Какую функцию называют показательной. Урок «Показательная функция, ее свойства и график

Введем сначала определение показательной функции.

Показательная функция $f\left(x\right)=a^x$, где $a >1$.

Введем свойства показательной функции, при $a >1$.

    \ \[корней\ нет.\] \

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке $(0,1)$.

    $f""\left(x\right)={\left(a^xlna\right)}"=a^x{ln}^2a$

    \ \[корней\ нет.\] \

    График (рис. 1).

Рисунок 1. График функции $f\left(x\right)=a^x,\ при\ a >1$.

Показательная функция $f\left(x\right)=a^x$, где $0

Введем свойства показательной функции, при $0

    Область определения -- все действительные числа.

    $f\left(-x\right)=a^{-x}=\frac{1}{a^x}$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(0,+\infty)$.

    $f"(x)=\left(a^x\right)"=a^xlna$

    \ \[корней\ нет.\] \ \[корней\ нет.\] \

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=+\infty \] \[{\mathop{lim}_{x\to +\infty } a^x\ }=0\]

    График (рис. 2).

Пример задачи на построение показательной функции

Исследовать и построить график функции $y=2^x+3$.

Решение.

Проведем исследование по примеру схемы выше:

    Область определения -- все действительные числа.

    $f\left(-x\right)=2^{-x}+3$ -- функция ни четна, ни нечетна.

    $f(x)$ - непрерывна на всей области определения.

    Область значения -- интервал $(3,+\infty)$.

    $f"\left(x\right)={\left(2^x+3\right)}"=2^xln2>0$

    Функция возрастает на всей области определения.

    $f(x)\ge 0$ на всей области определения.

    Пересечение с осями координат. Функция не пересекает ось $Ox$, но пересекает ось $Oy$ в точке ($0,4)$

    $f""\left(x\right)={\left(2^xln2\right)}"=2^x{ln}^22>0$

    Функция выпукла на всей области определения.

    Поведение на концах области определения:

    \[{\mathop{lim}_{x\to -\infty } a^x\ }=0\] \[{\mathop{lim}_{x\to +\infty } a^x\ }=+\infty \]

    График (рис. 3).

Рисунок 3. График функции $f\left(x\right)=2^x+3$

Урок № 2

Тема: Показательная функция, её свойства и график.

Цель: Проверить качество усвоения понятия «показательная функция»; сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции; обеспечить рабочую обстановку на уроке.

Оборудование: доска, плакаты

Форма урока : классно-урочная

Вид урока : практическое занятие

Тип урока : урок обучения умениям и навыкам

План урока

1. Организационный момент

2. Самостоятельная работа и проверка домашнего задания

3. Решение задач

4. Подведение итогов

5. Задание на дом

Ход урока .

1. Организационный момент :

Здравствуйте. Откройте тетради, запишите сегодняшнее число и тему урока «Показательная функция». Сегодня будем продолжать изучать показательную функцию, её свойства и график.

2. Самостоятельная работа и проверка домашнего задания .

Цель: проверить качество усвоения понятия «показательная функция» и проверить выполнение теоретической части домашнего задания

Метод: тестовое задание, фронтальный опрос

В качестве домашнего задания вам были заданы номера из задачника и параграф из учебника. Выполнение номеров из учебника проверять сейчас не будем, но вы сдадите тетради в конце урока. Сейчас же будет проведена проверка теории в виде маленького теста. Задание у всех одинаковое: вам дан перечень функций, вы должны узнать какие из них являются показательными (подчеркнуть их). И рядом с показательной функцией необходимо написать является она возрастающей, либо убывающей.

Вариант 1

Ответ

Б)

Д) - показательная, убывающая

Вариант 2

Ответ

Г) - показательная, убывающая

Д) - показательная, возрастающая

Вариант 3

Ответ

А) - показательная, возрастающая

Б) - показательная, убывающая

Вариант 4

Ответ

А) - показательная, убывающая

В) - показательная, возрастающая

Теперь вместе вспомним, какая функция называется показательной?

Функция вида , где и , называется показательной функцией.

Какая область определения у этой функции?

Все действительные числа.

Какая область значений показательной функции?

Все положительные действительные числа.

Убывает если основание степени больше нуля, но меньше единицы.

В каком случае показательная функция убывает на своей области определения?

Возрастает, если основание степени больше единицы.

3. Решение задач

Цель : сформировать умения и навыки по распознаванию показательной функции, по использованию её свойств и графиков, научить учащихся пользоваться аналитической и графической формами записи показательной функции

Метод : демонстрация учителем решения типичных задач, устная работа, работа у доски, работа в тетради, беседа учителя с учащимися.

Свойства показательной функции можно использовать при сравнении 2-х и более чисел. Например: № 000. Сравните значения и , если а) ..gif" width="37" height="20 src=">, то это довольно сложная работа: нам бы пришлось извлекать кубический корень из 3 и из 9, и сравнивать их. Но мы знаем, что возрастает, это в свою очередь значит, что при увеличении аргумента, увеличивается значение функции, то есть нам достаточно сравнить между собой значения аргумента и , очевидно, что (можно продемонстрировать на плакате с изображенной возрастающей показательной функцией). И всегда при решении таких примеров вначале определяете основание показательной функции, сравниваете с 1, определяете монотонность и переходите к сравнению аргументов. В случает убывания функции: при возрастания аргумента уменьшается значение функции, следовательно, знак неравенства меняем при переходе от неравенства аргументов к неравенству функций. Далее решаем устно: б)

-

В)

-

Г)

-

- № 000. Сравните числа: а) и

Следовательно, функция возрастает, тогда

Почему ?

Возрастающая функция и

Следовательно, функция убывает, тогда

Обе функции возрастают на всей своей области определения, т. к. они являются показательными с основанием степени большим единицы.

Какой смысл в ней заложен?

Строим графики:

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image062_0.gif" width="20 height=25" height="25">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Г) , https://pandia.ru/text/80/379/images/image068_0.gif" width="69" height="57 src=">. Вначале выясним область определения этих функций. Совпадают ли они?

Да, область определения этих функций все действительные числа.

Назовите область значения каждой из этих функций.

Области значений этих функций совпадают: все положительные действительные числа.

Определите тип монотонности каждой из функций.

Все три функции убывают на всей своей области определения, т. к. они являются показательными с основанием степени меньшими единицы и большими нуля.

Какая особая точка существует у графика показательной функции?

Какой смысл в ней заложен?

Какое бы не было основание степени показательной функции, если в показателе стоит 0,то значение этой функции 1.

Строим графики:

Давайте проанализируем графики. Сколько точек пересечения у графиков функций?

Какая функция быстрее убывает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

Какая функция быстрее возрастает, при стремлении https://pandia.ru/text/80/379/images/image070.gif" width="41 height=57" height="57">

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

На промежутке какая из функций имеет большее значение в конкретно заданной точке?

Почему показательные функции с разными основаниями имеют только одну точку пересечения?

Показательные функции являются строго монотонными на всей своей области определения, поэтому они могут пересекаться только в одной точке.

Следующее задание будет направлено на использование этого свойства. № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Вспомним, что строго монотонная функция принимает свои наименьшее и наибольшее значения на концах заданного отрезка. И если функция возрастающая, то её наибольшее значение будет на правом конце отрезка, а наименьшее на левом конце отрезка (демонстрация на плакате, на примере показательной функции). Если функция убывающая, то её наибольшее значение будет на левом конце отрезка, а наименьшее на правом конце отрезка (демонстрация на плакате, на примере показательной функции). Функция возрастающая, т. к. , следовательно, наименьшее значение функции будет в точке https://pandia.ru/text/80/379/images/image075_0.gif" width="145" height="29">. Пункты б) , в) г) решите самостоятельно тетради, проверку проведем устно.

Учащиеся решают задание в тетради

Убывающая функция

Убывающая функция

наибольшее значение функции на отрезке

наименьшее значение функции на отрезке

Возрастающая функция

наименьшее значение функции на отрезке

наибольшее значение функции на отрезке

- № 000. Найдите наибольшее и наименьшее значение заданной функции на заданном промежутке а) . Это задание практически такое же, как и предыдущее. Но здесь дан не отрезок, а луч. Мы знаем, что функция - возрастающая, при чем она не имеет ни наибольшего, ни наименьшего своего значения на всей числовой прямой https://pandia.ru/text/80/379/images/image063_0.gif" width="68" height="20">, и стремится к при , т. е. на луче функция при стремится к 0, но не имеет своего наименьшего значения, но у неё существует наибольшее значение в точке . Пункты б) , в) , г) решите самостоятельно тетради, проверку проведем устно.

Концентрация внимания:

Определение. Функция вида называется показательной функцией .

Замечание. Исключение из числа значений основания a чисел 0; 1 и отрицательных значений a объясняется следующими обстоятельствами:

Само аналитическое выражение a x в указанных случаях сохраняет смысл и может встречаться в решении задач. Например, для выражения x y точка x = 1; y = 1 входит в область допустимых значений.

Построить графики функций: и .

График показательной функции
y = a x , a > 1 y = a x , 0< a < 1

Свойства показательной функции

Свойства показательной функции y = a x , a > 1 y = a x , 0< a < 1
  1. Область определения функции
2. Область значений функции
3.Промежутки сравнения с единицей при x > 0, a x > 1 при x > 0, 0< a x < 1
при x < 0, 0< a x < 1 при x < 0, a x > 1
4. Чётность, нечётность. Функция не является ни чётной, ни нечётной (функция общего вида).
5.Монотонность. монотонно возрастает на R монотонно убывает на R
6. Экстремумы. Показательная функция экстремумов не имеет.
7.Асимптота Ось O x является горизонтальной асимптотой.
8. При любых действительных значениях x и y ;

Когда заполняется таблица, то параллельно с заполнением решаются задания.

Задание № 1. (Для нахождения области определения функции).

Какие значения аргумента являются допустимыми для функций:

Задание № 2. (Для нахождения области значений функции).

На рисунке изображен график функции. Укажите область определения и область значений функции:

Задание № 3. (Для указания промежутков сравнения с единицей).

Каждую из следующих степеней сравните с единицей:

Задание № 4. (Для исследования функции на монотонность).

Сравнить по величине действительные числа m и n если:

Задание № 5. (Для исследования функции на монотонность).

Сделайте заключение относительно основания a , если:

y(x) = 10 x ; f(x) = 6 x ; z(x) - 4 x

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

В одной координатной плоскости построены графики функций:

y(x) = (0,1) x ; f(x) = (0,5) x ; z(x) = (0,8) x .

Как располагаются графики показательных функций относительно друг друга при x > 0, x = 0, x < 0?

Число одна из важнейших постоянных в математике. По определению, оно равно пределу последовательности при неограниченном возрастании n . Обозначение e ввёл Леонард Эйлер в 1736 г. Он вычислил первые 23 знака этого числа в десятичной записи, а само число назвали в честь Непера «неперовым числом».

Число e играет особую роль в математическом анализе. Показательная функция с основанием e , называется экспонентой и обозначается y = e x .

Первые знаки числа e запомнить несложно: два, запятая, семь, год рождения Льва Толстого - два раза, сорок пять, девяносто, сорок пять.

Домашнее задание:

Колмогоров п. 35; № 445-447; 451; 453.

Повторить алгоритм построения графиков функций, содержащих переменную под знаком модуля.

ПОКАЗАТЕЛЬНАЯ И ЛОГАРИФМИЧЕСКАЯ ФУНКЦИИ VIII

§ 179 Основные свойства показательной функции

В этом параграфе мы изучим основные свойства показательной функции

у = а x (1)

Напомним, что под а в формуле (1) мы подразумеваем любое фиксированное положительное число, отличное от 1.

Свойство 1. Областью определения показательной функции является совокупность всех действительных чисел.

В самом деле, при положительном а выражение а x определено для любого действительного числа х .

Свойство 2 . Показательная функция принимает только положительные значения.

Действительно, если х > 0, то, как было доказано в § 176,

а x > 0.

Если же х <. 0, то

а x =

где - х уже больше нуля. Поэтому а - x > 0. Но тогда и

а x = > 0.

Наконец, при х = 0

а x = 1.

2-е свойство показательной функции имеет простое графическое истолкование. Оно заключается в том, что график этой функции (см. рис. 246 и 247) располагается целиком выше оси абсцисс.

Свойство 3 . Если а >1, то при х > 0 а x > 1, а при х < 0 а x < 1. Если же а < 1, то, наоборот, при х > 0 а x < 1, а при х < 0 а x > 1.

Это свойство показательной функции также допускает простую геометрическую интерпретацию. При а > 1 (рис. 246) кривые у = а x располагаются выше прямой у = 1 при х > 0 и ниже прямой у = 1 при х < 0.

Если же а < 1 (рис. 247), то, наоборот, кривые у = а x располагаются ниже прямой у = 1 при х > 0 и выше этой прямой при х < 0.

Приведем строгое доказательство 3-го свойства. Пусть а > 1 и х - произвольное положительное число. Покажем, что

а x > 1.

Если число х рационально (х = m / n ) , то а x = а m / n = n a m .

Поскольку а > 1, то и а m > 1, Но корень из числа, большего единицы, очевидно, также больше 1.

Если х иррационально, то существуют положительные рациональные числа х" и х" , которые служат десятичными приближениями числа x :

х" < х < х" .

Но тогда по определению степени с иррациональным показателем

а x" < а x < а x"" .

Как показано выше, число а x" больше единицы. Поэтому и число а x , большее, чем а x" , также должно быть больше 1,

Итак, мы показали, что при a >1 и произвольном положительном х

а x > 1.

Если бы число х было отрицательным, то мы имели бы

а x =

где число -х было бы уже положительным. Поэтому а - x > 1. Следовательно,

а x = < 1.

Таким образом, при а > 1 и произвольном отрицательном x

а x < 1.

Случай, когда 0 < а < 1, легко сводится к уже рассмотренному случаю. Учащимся предлагается убедиться в этом самостоятельно.

Свойство 4. Если х = 0, то независимо от а а x =1.

Это вытекает из определения нулевой степени; нулевая степень любого числа, отличного от нуля, равна 1. Графически это свойство выражается в том, что при любом а кривая у = а x (см. рис. 246 и 247) пересекает ось у в точке с ординатой 1.

Свойство 5. При а >1 показательная функция у = а x является монотонно возрастающей, а при а < 1 - монотонно убывающей.

Это свойство также допускает простую геометрическую интерпретацию.

При а > 1 (рис. 246) кривая у = а x с ростом х поднимается все выше и выше, а при а < 1 (рис. 247) - опускается все ниже и ниже.

Приведем строгое доказательство 5-гo свойства.

Пусть а > 1 и х 2 > х 1 . Покажем, что

а x 2 > а x 1

Поскольку х 2 > х 1 ., то х 2 = х 1 + d , где d -некоторое положительное число. Поэтому

а x 2 - а x 1 = а x 1 + d - а x 1 = а x 1 (а d - 1)

По 2-му свойству показательной функции а x 1 > 0. Так как d > 0, то по 3-му свойству показательной функции а d > 1. Оба множителя в произведении а x 1 (а d - 1) положительны, поэтому и само это произведение положительно. Значит, а x 2 - а x 1 > 0, или а x 2 > а x 1 , что и требовалось доказать.

Итак, при a > 1 функция у = а x является монотонно возрастающей. Аналогично доказывается, что при а < 1 функция у = а x является монотонно убывающей.

Следствие. Если две степени одного и того же положительного числа, отличного от 1, равны, то равны и их показатели.

Другими словами, если

а b = а c (а > 0 и а =/= 1),

b = с .

Действительно, если бы числа b и с были не равны, то в силу монотонности функции у = а x большему из них соответствовало бы при а >1 большее, а при а < 1 меньшее значение этой функции. Таким образом, было бы или а b > а c , или а b < а c . И то и другое противоречит условию а b = а c . Остается признать, что b = с .

Свойство 6. Если а > 1, то при неограниченном возрастании аргумента х (х -> ) значения функции у = а x также неограниченно растут (у -> ). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0).

Принимая во внимание доказанную выше монотонность функции у = а x , можно сказать, что в рассматриваемом случае функция у = а x монотонно возрастает от 0 до .

Если 0 < а < 1, то при неограниченном возрастании аргумента х (х -> ∞) значения функции у = а x стремятся к нулю, оставаясь при этом положительными (у ->0; у > 0). При неограниченном убывании аргумента х (х -> -∞ ) значения этой функции неограниченно растут (у -> ).

В силу монотонности функции у = а x можно сказать, что в этом случае функция у = а x монотонно убывает от до 0.

6-е свойство показательной функции наглядно отражено на рисунках 246 и 247. Строго доказывать его мы не будем.

Нам осталось лишь установить область изменения показательной функции у = а x (а > 0, а =/= 1).

Выше мы доказали, что функция у = а x принимает только положительные значения и либо монотонно возрастает от 0 до (при а > 1), либо монотонно убывает от до 0 (при 0 < а <. 1). Однако остался невыясненным следующий вопрос: не претерпевает ли функция у = а x при своем изменении каких-нибудь скачков? Любые ли положительные значения она принимает? Вопрос этот решается положительно. Ecли а > 0 и а =/= 1, то, каково бы ни было положительное число у 0 обязательно найдется х 0 , такое, что

а x 0 = у 0 .

(В силу монотонности функции у = а x указанное значение х 0 будет, конечно, единственным.)

Доказательство этого факта выходит за пределы нашей программы. Геометрическая интерпретация его состоит в том, что при любом положительном значении у 0 график функции у = а x обязательно пересечется с прямой у = у 0 и притом лишь в одной точке (рис. 248).

Отсюда можно сделать следующий вывод, который мы формулируем в виде свойства 7.

Свойство 7. Областью изменения показательной функции у = а x (а > 0, а =/= 1) служит множество всех положительных чисел.

Упражнения

1368. Найти области определения следующих функций:

1369. Какие из данных чисел больше 1 и какие меньше 1:

1370. На основании какого свойства показательной функции можно утверждать, что

а) (5 / 7) 2,6 > (5 / 7) 2,5 ; б) (4 / 3) 1,3 > (4 / 3) 1,2

1371. Какое число больше:

а) π - √3 или (1 / π ) - √3 ; в) (2 / 3) 1 + √6 или (2 / 3) √2 + √5 ;

б) ( π / 4) 1 + √3 или ( π / 4) 2 ; г) (√3 ) √2 - √5 или (√3 ) √3 - 2 ?

1372. Равносильны ли неравенства:

1373. Что можно сказать о числах х и у , если а x = а y , где а - заданное положительное число?

1374. 1) Можно ли среди всех значений функции у = 2 x выделить:

2) Можно ли среди всех значений функции у = 2 | x| выделить:

а) наибольшее значение; б) наименьшее значение?

 
Статьи по теме:
Презентация по теме безопасность опасные предметы
Причины возникновения пожара Неосторожное обращение с огнем: разведение костров и небрежное обращение с ними, разогревание горючих веществ на газовых или электрических плитах и т. п. Нарушение правил эксплуатации бытовых электроприборов: телевизор перегре
Основные идеи философии эпикура
15. Эпикур и эпикурейцыВыдающимися представителями эпикуреизма являются Эпикур (341–270 до н. э.) и Лукреций Кар (ок. 99–55 до н. э.). Это философское направление относится к рубежу старой и новой эры. Эпикурейцев интересовали вопросы устроения, комфорта
Распространение тюркских языков Сильная ветвь алтайского дерева
Расселены на огромной территории нашей планеты, начиная от бассейна холодной Колымы до юго-западного побережья Средиземного моря. Тюрки не принадлежат к какому-то определенному расовому типу, даже среди одного народа встречаются как европеоиды, так и монг
Куда ехать за исполнением желаний в Курской области
Отец Вениамин служит в одном из храмов Коренной пустыни. Несколько раз в неделю священник проводит молебны, на которые съезжается множество людей. Летом службы часто проходят на улице, так как все желающие не умещаются в крохотной церквушке. Прихожане уве