Объем меньшего конуса формула. Все формулы объемов геометрических тел

Тела вращения, изучаемые в школе, - это цилиндр, конус и шар.

Если в задаче на ЕГЭ по математике вам надо посчитать объем конуса или площадь сферы - считайте, что повезло.

Применяйте формулы объема и площади поверхности цилиндра, конуса и шара. Все они есть в нашей таблице. Учите наизусть. Отсюда начинается знание стереометрии.

Иногда неплохо нарисовать вид сверху. Или, как в этой задаче, - снизу.

2. Во сколько раз объем конуса, описанного около правильной четырехугольной пирамиды, больше объема конуса, вписанного в эту пирамиду?

Всё просто - рисуем вид снизу. Видим, что радиус большего круга в раз больше, чем радиус меньшего. Высоты у обоих конусов одинаковы. Следовательно, объем большего конуса будет в раза больше.

Еще один важный момент. Помним, что в задачах части В вариантов ЕГЭ по математике ответ записывается в виде целого числа или конечной десятичной дроби. Поэтому никаких или у вас в ответе в части В быть не должно. Подставлять приближенное значение числа тоже не нужно! Оно обязательно должно сократиться!. Именно для этого в некоторых задачах задание формулируется, например, так: «Найдите площадь боковой поверхности цилиндра, деленную на ».

А где же еще применяются формулы объема и площади поверхности тел вращения? Конечно же, в задаче С2 (16). Мы тоже расскажем о ней.

Геометрия наука непростая, но полезная. Все мы в школе проходили вычисление объемов трехмерных тел, но не все хорошо помнят формулы этих вычислений. Эта статья поможет вам освежить в памяти знания о том, как найти объем конуса. Данная трехмерная фигура образована круговым вращением прямоугольного треугольника. Вычислить его объем можно разными способами, в зависимости от того, какими исходными данными вы владеете.

Инструкция:

  • В большинстве случаев для вычисления используется радиус окружности основания и высота. Формула объема конуса в таком случае имеет вид: V= πRh , где π=3.14 , R – радиус основания, h – высота фигуры. Проще говоря, этой формулой мы вычисляем площадь основания, и умножаем ее на высоту. Однако, вычисление объема конуса может иметь другой вид в том случае, если вам известны другие параметры вашей фигуры.
  • Если вызнаете длину боковой стороны конуса и радиус основания, для нахождения объема фигуры вам потребуется выяснить, какова ее высота. В этом нам поможет теорема Пифагора , потому как радиус основания в данном случае является катетом прямоугольного треугольника, а боковая сторона, соответственно, гипотенузой . Для того, чтобы найти длину второго катета, который представляет собой высоту конуса, воспользуемся хорошо всем знакомой формулой a^2+b^2=c^2.
  • Но, как найти объем конуса, если ни длина боковой стороны, ни радиус основания неизвестны? В таком случае вам необходимо знать градус угла при вершине конуса и его высоту. Владея этими данными, вы можете вычислить радиус основания. Не забываем о том, что конус – фигура, образованная вращением прямоугольного треугольника вокруг одного из его катетов. Если угол при вершине разделить надвое, вы получите градус одного из двух острых углов этого треугольника. Используя определения тригонометрических функций, мы можем выяснить длину стороны противоположной этому углу, то есть, в нашем случае, радиуса основания. Он, в этом случае будет равен l*sin(α) , где l – длина от вершины конуса до основания, высота, соответственно, будет равна l*cos(α) , используя эти значения, выводим следующую формулу радиуса основания R= h/cos(α)*sin(α) или, равнозначно, R = h*tg(α) .

Объём конуса выражается такой же формулой, что и объём пирамиды: V = 1 / 3 Sh ,

где V - объём конуса, S - площадь основания конуса, h - его высота.

Окончательно V = 1 / 3 πR 2 h , где R - радиус основания конуса.

Получение формулы объёма конуса можно пояснить таким рассуждением:

Пусть дан конус (рис). Впишем в него правильную пирамиду, т. е. построим внутри конуса такую пирамиду, вершина которой совпадает с вершиной конуса, а основанием служит правильный многоугольник, вписанный в основание конуса.

Объём этой пирамиды выразится формулой: V’ = 1 / 3 S’h , где V - объём пирамиды,

S’ - площадь её основания, h - высота пирамиды.

Если при этом за основание пирамиды взять многоугольник с очень большим числом сторон, то площадь основания пирамиды будет весьма мало отличаться от площади круга, а объём пирамиды - весьма мало отличаться от объёма конуса. Если, пренебречь этими различиями в размерах, то объём конуса выразится следующей формулой:

V = 1 / 3 Sh , где V - объём конуса, S - площадь основания конуса, h - высота конуса.

Заменив S через πR 2 , где R - радиус круга, получим формулу: V = 1 / 3 πR 2 h , выражающую объём конуса.

Примечание. В формуле V = 1 / 3 Sh поставлен знак точного, а не приближённого равенства, хотя на основании проведённого рассуждения мы могли бы его считать приближённым, но в старших классах средней школы доказывается, что равенство

V = 1 / 3 Sh точное, а не приближённое.

Объем произвольного конуса

Теорема. Объем произвольного конуса равен одной трети произведения площади основания на высоту, т.е.

V = 1 / 3 QH, (1)

где Q - площадь основания, а Н - высота конуса.

Рассмотрим конус с вершиной S и основанием Ф (рис.).

Пусть площадь основания Ф равна Q, а высота конуса равна Н. Тогда существуют последовательности многоугольников Ф n и Ф’ n с площадями Q n и Q’ n таких, что

Ф n ⊂ Ф n ⊂ Ф’ n и \(\lim_{n \rightarrow \infty}\) Q’ n = \(\lim_{n \rightarrow \infty}\) Q n = Q.

Очевидно, что пирамида с вершиной S и основанием Ф’ n будет вписанной в данный конус, а пирамида с вершиной S и основанием Ф n - описанной около конуса.

Объемы этих пирамид соответственно равны

V n = 1 / 3 Q n H , V’ n = 1 / 3 Q’ n H

\(\lim_{n \rightarrow \infty}\) V n = \(\lim_{n \rightarrow \infty}\) V’ n = 1 / 3 QH

то формула (1) доказана.

Следствие. Объем конуса, основанием которого является эллипс с полуосями а и b, вычисляется по формуле

V = 1 / 3 π ab H (2)

В частности, объем конуса, основанием которого является круг радиуса R, вычисляется по формуле

V = 1 / 3 π R 2 H (3)

где Н - высота конуса.

Как известно, площадь эллипса с полуосями а и b равна π ab , и поэтому формула (2) получается из (1) при Q = π ab . Если а = b = R, то получается формула (3).

Объем прямого кругового конуса

Теорема 1. Объем прямого кругового конуса с высотой Н и радиусом основания R вычисляется по формуле

V = 1 / 3 π R 2 H

Данный конус можно рассматривать как тело, полученное вращением треугольника с вершинами в точках О(0; 0),В(Н; 0), А(Н; R) вокруг оси Ох (рис.).

Треугольник ОАВ является криволинейной трапецией, соответствующей функции

у = R / H х , х ∈ . Поэтому, используя известную формулу, получаем

$$ V=\pi\int_{0}^{H}(\frac{R}{H}x)^2dx=\\=\frac{\pi R^2}{H^2}\cdot\frac{x^3}{3}\left|\begin{array}{c}H\\\\ 0\end{array}\right.=\\=\frac{1}{3}\pi R^2H $$

Следствие. Объем прямого кругового конуса равен одной трети произведения площади основания на высоту, т. е.

где Q - площадь основания , а H - высота конуса.

Теорема 2. Объем усеченного конуса с радиусами оснований r и R и высотой H вычисляется по формуле

V = 1 / 3 πH(r 2 + R 2 + r R).

Усеченный конус можно получить вращением вокруг оси Ох трапеции О ABC (рис.).

Прямая АВ проходит через точки (0; r ) и (H; R), поэтому она имеет уравнение

$$ y=\frac{R-r}{H}x + r $$

получаем

$$ V=\pi\int_{0}^{H}(\frac{R-r}{H}x + r)^2dx $$

Для вычисления интеграла сделаем замену

$$ u=\frac{R-r}{H}x + r, du=\frac{R-r}{H}dx $$

Очевидно, когда х изменяется в пределах от 0 до H, переменная и изменяется от r до R, и поэтому

$$ V=\pi\int_{r}^{R}u^2\frac{H}{R-r}du=\\=\frac{\pi H}{R-r}\cdot\frac{u^3}{3}\left|\begin{array}{c}R\\\\ r\end{array}\right.=\\=\frac{\pi H}{3(R-r)}(R^3-r^3)=\\=\frac{1}{3}\pi H(R^2 + r^2 + Rr) $$

1. Расчет объема куба

a — сторона куба

Формула объема куба, (V ):

2. Найти по формуле, объем прямоугольного параллелепипеда

a , b , c — стороны параллелепипеда

Еще иногда сторону параллелепипеда, называют ребром.

Формула объема параллелепипеда, (V ):

3. Формула для вычисления объема шара, сферы

R радиус шара

По формуле, если дан радиус, можно найти объема шара, (V ):

4. Как вычислить объем цилиндра?

h — высота цилиндра

r — радиус основания

По формуле найти объема цилиндра, есди известны — его радиус основания и высота, (V ):

5. Как найти объем конуса?

R — радиус основания

H — высота конуса

Формула объема конуса, если известны радиус и высота (V ):

7. Формула объема усеченного конуса

r — радиус верхнего основания

R — радиус нижнего основания

h — высота конуса

Формула объема усеченного конуса, если известны — радиус нижнего основания, радиус верхнего основания и высота конуса (V ):

8. Объем правильного тетраэдра

Правильный тетраэдр — пирамида у которой все грани, равносторонние треугольники.

а — ребро тетраэдра

Формула, для расчета объема правильного тетраэдра (V ):

9. Объем правильной четырехугольной пирамиды

Пирамида, у которой основание квадрат и грани равные, равнобедренные треугольники, называется правильной четырехугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула для вычисления объема правильной четырехугольной пирамиды, (V ):

10. Объем правильной треугольной пирамиды

Пирамида, у которой основание равносторонний треугольник и грани равные, равнобедренные треугольники, называется правильной треугольной пирамидой.

a — сторона основания

h — высота пирамиды

Формула объема правильной треугольной пирамиды, если даны — высота и сторона основания (V ):

11. Найти объем правильной пирамиды

Пирамида в основании, которой лежит правильный многоугольник и грани равные треугольники, называется правильной.

h — высота пирамиды

a — сторона основания пирамиды

n — количество сторон многоугольника в основании

Формула объема правильной пирамиды, зная высоту, сторону основания и количество этих сторон (V ):

Все формулы объемов геометрических тел
Геометрия, Алгебра, Физика

Формулы объема

Объём геометрической фигуры — количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Формула объема куба

1) Объем куба равен кубу его ребра.

V — объем куба

H — высота ребра куба

Формула объема пирамиды

1) Объем пирамиды равен одной трети произведения площади основания S (ABCD) на высоту h (OS).

V — объем пирамиды

S — площадь основания пирамиды

h — высота пирамиды

Формулы объема конуса

1) Объем конуса равен одной трети произведения площади основания на высоту.

2) Объем конуса равен одной трети произведения числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем конуса

S — площадь основания конуса

h — высота конуса

π — число пи (3.1415)

r — радиус конуса

Формулы объема цилиндра

1) Объем цилиндра равен произведению площади основания на высоту.

2) Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

V — объем цилиндра

S — площадь основания цилиндра

h — высота цилиндра

π — число пи (3.1415)

r — радиус цилиндра

Формула объема шара

1) Объем шара вычисляется по приведенной ниже формуле.

V — объем шара

π — число пи (3.1415)

R — радиус шара

Формула объема тетраэдра

1) Объем тетраэдра равен дроби в числителе которой корень квадратный из двух помноженный на куб длины ребра тетраэдра, а в знаменателе двенадцать.

Формулы объема
Формулы объема и онлайн программы для вычисления объема


Формула объема.

Формула объема необходима для вычисления параметров и характеристик геометрической фигуры.

Объем фигуры — это количественная характеристика пространства, занимаемого телом или веществом. В простейших случаях объём измеряется числом умещающихся в теле единичных кубов, т. е. кубов с ребром, равным единице длины. Объём тела или вместимость сосуда определяется его формой и линейными размерами.

Параллелепипед .

Объем прямоугольного параллелепипеда равен произведению площади основания на высоту.

Цилиндр .

Объем цилиндра равен произведению площади основания на высоту.

Объем цилиндра равен произведению числа пи (3.1415) на квадрат радиуса основания на высоту.

Пирамида .

Объем пирамиды равен одной трети произведения площади основания S (ABCDE) на высоту h (OS).

Правильная пирамида - это пирамида, в основании, которой лежит правильный многоугольник, а высота проходит через центр вписанной окружности в основание.

Правильная треугольная пирамида - это пирамида, у которой основанием является равносторонний треугольник и грани равные равнобедренные треугольники.

Правильная четырехугольная пирамида - это пирамида, у которой основанием является квадрат и грани равные равнобедренные треугольники.

Тетраэдр - это пирамида, у которой все грани - равносторонние треугольники.

Усеченная пирамида .

Объем усеченной пирамиды равен одной трети произведения высоты h (OS) на сумму площадей верхнего основания S 1 (abcde), нижнего основания усеченной пирамиды S 2 (ABCDE) и средней пропорциональной между ними.

Вычислить объем куба легко – нужно перемножить длину, ширину и высоту. Так как у куба длина равна ширине и равна высоте, то объем куба равен s 3 .

Конус - это тело в евклидовом пространстве, полученное объединением всех лучей, исходящих из одной точки (вершины конуса) и проходящих через плоскую поверхность.

Усеченный конус получится, если в конусе провести сечение, параллельное основанию.

V = 1/3 πh (R 2 + Rr + r 2)

Объем шара в полтора раза меньше, чем объем описанного вокруг него цилиндра.

Призма .

Объем призмы равен произведению площади основания призмы, на высоту.

Сектор шара .

Объем шарового сектора равен объему пирамиды, основание которой имеет ту же площадь, что и вырезаемая сектором часть шаровой поверхности, а высота равна радиусу шара.

Шаровой слой - это часть шара, заключенная между двумя секущими параллельными плоскостями.

Сегмент шара — это часть шара, осекаемая от него какой-нибудь плоскостью, называется шаровым или сферическим сегментом

Формула объема
Формула объема куба, шара, пирамиды, параллелограмма, цилиндра, тетраэдра, конуса, призмы и объемы других геометрических фигур.


В курсе стереометрии один из главных вопросов — как рассчитать объем того или иного геометрического тела. Все начинается с простого параллелепипеда и заканчивается шаром.

В жизни тоже часто приходится сталкиваться с подобными задачами. Например, чтобы рассчитать объем воды, которая помещается в ведро или бочку.

Свойства, справедливые для объема каждого тела

  1. Это значение — всегда положительное число.
  2. Если тело удается разделить на части так, чтобы не было пересечений, то общий объем оказывается равным сумме объемов частей.
  3. У равных тел одинаковые объемы.
  4. Если меньшее тело полностью помещается в большем, то объем первого меньше, чем второго.

Общие обозначения для всех тел

В каждом из них есть ребра и основания, в них строятся высоты. Поэтому такие элементы для них одинаково обозначены. Именно так они записаны в формулах. Как рассчитать объем каждого из тел — узнаем дальше и применим на практике новые умения.

В некоторых формулах имеются другие величины. Об их обозначении будет сказано при появлении такой необходимости.

Призма, параллелепипед (прямой и наклонный) и куб

Эти тела объединены, потому что внешне очень похожи, и формулы того, как рассчитать объем, идентичны:

V = S * h.

Различаться будет только S . В случае с параллелепипедом она рассчитывается, как для прямоугольника или квадрата. В призме основанием может оказаться треугольник, параллелограмм, произвольный четырехугольник или другой многоугольник.

Для куба формула существенно упрощается, потому что все его измерения равны:

V = а 3 .

Пирамида, тетраэдр, усеченная пирамида

Для первого из указанных тел существует такая формула, чтобы вычислить объем:

V = 1/3 * S * н.

Тетраэдр является частным случаем треугольной пирамиды. В нем все ребра равны. Поэтому снова получается упрощенная формула:

V = (а 3 * √2) / 12, или V = 1/ 3 S h

Усеченной пирамида становится тогда, когда у нее срезана верхняя часть. Поэтому ее объем равен разности двух пирамид: той, которая была бы целой, и удаленной верхушки. Если есть возможность узнать оба основания такой пирамиды (S 1 - большее и S 2 - меньшее), то удобно пользоваться такой формулой для расчета объема:

Цилиндр, конус и усеченный конус

V =π * r 2 * h.

Несколько сложнее обстоит дело с конусом. Для него существует формула:

V = 1/3 π * r 2 * h. Она очень похожа на ту, что указана для цилиндра, только значение уменьшено в три раза.

Так же, как с усеченной пирамидой, дело обстоит непросто с конусом, который имеет два основания. Формула для вычисления объема усеченного конуса выглядит так:

V = 1/3 π * h * (r 1 2 + r 1 r 2 + r 2 2). Здесь r 1 - радиус нижнего основания, r 2 - верхнего (меньшего).

Шар, шаровые сегменты и сектор

Это самые сложные для запоминания формулы. Для объема шара она выглядит так:

V = 4/3 π *r 3 .

В задачах часто есть вопрос о том, как рассчитать объем шарового сегмента - части сферы, которая как бы срезана параллельно диаметру. В этом случае на выручку придет такая формула:

V = π h 2 * (r — h/3). В ней за h взята высота сегмента, то есть та часть, которая идет по радиусу шара.

Сектор делится на две части: конус и шаровой сегмент. Поэтому его объем определяется как сумма этих тел. Формула после преобразований выглядит так:

V = 2/3 πr 2 * h. Здесь h также высота сегмента.

Примеры задач

Про объемы цилиндра, шара и конуса

Условие: диаметр цилиндра (1 тело) равен его высоте, диаметру шара (2 тело) и высоте конуса (3 тело), проверить пропорциональность объемов V 1: V 2: V 3 = 3:2:1

Решение. Сначала потребуется записать три формулы для объемов. Потом учесть, что радиус - это половина диаметра. То есть высота будет равна двум радиусам: h = 2r. Произведя простую замену получается, что формулы для объемов будут иметь такой вид:

V 1 = 2 π r 3 , V 3 = 2/3 π r 3 . Формула для объема шара не изменяется, потому что в ней не фигурирует высота.

Теперь осталось записать отношения объемов и произвести сокращение 2π и r 3 . Получается, что V 1: V 2: V 3 = 1: 2/3: 1/3. Эти числа легко привести к записи 3: 2: 1.

Про объем шара

Условие: имеется два арбуза радиусами 15 и 20 см, как их выгоднее съесть: первый вчетвером или второй ввосьмером?

Решение. Чтобы ответить на этот вопрос, потребуется найти отношение объемов частей, которые достанутся от каждого арбуза. Принимая во внимание, что они - шары, нужно записать две формулы для объемов. Потом учесть, что от первого каждому достанется только четвертая часть, а от второго — восьмая.

Осталось записать отношение объемов частей. Оно будет выглядеть так:

(V 1: 4) / (V 2: 8) = (1/3 π r 1 3) / (1/6 π r 2 3). После преобразования остается только дробь: (2 r 1 3) / r 2 3 . После подстановки значений и вычисления получается дробь 6750/8000. Из нее ясно, что часть от первого арбуза будет меньше, чем от второго.

Ответ. Выгоднее съесть восьмую часть от арбуза с радиусом 20 см.

Про объемы пирамиды и куба

Условие: имеется пирамида из глины с прямоугольным основанием 8Х9 см и высотой 9 см, из этого же куска глины сделали куб, чему равно его ребро?

Решение. Если обозначить стороны прямоугольника буквами в и с, то площадь основания пирамиды вычисляется, как их произведение. Тогда формула для ее объема:

Формула для объема куба написана в статье выше. Эти два значения равны: V 1 = V 2 . Осталось приравнять правые части формул и сделать необходимые вычисления. Получается, что ребро куба будет равно 6 см.

Про объем параллелепипеда

Условие: требуется сделать ящик вместимостью 0,96 м 3 , известны его ширина и длина — 1,2 и 0,8 метра, какой должна быть его высота?

Решение. Поскольку основание параллелепипеда — прямоугольник, его площадь определяется как произведение длины (а) на ширину (в). Поэтому формула для объема выглядит так:

Из нее легко определить высоту, разделив объем на площадь. Получится, что высота должна быть равна 1 м.

Ответ. Высота ящика равна одному метру.

Как рассчитать объем различных геометрических тел?
В курсе стереометрии одна из главных задач — как рассчитать объем того или иного геометрического тела. Все начинается с простого параллелепипеда и заканчивается шаром.

 
Статьи по теме:
Домашняя ветчина из свинины в ветчиннице с грибами, черносливом и орехами
С появлением ребенка в доме начинаешь задумываться о здоровой и, самое главное, вкусной пище. Ветчинница Редмонд — это не электрический прибор, а просто дополнительный аксессуар для приготовления домашней колбасы в мультиварке. Понятно, что вареная колбас
Свинина по-китайски: простой и вкусный рецепт
Свинина по-китайски - визитная карточка китайской кухни. Существует множество способов приготовления мяса и каждый из них хорош по-своему. Практически в каждом рецепте присутствует сахар или другой подсластитель, поэтому блюдо всегда выходит восхитительно
Куриная печень в сливках Куриная печень в сливках
Куриная печень - продукт не только вкусный, но и полезный. Надоели привычные паштеты и подливы? Приготовьте что-нибудь новенькое. Обязательно обратите внимание на такой деликатес, как в сливках. Приготовить это кушанье можно и по случаю праздничного засто
Ленивая овсянка: быстрый и полезный завтрак на все случаи жизни
Как часто мы что-то готовим на завтрак впопыхах, бегая между кухней, детской комнатой и туалетным столиком. При этом яичница подгорает, бутерброды падают маслом вниз, а задуманными всмятку яйцами впору стены разбивать. Другое дело - ленивая овсянка в банк