степени икс, при а большем единицы)

Построим график функции:

1. Составив таблицу ее значений.

Отметим полученные точки на координатной плоскости.

Проведем плавную линию, проходящую через данные точки (рис 3).

Используя график данной функции, укажем ее свойства:

1. Область определения - множество всех действительных чисел.

2.Не является ни четной, ни нечетной.

3.Убывает на всей области определения.

4.Не имеет ни наибольшего, ни наименьшего значений.

5.Ограничена снизу, но не ограничена сверху.

6.Непрерывна на всей области определения.

7. область значения от нуля до плюс бесконечности.

8. Функция выпукла вниз.

Аналогично, если в одной системе координат построить графики функций; у=(игрек равен одна вторая в степени икс, игрек равен одна пятая в степени икс, игрек равен одна седьмая в степени икс), то можно заметить, что они обладают теми же свойствами, что и у=(игрек равен одна третья в степени икс)(рис.4), то есть такими свойствами будут обладать все функции вида у=(игрек равен единица, деленная на а в степени икс, при а большем нуля, но меньшем единицы)

Построим в одной системе координат графики функций

значит, будут симметричны и графики функций у=у= (игрек равен а в степени икс и игрек равен единице, деленной на а в степени икс) при одном и том же значении а.

Обобщим сказанное, дав определение показательной функции и указав ее основные свойства:

Определение: Функция вида у=, где (игрек равен а в степени икс, где а положительно и отлично от единицы), называют показательной функцией.

Необходимо запомнить различия между показательной функцией у= и степенной функцией у=, а=2,3,4,…. как на слух, так и зрительно. У показательной функции х является степенью, а у степенной функции х является основанием.

Пример1: Решите уравнение (три в степени икс равно девяти)

(игрек равняется три в степени икс и игрек равняется девяти) рис.7

Заметим, что они имеют одну общую точку М (2;9) (эм с координатами два; девять), значит, абсцисса точки будет являться корнем данного уравнения. То есть, уравнение имеет единственный корень х= 2.

Пример 2: Решите уравнение

В одной системе координат построим два графика функции у= (игрек равен пяти в степени икс и игрек равен одна двадцать пятая) рис.8. Графики пересекаются в одной точке Т (-2;(тэ с координатами минус два; одна двадцать пятая). Значит, корнем уравнения является х=-2(число минус два).

Пример 3: Решите неравенство

В одной системе координат построим два графика функции у=

(игрек равен три в степени икс и игрек равен двадцати семи).

Рис.9 График функции расположен выше графика функции у=при

х Следовательно, решением неравенства является интервал (от минус бесконечности до трех)

Пример 4: Решите неравенство

В одной системе координат построим два графика функции у= (игрек равен одна четвертая в степени икс и игрек равен шестнадцати). (рис.10). Графики пересекаются в одной точке К (-2;16). Значит, решением неравенства является промежуток (-2;(от минус двух до плюс бесконечности), т.к. график функции у=расположен ниже графика функции при х

Наши рассуждения позволяют убедиться в справедливости следующих теорем:

Терема 1: Если справедливо тогда и только тогда, когда m=n.

Теорема 2: Если справедливо тогда и только тогда, когда, неравенство справедливо тогда и только тогда, когда (рис. *)

Теорема 4: Если справедливо тогда и только тогда, когда (рис.**), неравенство справедливо тогда и только тогда, когда.Теорема 3: Если справедливо тогда и только тогда, когда m=n.

Пример 5: Построить график функции у=

Видоизменим функцию, применив свойство степени у=

Построим дополнительную систему координат и в новой системе координат построим график функции у= (игрек равен два в степени икс) рис.11.

Пример 6: Решите уравнение

В одной системе координат построим два графика функции у=

(игрек равен семи в степени икс и игрек равен восемь минус икс) рис.12.

Графики пересекаются в одной точке Е (1;(е с координатами один; семь). Значит, корнем уравнения является х=1(икс равный единице).

Пример 7: Решите неравенство

В одной системе координат построим два графика функции у=

(игрек равен одна четвертая в степени икс и игрек равен икс плюс пять). График функции у=расположен ниже графика функции у=х+5 при, решением неравенства является интервал х(от минус единицы до плюс бесконечности).

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Показательная функция

Функция вида y = a x , где a больше нуля и а не равно единице называется показательной функцией. Основные свойства показательной функции:

1. Областью определения показательной функции будет являться множество вещественных чисел.

2. Область значений показательной функции будет являться множество всех положительных вещественных чисел. Иногда это множество для краткости записи обозначают как R+.

3. Если в показательной функции основание a больше единицы, то функция будет возрастающей на всей области определения. Если в показательной функции для основания а выполнено следующее условие 0

4. Справедливы будет все основные свойства степеней. Основные свойства степеней представлены следующим равенствами:

a x *a y = a (x + y) ;

(a x )/(a y ) = a (x-y) ;

(a*b) x = (a x )*(a y );

(a/b) x = a x /b x ;

(a x ) y = a (x * y) .

Данные равенства будут справедливы для все действительных значений х и у.

5. График показательной функции всегда проходит через точку с координатами (0;1)

6. В зависимости от того возрастает или убывает показательная функция, её график будет иметь один из двух видов.

На следующем рисунке представлен график возрастающей показательной функции: a>0.

На следующем рисунке представлен график убывающей показательной функции: 0

И график возрастающей показательной функции и график убывающей показательной функции согласно свойству, описанному в пятом пункте, проходят через точку (0;1).

7. Показательная функция не имеет точек экстремума, то есть другими словами, она не имеет точек минимума и максимума функции. Если рассматривать функцию на каком-либо конкретном отрезке, то минимальное и максимальное значения функция будет принимать на концах этого промежутка.

8. Функция не является четной или нечетной. Показательная функция это функция общего вида. Это видно и из графиков, ни один из них не симметричен ни относительно оси Оу, ни относительно начала координат.

Логарифм

Логарифмы всегда считались сложной темой в школьном курсе математики. Существует много разных определений логарифма, но большинство учебников почему-то используют самые сложные и неудачные из них.

Мы же определим логарифм просто и наглядно. Для этого составим таблицу:

Итак, перед нами степени двойки. Если взять число из нижней строчки, то можно легко найти степень, в которую придется возвести двойку, чтобы получилось это число. Например, чтобы получить 16, надо два возвести в четвертую степень. А чтобы получить 64, надо два возвести в шестую степень. Это видно из таблицы.

А теперь - собственно, определение логарифма:

Определение

Логарифм по основанию a от аргумента x - это степень, в которую надо возвести число a, чтобы получить число x.

Обозначение

log a x = b
где a - основание, x - аргумент, b - собственно, чему равен логарифм.

Например, 2 3 = 8 ⇒ log 2 8 = 3 (логарифм по основанию 2 от числа 8 равен трем, поскольку 2 3 = 8). С тем же успехом log 2 64 = 6, поскольку 2 6 = 64.

Операцию нахождения логарифма числа по заданному основанию называют логарифмированием . Итак, дополним нашу таблицу новой строкой:

К сожалению, далеко не все логарифмы считаются так легко. Например, попробуйте найти log 2 5. Числа 5 нет в таблице, но логика подсказывает, что логарифм будет лежать где-то на отрезке . Потому что 2 2 < 5 < 2 3 , а чем больше степень двойки, тем больше получится число.

Такие числа называются иррациональными: цифры после запятой можно писать до бесконечности, и они никогда не повторяются. Если логарифм получается иррациональным, его лучше так и оставить: log 2 5, log 3 8, log 5 100.

Важно понимать, что логарифм - это выражение с двумя переменными (основание и аргумент). Многие на первых порах путают, где находится основание, а где - аргумент. Чтобы избежать досадных недоразумений, просто взгляните на картинку:

Перед нами - не что иное как определение логарифма. Вспомните: логарифм - это степень, в которую надо возвести основание, чтобы получить аргумент. Именно основание возводится в степень - на картинке оно выделено красным. Получается, что основание всегда находится внизу! Это замечательное правило я рассказываю своим ученикам на первом же занятии - и никакой путаницы не возникает.

С определением разобрались - осталось научиться считать логарифмы, т.е. избавляться от знака «log». Для начала отметим, что из определения следует два важных факта:

    Аргумент и основание всегда должны быть больше нуля. Это следует из определения степени рациональным показателем, к которому сводится определение логарифма.

    Основание должно быть отличным от единицы, поскольку единица в любой степени все равно остается единицей. Из-за этого вопрос «в какую степень надо возвести единицу, чтобы получить двойку» лишен смысла. Нет такой степени!

Такие ограничения называются областью допустимых значений (ОДЗ). Получается, что ОДЗ логарифма выглядит так: log a x = b x > 0, a > 0, a ≠ 1.

Заметьте, что никаких ограничений на число b (значение логарифма) не накладывается. Например, логарифм вполне может быть отрицательным: log 2 0,5 = −1, т.к. 0,5 = 2 −1 .

Впрочем, сейчас мы рассматриваем лишь числовые выражения, где знать ОДЗ логарифма не требуется. Все ограничения уже учтены составителями задач. Но когда пойдут логарифмические уравнения и неравенства, требования ОДЗ станут обязательными. Ведь в основании и аргументе могут стоять весьма неслабые конструкции, которые совсем необязательно соответствуют приведенным выше ограничениям.

Теперь рассмотрим общую схему вычисления логарифмов. Она состоит из трех шагов:

    Представить основание a и аргумент x в виде степени с минимально возможным основанием, большим единицы. Попутно лучше избавиться от десятичных дробей;

    Решить относительно переменной b уравнение: x = a b ;

    Полученное число b будет ответом.

Вот и все! Если логарифм окажется иррациональным, это будет видно уже на первом шаге. Требование, чтобы основание было больше единицы, весьма актуально: это снижает вероятность ошибки и значительно упрощает выкладки. Аналогично с десятичными дробями: если сразу перевести их в обычные, ошибок будет в разы меньше.

Посмотрим, как работает эта схема на конкретных примерах:

Вычислите логарифм: log 5 25

    Представим основание и аргумент как степень пятерки: 5 = 5 1 ; 25 = 5 2 ;

    Составим и решим уравнение:
    log 5 25 = b ⇒ (5 1) b = 5 2 ⇒ 5 b = 5 2 ⇒ b = 2;

    Получили ответ: 2.

Вычислите логарифм:

    Представим основание и аргумент как степень тройки: 3 = 3 1 ; 1/81 = 81 −1 = (3 4) −1 = 3 −4 ;

    Составим и решим уравнение:

    Получили ответ: −4.

4

Вычислите логарифм: log 4 64

    Представим основание и аргумент как степень двойки: 4 = 2 2 ; 64 = 2 6 ;

    Составим и решим уравнение:
    log 4 64 = b ⇒ (2 2) b = 2 6 ⇒ 2 2 b = 2 6 ⇒ 2b = 6 ⇒ b = 3;

    Получили ответ: 3.

Вычислите логарифм: log 16 1

    Представим основание и аргумент как степень двойки: 16 = 2 4 ; 1 = 2 0 ;

    Составим и решим уравнение:
    log 16 1 = b ⇒ (2 4) b = 2 0 ⇒ 2 4 b = 2 0 ⇒ 4b = 0 ⇒ b = 0;

    Получили ответ: 0.

Вычислите логарифм: log 7 14

    Представим основание и аргумент как степень семерки: 7 = 7 1 ; 14 в виде степени семерки не представляется, поскольку 7 1 < 14 < 7 2 ;

    Из предыдущего пункта следует, что логарифм не считается;

    Ответ - без изменений: log 7 14.

log 7 14

Небольшое замечание к последнему примеру. Как убедиться, что число не является точной степенью другого числа? Очень просто - достаточно разложить его на простые множители. Если в разложении есть хотя бы два различных множителя, число не является точной степенью.

Выясните, являются ли точными степенями числа: 8; 48; 81; 35; 14.

8 = 2 · 2 · 2 = 2 3 - точная степень, т.к. множитель всего один;
48 = 6 · 8 = 3 · 2 · 2 · 2 · 2 = 3 · 2 4 - не является точной степенью, поскольку есть два множителя: 3 и 2;
81 = 9 · 9 = 3 · 3 · 3 · 3 = 3 4 - точная степень;
35 = 7 · 5 - снова не является точной степенью;
14 = 7 · 2 - опять не точная степень;

8, 81 - точная степень; 48, 35, 14 - нет.

Заметим также, что сами простые числа всегда являются точными степенями самих себя.

Десятичный логарифм

Некоторые логарифмы встречаются настолько часто, что имеют специальное название и обозначение.

Определение

Десятичный логарифм от аргумента x - это логарифм по основанию 10, т.е. степень, в которую надо возвести число 10, чтобы получить число x.

Обозначение

lg x

Например, lg 10 = 1; lg 100 = 2; lg 1000 = 3 - и т.д.

Отныне, когда в учебнике встречается фраза типа «Найдите lg 0,01», знайте: это не опечатка. Это десятичный логарифм. Впрочем, если вам непривычно такое обозначение, его всегда можно переписать:
lg x = log 10 x

Все, что верно для обычных логарифмов, верно и для десятичных.

Натуральный логарифм

Существует еще один логарифм, который имеет собственное обозначение. В некотором смысле, он даже более важен, чем десятичный. Речь идет о натуральном логарифме.

Определение

Натуральный логарифм от аргумента x - это логарифм по основанию e, т.е. степень, в которую надо возвести число e, чтобы получить число x.

Обозначение

ln x

Многие спросят: что еще за число e? Это иррациональное число, его точное значение найти и записать невозможно. Приведу лишь первые его цифры:
e = 2,718281828459...

Не будем углубляться, что это за число и зачем нужно. Просто помните, что e - основание натурального логарифма:
ln
x = log e x

Таким образом, ln e = 1; ln e 2 = 2; ln e 16 = 16 - и т.д. С другой стороны, ln 2 - иррациональное число. Вообще, натуральный логарифм любого рационального числа иррационален. Кроме, разумеется, единицы: ln 1 = 0.

Для натуральных логарифмов справедливы все правила, которые верны для обычных логарифмов.

Основные свойства логарифмов

Логарифмы, как и любые числа, можно складывать, вычитать и всячески преобразовывать. Но поскольку логарифмы - это не совсем обычные числа, здесь есть свои правила, которые называются основными свойствами.

Эти правила обязательно надо знать - без них не решается ни одна серьезная логарифмическая задача. К тому же, их совсем немного - все можно выучить за один день. Итак, приступим.

Сложение и вычитание логарифмов

Рассмотрим два логарифма с одинаковыми основаниями: log a x и log a y. Тогда их можно складывать и вычитать, причем:

    log a x + log a y = log a ( x · y );

    log a x − log a y = log a ( x : y ).

Итак, сумма логарифмов равна логарифму произведения, а разность - логарифму частного. Обратите внимание: ключевой момент здесь - одинаковые основания. Если основания разные, эти правила не работают!

Эти формулы помогут вычислить логарифмическое выражение даже тогда, когда отдельные его части не считаются (см. урок « »). Взгляните на примеры - и убедитесь:

Найдите значение выражения: log 6 4 + log 6 9.

Поскольку основания у логарифмов одинаковые, используем формулу суммы:
log 6 4 + log 6 9 = log 6 (4 · 9) = log 6 36 = 2.

Найдите значение выражения: log 2 48 − log 2 3.

Основания одинаковые, используем формулу разности:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Найдите значение выражения: log 3 135 − log 3 5.

Снова основания одинаковые, поэтому имеем:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Как видите, исходные выражения составлены из «плохих» логарифмов, которые отдельно не считаются. Но после преобразований получаются вполне нормальные числа. На этом факте построены многие контрольные работы. Да что контрольные - подобные выражения на полном серьезе (иногда - практически без изменений) предлагаются на ЕГЭ.

Вынесение показателя степени из логарифма

Теперь немного усложним задачу. Что, если в основании или аргументе логарифма стоит степень? Тогда показатель этой степени можно вынести за знак логарифма по следующим правилам:

Несложно заметить, что последнее правило следует их первых двух. Но лучше его все-таки помнить - в некоторых случаях это значительно сократит объем вычислений.

Разумеется, все эти правила имеют смысл при соблюдении ОДЗ логарифма: a > 0, a ≠ 1, x > 0. И еще: учитесь применять все формулы не только слева направо, но и наоборот, т.е. можно вносить числа, стоящие перед знаком логарифма, в сам логарифм. Именно это чаще всего и требуется.

Найдите значение выражения: log 7 49 6 .

Избавимся от степени в аргументе по первой формуле:
log 7 49 6 = 6 · log 7 49 = 6 · 2 = 12

Найдите значение выражения:

Заметим, что в знаменателе стоит логарифм, основание и аргумент которого являются точными степенями: 16 = 2 4 ; 49 = 7 2 . Имеем:

Думаю, к последнему примеру требуются пояснения. Куда исчезли логарифмы? До самого последнего момента мы работаем только со знаменателем. Представили основание и аргумент стоящего там логарифма в виде степеней и вынесли показатели - получили «трехэтажную» дробь.

Теперь посмотрим на основную дробь. В числителе и знаменателе стоит одно и то же число: log 2 7. Поскольку log 2 7 ≠ 0, можем сократить дробь - в знаменателе останется 2/4. По правилам арифметики, четверку можно перенести в числитель, что и было сделано. В результате получился ответ: 2.

Переход к новому основанию

Говоря о правилах сложения и вычитания логарифмов, я специально подчеркивал, что они работают только при одинаковых основаниях. А что, если основания разные? Что, если они не являются точными степенями одного и того же числа?

На помощь приходят формулы перехода к новому основанию. Сформулируем их в виде теоремы:

Теорема

Пусть дан логарифм log a x. Тогда для любого числа c такого, что c > 0 и c ≠ 1, верно равенство:

В частности, если положить c = x, получим:

Из второй формулы следует, что можно менять местами основание и аргумент логарифма, но при этом все выражение «переворачивается», т.е. логарифм оказывается в знаменателе .

Эти формулы редко встречается в обычных числовых выражениях. Оценить, насколько они удобны, можно только при решении логарифмических уравнений и неравенств.

Впрочем, существуют задачи, которые вообще не решаются иначе как переходом к новому основанию. Рассмотрим парочку таких:

Найдите значение выражения: log 5 16 · log 2 25.

Заметим, что в аргументах обоих логарифмов стоят точные степени. Вынесем показатели: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

А теперь «перевернем» второй логарифм:

Поскольку от перестановки множителей произведение не меняется, мы спокойно перемножили четверку и двойку, а затем разобрались с логарифмами.

Найдите значение выражения: log 9 100 · lg 3.

Основание и аргумент первого логарифма - точные степени. Запишем это и избавимся от показателей:

Теперь избавимся от десятичного логарифма, перейдя к новому основанию:

Основное логарифмическое тождество

Часто в процессе решения требуется представить число как логарифм по заданному основанию. В этом случае нам помогут формулы:

В первом случае число n становится показателем степени, стоящей в аргументе. Число n может быть абсолютно любым, ведь это просто значение логарифма.

Вторая формула - это фактически перефразированное определение. Она так и называется: основное логарифмическое тождество .

В самом деле, что будет, если число b возвести в такую степень, что число b в этой степени дает число a? Правильно: получится это самое число a. Внимательно прочитайте этот абзац еще раз - многие на нем «зависают».

Подобно формулам перехода к новому основанию, основное логарифмическое тождество иногда бывает единственно возможным решением.

Задача

Найдите значение выражения:

Решение

Заметим, что log 25 64 = log 5 8 - просто вынесли квадрат из основания и аргумента логарифма. Учитывая правила умножения степеней с одинаковым основанием, получаем:

200

Если кто-то не в курсе, это была настоящая задача из ЕГЭ:)

Логарифмическая единица и логарифмический ноль

В заключение приведу два тождества, которые сложно назвать свойствами - скорее, это следствия из определения логарифма. Они постоянно встречаются в задачах и, что удивительно, создают проблемы даже для «продвинутых» учеников.

    log a a = 1 - это логарифмическая единица . Запомните раз и навсегда: логарифм по любому основанию a от самого этого основания равен единице.

    log a 1 = 0 - это логарифмический ноль . Основание a может быть каким угодно, но если в аргументе стоит единица - логарифм равен нулю! Потому что a 0 = 1 - это прямое следствие из определения.

Вот и все свойства. Обязательно потренируйтесь применять их на практике!

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 179 Основные свойства показательной функции

В этом параграфе мы изучим основные свойства показательной функции

у = а x (1)

Напомним, что под а в формуле (1) мы подразумеваем любое фиксированное положительное число, отличное от 1.

Свойство 1. Областью определения показательной функции является совокупность всех действительных чисел.

В самом деле, при положительном а выражение а x определено для любого действительного числа х .

Свойство 2 . Показательная функция принимает только положительные значения.

Действительно, если х > 0, то, как было доказано в § 176,

а x > 0.

Если же х <. 0, то

а x =

где - х уже больше нуля. Поэтому а - x > 0. Но тогда и

а x = > 0.

Наконец, при х = 0

а x = 1.

2-е свойство показательной функции имеет простое графическое истолкование. Оно заключается в том, что график этой функции (см. рис. 246 и 247) располагается целиком выше оси абсцисс.

Свойство 3 . Если а >1, то при х > 0 а x > 1, а при х < 0 а x < 1. Если же а < 1, то, наоборот, при х > 0 а x < 1, а при х < 0 а x > 1.

Это свойство показательной функции также допускает простую геометрическую интерпретацию. При а > 1 (рис. 246) кривые у = а x располагаются выше прямой у = 1 при х > 0 и ниже прямой у = 1 при х < 0.

Если же а < 1 (рис. 247), то, наоборот, кривые у = а x располагаются ниже прямой у = 1 при х > 0 и выше этой прямой при х < 0.

Приведем строгое доказательство 3-го свойства. Пусть а > 1 и х - произвольное положительное число. Покажем, что

а x > 1.

Если число х рационально (х = m / n ) , то а x = а m / n = n a m .

Поскольку а > 1, то и а m > 1, Но корень из числа, большего единицы, очевидно, также больше 1.

Если х иррационально, то существуют положительные рациональные числа х" и х" , которые служат десятичными приближениями числа x :

х" < х < х" .

Но тогда по определению степени с иррациональным показателем

а x" < а x < а x"" .

Как показано выше, число а x" больше единицы. Поэтому и число а x , большее, чем а x" , также должно быть больше 1,

Итак, мы показали, что при a >1 и произвольном положительном х

а x > 1.

Если бы число х было отрицательным, то мы имели бы

а x =

где число -х было бы уже положительным. Поэтому а - x > 1. Следовательно,

а x = < 1.

Таким образом, при а > 1 и произвольном отрицательном x

а x < 1.

Случай, когда 0 < а < 1, легко сводится к уже рассмотренному случаю. Учащимся предлагается убедиться в этом самостоятельно.

Свойство 4. Если х = 0, то независимо от а а x =1.

Это вытекает из определения нулевой степени; нулевая степень любого числа, отличного от нуля, равна 1. Графически это свойство выражается в том, что при любом а кривая у = а x (см. рис. 246 и 247) пересекает ось у в точке с ординатой 1.

Свойство 5. При а >1 показательная функция у = а x является монотонно возрастающей, а при а < 1 - монотонно убывающей.

Это свойство также допускает простую геометрическую интерпретацию.

При а > 1 (рис. 246) кривая у = а x с ростом х поднимается все выше и выше, а при а < 1 (рис. 247) - опускается все ниже и ниже.

Приведем строгое доказательство 5-гo свойства.

Пусть а > 1 и х 2 > х 1 . Покажем, что

а x 2 > а x 1

Поскольку х 2 > х 1 ., то х 2 = х 1 + d , где d -некоторое положительное число. Поэтому

а x 2 - а x 1 = а x 1 + d - а x 1 = а x 1 (а d - 1)

По 2-му свойству показательной функции а x 1 > 0. Так как d > 0, то по 3-му свойству показательной функции а d > 1. Оба множителя в произведении а x 1 (а d - 1) положительны, поэтому и само это произведение положительно. Значит, а x 2 - а x 1 > 0, или а x 2 > а x 1 , что и требовалось доказать.

Итак, при a > 1 функция у = а x является монотонно возрастающей. Аналогично доказывается, что при а < 1 функция у = а x является монотонно убывающей.

Следствие. Если две степени одного и того же положительного числа, отличного от 1, равны, то равны и их показатели.

Другими словами, если

а b = а c (а > 0 и а =/= 1),

b = с .

Действительно, если бы числа b и с были не равны, то в силу монотонности функции у = а x большему из них соответствовало бы при а >1 большее, а при а < 1 меньшее значение этой функции. Таким образом, было бы или а b > а c , или а b < а c . И то и другое противоречит условию а b = а c . Остается признать, что b = с .

Свойство 6. Если а > 1, то при неограниченном возрастании аргумента х (х -> ) значения функции у = а x также неограниченно растут (у -> ). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0).

Принимая во внимание доказанную выше монотонность функции у = а x , можно сказать, что в рассматриваемом случае функция у = а x монотонно возрастает от 0 до .

Если 0 < а < 1, то при неограниченном возрастании аргумента х (х -> ∞) значения функции у = а x стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции неограниченно растут (у -> ).

В силу монотонности функции у = а x можно сказать, что в этом случае функция у = а x монотонно убывает от до 0.

6-е свойство показательной функции наглядно отражено на рисунках 246 и 247. Строго доказывать его мы не будем.

Нам осталось лишь установить область изменения показательной функции у = а x (а > 0, а =/= 1).

Выше мы доказали, что функция у = а x принимает только положительные значения и либо монотонно возрастает от 0 до (при а > 1), либо монотонно убывает от до 0 (при 0 < а <. 1). Однако остался невыясненным следующий вопрос: не претерпевает ли функция у = а x при своем изменении каких-нибудь скачков? Любые ли положительные значения она принимает? Вопрос этот решается положительно. Ecли а > 0 и а =/= 1, то, каково бы ни было положительное число у 0 обязательно найдется х 0 , такое, что

а x 0 = у 0 .

(В силу монотонности функции у = а x указанное значение х 0 будет, конечно, единственным.)

Доказательство этого факта выходит за пределы нашей программы. Геометрическая интерпретация его состоит в том, что при любом положительном значении у 0 график функции у = а x обязательно пересечется с прямой у = у 0 и притом лишь в одной точке (рис. 248).

Отсюда можно сделать следующий вывод, который мы формулируем в виде свойства 7.

Свойство 7. Областью изменения показательной функции у = а x (а > 0, а =/= 1) служит множество всех положительных чисел.

Упражнения

1368. Найти области определения следующих функций:

1369. Какие из данных чисел больше 1 и какие меньше 1:

1370. На основании какого свойства показательной функции можно утверждать, что

а) (5 / 7) 2,6 > (5 / 7) 2,5 ; б) (4 / 3) 1,3 > (4 / 3) 1,2

1371. Какое число больше:

а) π - √3 или (1 / π ) - √3 ; в) (2 / 3) 1 + √6 или (2 / 3) √2 + √5 ;

б) ( π / 4) 1 + √3 или ( π / 4) 2 ; г) (√3 ) √2 - √5 или (√3 ) √3 - 2 ?

1372. Равносильны ли неравенства:

1373. Что можно сказать о числах х и у , если а x = а y , где а - заданное положительное число?

1374. 1) Можно ли среди всех значений функции у = 2 x выделить:

2) Можно ли среди всех значений функции у = 2 | x| выделить:

а) наибольшее значение; б) наименьшее значение?

1.Показательная функция – это функция вида у(х) =а х, зависящая от показателя степени х, при постоянном значении основания степени a , где а > 0, a ≠ 0, xϵR (R – множество действительных чисел).

Рассмотрим график функции, если основание не будет удовлетворять условию: а>0
a) a < 0
Если a < 0 – возможно возведение в целую степень или в рациональную степень с нечетным показателем.
а = -2

Если а = 0 – функция у = определена и имеет постоянное значение 0


в) а =1
Если а = 1 – функция у = определена и имеет постоянное значение 1



2. Рассмотрим подробнее показательную функцию:

0


Область определения функции (ООФ)

Область допустимых значений функции (ОДЗ)

3. Нули функции (у = 0)

4. Точки пересечения с осью ординат oy (x = 0)

5. Возрастания, убывания функции

Если , то функция f(x) возрастает
Если , то функция f(x) убывает
Функция y= , при 0 Функция у =, при a> 1 монотонно возрастает
Это следует из свойств монотонности степени с действительным показателем.

6. Чётность, нечётность функции

Функция у = не симметрична относительно оси 0у и относительно началу координат, следовательно не является ни чётной, ни нечётной. (Функция общего вида)

7. Функция у = экстремумов не имеет

8. Свойства степени с действительным показателем:

Пусть а > 0; a≠1
b> 0; b≠1

Тогда для xϵR; yϵR:


Свойства монотонности степени:

если , то
Например:




Если a> 0, , то .
Показательная функция непрерывна в любой точке ϵ R.

9. Относительное расположение фунцкции

Чем больше основание а, тем ближе к осям ох и оу

a > 1, a = 20




Если а0, то показательная функция принимает вид близкий к y = 0.
Если а1, то дальше от осей ох и оу и график принимает вид близкий к функции у = 1.

Пример 1.
Построить график у =

 
Статьи по теме:
Презентация по теме безопасность опасные предметы
Причины возникновения пожара Неосторожное обращение с огнем: разведение костров и небрежное обращение с ними, разогревание горючих веществ на газовых или электрических плитах и т. п. Нарушение правил эксплуатации бытовых электроприборов: телевизор перегре
Основные идеи философии эпикура
15. Эпикур и эпикурейцыВыдающимися представителями эпикуреизма являются Эпикур (341–270 до н. э.) и Лукреций Кар (ок. 99–55 до н. э.). Это философское направление относится к рубежу старой и новой эры. Эпикурейцев интересовали вопросы устроения, комфорта
Распространение тюркских языков Сильная ветвь алтайского дерева
Расселены на огромной территории нашей планеты, начиная от бассейна холодной Колымы до юго-западного побережья Средиземного моря. Тюрки не принадлежат к какому-то определенному расовому типу, даже среди одного народа встречаются как европеоиды, так и монг
Куда ехать за исполнением желаний в Курской области
Отец Вениамин служит в одном из храмов Коренной пустыни. Несколько раз в неделю священник проводит молебны, на которые съезжается множество людей. Летом службы часто проходят на улице, так как все желающие не умещаются в крохотной церквушке. Прихожане уве