Разложение на множители правило. Разложение на множители больших чисел

Очень часто числитель и знаменатель дроби представляют собой алгебраические выражения, которые сначала нужно разложить на множители, а потом, обнаружив среди них одинаковые, разделить на них и числитель, и знаменатель, то есть сократить дробь. Заданиям разложить многочлен на множители посвящена целая глава учебника по алгебре в 7-м классе. Разложение на множители можно осуществить 3 способами , а также комбинацией этих способов.

1. Применение формул сокращенного умножения

Как известно, чтобы умножить многочлен на многочлен , нужно каждое слагаемое одного многочлена умножить на каждое слагаемое другого многочлена и полученные произведения сложить. Есть, как минимум, 7 (семь) часто встречающихся случаев умножения многочленов, которые вошли в понятие . Например,

Таблица 1. Разложение на множители 1-м способом

2. Вынесение общего множителя за скобку

Этот способ основан на применении распределительного закона умножения. Например,

Каждое слагаемое исходного выражения мы делим на множитель, который выносим, и получаем при этом выражение в скобках (то есть в скобках остаётся результат деления того, что было, на то, что выносим). Прежде всего нужно правильно определить множитель , который надо вынести за скобку.

Общим множителем может быть и многочлен в скобках:

При выполнении задания «разложите на множители» надо быть особенно внимательным со знаками при вынесении общего множителя за скобки. Чтобы поменять знак у каждого слагаемого в скобке (b — a) , вынесем за скобку общий множитель -1 , при этом каждое слагаемое в скобке разделится на -1: (b — a) = — (a — b) .

В том случае если выражение в скобках возводится в квадрат (или в любую чётную степень), то числа внутри скобок можно менять местами совершенно свободно, так как вынесенные за скобки минусы при умножении всё равно превратятся в плюс: (b — a) 2 = (a — b) 2 , (b — a) 4 = (a — b) 4 и так далее…

3. Способ группировки

Иногда общий множитель имеется не у всех слагаемых в выражении, а только у некоторых. Тогда можно попробовать сгруппировать слагаемые в скобки так, чтобы из каждой можно было какой-то множитель вынести. Способ группировки - это двойное вынесение общих множителей за скобки.

4. Использование сразу нескольких способов

Иногда нужно применить не один, а несколько способов разложения многочлена на множители сразу.

Это конспект по теме «Разложение на множители» . Выберите дальнейшие действия:

  • Перейти к следующему конспекту:

Разложение многочленов для получения произведения иногда кажется запутанным. Но это не так сложно, если разобраться в процессе пошагово. В статье подробно рассказано, как разложить на множители квадратный трехчлен.

Многим непонятно, как разложить на множители квадратный трехчлен, и для чего это делается. Сначала может показаться, что это бесполезное занятие. Но в математике ничего не делается просто так. Преобразование нужно для упрощения выражения и удобства вычисления.

Многочлен, имеющий вид – ax²+bx+c, называется квадратным трехчленом. Слагаемое «a» должно быть отрицательным или положительным. На практике это выражение называется квадратным уравнением. Поэтому иногда говорят и по-другому: как разложить квадратное уравнение.

Интересно! Квадратным многочлен называют из-за самой его большой степени – квадрата. А трехчленом — из-за 3-х составных слагаемых.

Некоторые другие виды многочленов:

  • линейный двучлен (6x+8);
  • кубический четырехчлен (x³+4x²-2x+9).

Разложение квадратного трехчлена на множители

Сначала выражение приравнивается к нулю, затем нужно найти значения корней x1 и x2. Корней может не быть, может быть один или два корня. Наличие корней определяется по дискриминанту. Его формулу надо знать наизусть: D=b²-4ac.

Если результат D получается отрицательный, корней нет. Если положительный – корня два. Если в результате получился ноль – корень один. Корни тоже высчитываются по формуле.

Если при вычислении дискриминанта получается ноль, можно применять любую из формул. На практике формула просто сокращается: -b / 2a.

Формулы для разных значений дискриминанта различаются.

Если D положительный:

Если D равен нулю:

Онлайн калькуляторы

В интернете есть онлайн калькулятор. С его помощью можно выполнить разложение на множители. На некоторых ресурсах предоставляется возможность посмотреть решение пошагово. Такие сервисы помогают лучше понять тему, но нужно постараться хорошо вникнуть.

Полезное видео: Разложение квадратного трехчлена на множители

Примеры

Предлагаем просмотреть простые примеры, как разложить квадратное уравнение на множители.

Пример 1

Здесь наглядно показано, что в результате получится два x, потому что D положительный. Их и нужно подставить в формулу. Если корни получились отрицательные, знак в формуле меняется на противоположный.

Нам известна формула разложения квадратного трехчлена на множители: a(x-x1)(x-x2). Ставим значения в скобки: (x+3)(x+2/3). Перед слагаемым в степени нет числа. Это значит, что там единица, она опускается.

Пример 2

Этот пример наглядно показывает, как решать уравнение, имеющее один корень.

Подставляем получившееся значение:

Пример 3

Дано: 5x²+3x+7

Сначала вычислим дискриминант, как в предыдущих случаях.

D=9-4*5*7=9-140= -131.

Дискриминант отрицательный, значит, корней нет.

После получения результата стоит раскрыть скобки и проверить результат. Должен появиться исходный трехчлен.

Альтернативный способ решения

Некоторые люди так и не смогли подружиться с дискриминантом. Можно еще одним способом произвести разложение квадратного трехчлена на множители. Для удобства способ показан на примере.

Дано: x²+3x-10

Мы знаем, что должны получиться 2 скобки: (_)(_). Когда выражение имеет такой вид: x²+bx+c, в начале каждой скобки ставим x: (x_)(x_). Оставшиеся два числа – произведение, дающее «c», т. е. в этом случае -10. Узнать, какие это числа, можно только методом подбора. Подставленные числа должны соответствовать оставшемуся слагаемому.

К примеру, перемножение следующих чисел дает -10:

  • -1, 10;
  • -10, 1;
  • -5, 2;
  • -2, 5.
  1. (x-1)(x+10) = x2+10x-x-10 = x2+9x-10. Нет.
  2. (x-10)(x+1) = x2+x-10x-10 = x2-9x-10. Нет.
  3. (x-5)(x+2) = x2+2x-5x-10 = x2-3x-10. Нет.
  4. (x-2)(x+5) = x2+5x-2x-10 = x2+3x-10. Подходит.

Значит, преобразование выражения x2+3x-10 выглядит так: (x-2)(x+5).

Важно! Стоит внимательно следить за тем, чтобы не перепутать знаки.

Разложение сложного трехчлена

Если «a» больше единицы, начинаются сложности. Но все не так трудно, как кажется.

Чтобы выполнить разложение на множители, нужно сначала посмотреть, возможно ли что-нибудь вынести за скобку.

Например, дано выражение: 3x²+9x-30. Здесь выносится за скобку число 3:

3(x²+3x-10). В результате получается уже известный трехчлен. Ответ выглядит так: 3(x-2)(x+5)

Как раскладывать, если слагаемое, которое находится в квадрате отрицательное? В данном случае за скобку выносится число -1. К примеру: -x²-10x-8. После выражение будет выглядеть так:

Схема мало отличается от предыдущей. Есть лишь несколько новых моментов. Допустим, дано выражение: 2x²+7x+3. Ответ также записывается в 2-х скобках, которые нужно заполнить (_)(_). Во 2-ю скобку записывается x, а в 1-ю то, что осталось. Это выглядит так: (2x_)(x_). В остальном повторяется предыдущая схема.

Число 3 дают числа:

  • -1, -3;
  • -3, -1;
  • 3, 1;
  • 1, 3.

Решаем уравнения, подставляя данные числа. Подходит последний вариант. Значит, преобразование выражения 2x²+7x+3 выглядит так: (2x+1)(x+3).

Другие случаи

Преобразовать выражение получится не всегда. При втором способе решение уравнения не потребуется. Но возможность преобразования слагаемых в произведение проверяется только через дискриминант.

Стоит потренироваться решать квадратные уравнения, чтобы при использовании формул не возникало трудностей.

Полезное видео: разложение трехчлена на множители

Вывод

Пользоваться можно любым способом. Но лучше оба отработать до автоматизма. Также научиться хорошо решать квадратные уравнения и раскладывать многочлены на множители нужно тем, кто собирается связать свою жизнь с математикой. На этом строятся все следующие математические темы.

Что такое разложение на множители? Это способ превращения неудобного и сложного примера в простой и симпатичный.) Оч-ч-чень мощный приём! Встречается на каждом шагу и в элементарной математике, и в высшей.

Подобные превращения на математическом языке называются тождественными преобразованиями выражений. Кто не в теме - прогуляйтесь по ссылке. Там совсем немного, просто и полезно.) Смысл любого тождественного преобразования - это запись выражения в другом виде с сохранением его сути.

Смысл разложения на множители предельно прост и понятен. Прямо из самого названия. Можно забыть (или не знать), что такое множитель, но то, что это слово происходит от слова "умножить" сообразить-то можно?) Разложить на множители означает: представить выражение в виде умножения чего-то на чего-то. Да простят мне математика и русский язык...) И всё.

Например, надо разложить число 12. Можно смело записать:

Вот мы и представили число 12 в виде умножения 3 на 4. Прошу заметить, что циферки справа (3 и 4) совсем другие, чем слева (1 и 2). Но мы прекрасно понимаем, что 12 и 3·4 одно и то же. Суть числа 12 от преобразования не изменилась.

А можно разложить 12 по-другому? Легко!

12=3·4=2·6=3·2·2=0,5·24=........

Вариантов разложения - бесконечное количество.

Разложение чисел на множители - штука полезная. Очень помогает, например, при действиях с корнями. Но разложение на множители алгебраических выражений вещь не то, что полезная, она - необходимая! Чисто для примера:

Упростить:

Кто не умеете раскладывать выражение на множители, отдыхает в сторонке. Кто умеет - упрощает и получает:

Эффект потрясающий, правда?) Кстати, решение достаточно простое. Ниже сами увидите. Или, например, такое задание:

Решить уравнение:

х 5 - x 4 = 0

Решается в уме, между прочим. С помощью разложения на множители. Ниже мы решим этот пример. Ответ: x 1 = 0; x 2 = 1 .

Или, то же самое, но для старшеньких):

Решить уравнение:

На этих примерах я показал основное назначение разложения на множители: упрощение дробных выражений и решение некоторых типов уравнений. Рекомендую запомнить практическое правило:

Если перед нами страшное дробное выражение, можно попробовать разложить на множители числитель и знаменатель. Очень часто дробь сокращается и упрощается.

Если перед нами уравнение, где справа - ноль, а слева - не пойми что, можно попробовать разложить левую часть на множители. Иногда помогает).

Основные способы разложения на множители.

Вот они, самые популярные способы:

4. Разложение квадратного трёхчлена.

Эти способы надо запомнить. Именно в таком порядке. Сложные примеры проверяются на все возможные способы разложения. И лучше уж проверять по порядочку, чтобы не запутаться... Вот по порядочку и начнём.)

1. Вынесение общего множителя за скобки.

Простой и надёжный способ. От него плохо не бывает! Бывает либо хорошо, либо никак.) Поэтому он и стоит первым. Разбираемся.

Все знают (я верю!)) правило:

a(b+c) = ab+ac

Или, в более общем виде:

a(b+c+d+.....) = ab+ac+ad+....

Все равенства работают как слева направо, так и наоборот, справа налево. Можно записать:

ab+ac = a(b+c)

ab+ac+ad+.... = a(b+c+d+.....)

Вот и вся суть вынесения общего множителя за скобки.

В левой части а - общий множитель для всех слагаемых. Умножается на всё, что есть). Справа это самое а находится уже за скобками.

Практическое применение способа рассмотрим на примерах. Сначала вариант простой, даже примитивный.) Но на этом варианте я отмечу (зелёным цветом) очень важные моменты для любого разложения на множители.

Разложить на множители:

ах+9х

Какой общий множитель сидит в обоих слагаемых? Икс, разумеется! Его и будем выносить за скобки. Делаем так. Сразу пишем икс за скобками:

ах+9х=х(

А в скобках пишем результат деления каждого слагаемого на этот самый икс. По порядочку:

Вот и всё. Конечно, так подробно расписывать не нужно, Это в уме делается. Но понимать, что к чему, желательно). Фиксируем в памяти:

Пишем общий множитель за скобками. В скобках записываем результаты деления всех слагаемых на этот самый общий множитель. По порядочку.

Вот мы и разложили выражение ах+9х на множители. Превратили его в умножение икса на (а+9). Замечу, что в исходном выражении тоже было умножение, даже два: а·х и 9·х. Но оно не было разложено на множители! Потому, что кроме умножения, в этом выражении было ещё и сложение, знак "+"! А в выражении х(а+9) кроме умножения ничего нет!

Как так!? - слышу возмущённый глас народа - А в скобках!?)

Да, внутри скобок есть сложение. Но фишка в том, что пока скобки не раскрыты, мы рассматриваем их как одну букву. И все действия со скобками делаем целиком, как с одной буквой. В этом смысле в выражении х(а+9) кроме умножения ничего нет. В этом вся суть разложения на множители.

Кстати, можно ли как-то проверить, всё ли правильно мы сделали? Запросто! Достаточно обратно умножить то, что вынесли (икс) на скобки и посмотреть - получилось ли исходное выражение? Если получилось, всё тип-топ!)

х(а+9)=ах+9х

Получилось.)

В этом примитивном примере проблем нет. Но если слагаемых несколько, да ещё с разными знаками... Короче, каждый третий ученик косячит). Посему:

При необходимости проверяем разложение на множители обратным умножением.

Разложить на множители:

3ах+9х

Ищем общий множитель. Ну, с иксом всё ясно, его можно вынести. А есть ли ещё общий множитель? Да! Это тройка. Можно же записать выражение вот так:

3ах+3·3х

Здесь сразу видно, что общий множителем будет . Вот его и выносим:

3ах+3·3х=3х(а+3)

Разложили.

А что будет, если вынести только х? Да ничего особенного:

3ах+9х=х(3а+9)

Это тоже будет разложение на множители. Но в этом увлекательном процессе принято раскладывать всё до упора, пока есть возможность. Здесь в скобках есть возможность вынести тройку. Получится:

3ах+9х=х(3а+9)=3х(а+3)

То же самое, только с одним лишним действием.) Запоминаем:

При вынесении общего множителя за скобки, стараемся вынести максимальный общий множитель.

Продолжаем развлечение?)

Разложить на множители выражение:

3ах+9х-8а-24

Что будем выносить? Тройку, икс? Не-е-е... Нельзя. Напоминаю, выносить можно только общий множитель, который есть во всех слагаемых выражения. На то он и общий. Здесь такого множителя нету... Что, можно не раскладывать!? Ну да, обрадовались, как же... Знакомьтесь:

2. Группировка.

Собственно, группировку трудно назвать самостоятельным способом разложения на множители. Это, скорее, способ выкрутиться в сложном примере.) Надо сгруппировать слагаемые так, чтобы всё получилось. Это только на примере показать можно. Итак, перед нами выражение:

3ах+9х-8а-24

Видно, что какие-то общие буквы и числа имеются. Но... Общего множителя, чтобы был во всех слагаемых - нет. Не падаем духом и разбиваем выражение на кусочки. Группируем. Так, чтобы в каждом кусочке был общий множитель, было чего вынести. Как разбиваем? Да просто ставим скобки.

Напомню, что скобки можно ставить где угодно и как угодно. Лишь бы суть примера не менялась. Например, можно так:

3ах+9х-8а-24 =(3ах+9х)-(8а+24 )

Прошу обратить внимание на вторые скобки! Перед ними стоит знак минус, а и 24 стали положительными! Если, для проверки, обратно раскрыть скобки, знаки поменяются, и мы получим исходное выражение. Т.е. суть выражения от скобок не изменилась.

Но если вы просто воткнули скобки, не учитывая смену знака, например, вот так:

3ах+9х-8а-24 =(3ах+9х)-(8а-24 )

это будет ошибкой. Справа - уже другое выражение. Раскройте скобки и всё станет видно. Дальше можно не решать, да...)

Но возвращаемся к разложению на множители. Смотрим на первые скобки (3ах+9х) и соображаем, можно ли чего вынести? Ну, этот пример мы выше решали, можно вынести 3х:

(3ах+9х)=3х(а+3)

Изучаем вторые скобки, там можно вынести восьмёрку:

(8а+24)=8(а+3)

Всё наше выражение получится:

(3ах+9х)-(8а+24)=3х(а+3)-8(а+3)

Разложили на множители? Нет. В результате разложения должно получиться только умножение, а у нас знак минус всё портит. Но... В обоих слагаемых есть общий множитель! Это (а+3) . Я не зря говорил, что скобки целиком - это, как бы, одна буква. Значит, эти скобки можно вынести за скобки. Да, именно так и звучит.)

Делаем, как было рассказано выше. Пишем общий множитель (а+3) , во вторых скобках записываем результаты деления слагаемых на (а+3) :

3х(а+3)-8(а+3)=(а+3)(3х-8)

Всё! Справа кроме умножения ничего нет! Значит, разложение на множители завершено успешно!) Вот оно:

3ах+9х-8а-24=(а+3)(3х-8)

Повторим кратенько суть группировки.

Если в выражении нет общего множителя для всех слагаемых, разбиваем выражение скобками так, чтобы внутри скобок общий множитель был. Выносим его и смотрим, что получилось. Если повезло, и в скобках остались совершенно одинаковые выражения, выносим эти скобки за скобки.

Добавлю, что группировка - процесс творческий). Не всегда с первого раза получается. Ничего страшного. Иногда приходится менять слагаемые местами, рассматривать разные варианты группировки, пока не найдётся удачный. Главное здесь - не падать духом!)

Примеры.

Сейчас, обогатившись знаниями, можно и хитрые примеры порешать.) Была в начале урока тройка таких...

Упростить:

В сущности, этот пример мы уже решили. Незаметно для себя.) Напоминаю: если нам дана страшная дробь, пробуем разложить числитель и знаменатель на множители. Других вариантов упрощения просто нет.

Ну, знаменатель здесь не раскладывается, а числитель... Числитель мы уже разложили по ходу урока! Вот так:

3ах+9х-8а-24=(а+3)(3х-8)

Пишем результат разложения в числитель дроби:

По правилу сокращения дробей (основное свойство дроби), мы можем разделить (одновременно!) числитель и знаменатель на одно и то же число, или выражение. Дробь от этого не меняется. Вот и делим числитель и знаменатель на выражение (3х-8) . И там и там получим единички. Окончательный результат упрощения:

Особо подчеркну: сокращение дроби возможно тогда и только тогда, когда в числителе и знаменателе кроме умножения выражений ничего нет. Именно потому превращение суммы (разности) в умножение так важно для упрощения. Конечно, если выражения разные, то и не сократится ничего. Бывет. Но разложение на множители даёт шанс. Этого шанса без разложения - просто нет.

Пример с уравнением:

Решить уравнение:

х 5 - x 4 = 0

Выносим общий множитель х 4 за скобки. Получаем:

х 4 (x-1)=0

Соображаем, что произведение множителей равно нулю тогда и только тогда, когда какой-нибудь из них равен нулю. Если сомневаетесь, найдите мне парочку ненулевых чисел, которые при умножении ноль дадут.) Вот и пишем, сначала первый множитель:

При таком равенстве второй множитель нас не волнует. Любой может быть, всё равно в итоге ноль получится. А какое число в четвёртой степени ноль даст? Только ноль! И никакое другое... Стало быть:

С первым множителем разобрались, один корень нашли. Разбираемся со вторым множителем. Теперь нас не волнует уже первый множитель.):

Вот и нашли решение: x 1 = 0; x 2 = 1 . Любой из этих корней подходит к нашему уравнению.

Очень важное замечание. Обратите внимание, мы решали уравнение по кусочкам! Каждый множитель приравнивали к нулю, не обращая внимания на остальные множители. Кстати, если в подобном уравнении будет не два множителя, как у нас, а три, пять, сколько угодно - решать будем точно так же. По кусочкам. Например:

(х-1)(х+5)(х-3)(х+2)=0

Тот, кто раскроет скобки, перемножит всё, тот навсегда зависнет на этом уравнении.) Правильный ученик сразу увидит, что слева кроме умножения ничего нет, справа - ноль. И начнёт (в уме!) приравнивать к нулю все скобочки по порядочку. И получит (за 10 секунд!) верное решение: x 1 = 1; x 2 = -5; x 3 = 3; x 4 = -2.

Здорово, правда?) Такое элегантное решение возможно, если левая часть уравнения разложена на множители. Намёк понятен?)

Ну и, последний пример, для старшеньких):

Решить уравнение:

Чем-то он похож на предыдущий, не находите?) Конечно. Самое время вспомнить, что в алгебре седьмого класса под буквами могут скрываться и синусы, и логарифмы, и всё, что угодно! Разложение на множители работает во всей математике.

Выносим общий множитель lg 4 x за скобки. Получаем:

lg 4 x=0

Это один корень. Разбираемся со вторым множителем.

Вот и окончательный ответ: x 1 = 1; x 2 = 10 .

Надеюсь, вы осознали всю мощь разложения на множители в упрощении дробей и решении уравнений.)

В этом уроке мы познакомились с вынесением общего множителя и группировкой. Остаётся разобраться с формулами сокращённого умножения и квадратным трёхчленом.

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

При решении уравнений и неравенств нередко возникает необходимость разложить на множители многочлен, степень которого равна трем или выше. В этой статье мы рассмотрим, каким образом это сделать проще всего.

Как обычно, обратимся за помощью к теории.

Теорема Безу утверждает, что остаток от деления многочлена на двучлен равен .

Но для нас важна не сама теорема, а следствие из нее:

Если число является корнем многочлена , то многочлен делится без остатка на двучлен .

Перед нами стоит задача каким-то способом найти хотя бы один корень многочлена, потом разделить многочлен на , где - корень многочлена. В результате мы получаем многочлен, степень которого на единицу меньше, чем степень исходного. А потом при необходимости можно повторить процесс.

Эта задача распадается на две: как найти корень многочлена, и как разделить многочлен на двучлен .

Остановимся подробнее на этих моментах.

1. Как найти корень многочлена.

Сначала проверяем, являются ли числа 1 и -1 корнями многочлена.

Здесь нам помогут такие факты:

Если сумма всех коэффициентов многочлена равна нулю, то число является корнем многочлена.

Например, в многочлене сумма коэффициентов равна нулю: . Легко проверить, что является корнем многочлена.

Если сумма коэффициентов многочлена при четных степенях равна сумме коэффициентов при нечетных степенях, то число является корнем многочлена. Свободный член считается коэффициентом при четной степени, поскольку , а - четное число.

Например, в многочлене сумма коэффициентов при четных степенях : , и сумма коэффициентов при нечетных степенях : . Легко проверить, что является корнем многочлена.

Если ни 1, ни -1 не являются корнями многочлена, то двигаемся дальше.

Для приведенного многочлена степени (то есть многочлена, в котором старший коэффициент - коэффициент при - равен единице) справедлива формула Виета:

Где - корни многочлена .

Есть ещё формул Виета, касающихся остальных коэффициентов многочлена, но нас интересует именно эта.

Из этой формулы Виета следует, что если корни многочлена целочисленные, то они являются делителями его свободного члена, который также является целым числом.

Исходя из этого, нам надо разложить свободный член многочлена на множители, и последовательно, от меньшего к большему, проверять, какой из множителей является корнем многочлена.

Рассмотрим, например, многочлен

Делители свободного члена: ; ; ;

Сумма всех коэффициентов многочлена равна , следовательно, число 1 не является корнем многочлена.

Сумма коэффициентов при четных степенях :

Сумма коэффициентов при нечетных степенях :

Следовательно, число -1 также не является корнем многочлена.

Проверим, является ли число 2 корнем многочлена: , следовательно, число 2 является корнем многочлена. Значит, по теореме Безу, многочлен делится без остатка на двучлен .

2. Как разделить многочлен на двучлен.

Многочлен можно разделить на двучлен столбиком.

Разделим многочлен на двучлен столбиком:


Есть и другой способ деления многочлена на двучлен - схема Горнера.


Посмотрите это видео, чтобы понять, как делить многочлен на двучлен столбиком, и с помощью схемы Горнера.

Замечу, что если при делении столбиком какая-то степень неизвестного в исходном многочлене отсутствует, на её месте пишем 0 - так же, как при составлении таблицы для схемы Горнера.

Итак, если нам нужно разделить многочлен на двучлен и в результате деления мы получаем многочлен , то коэффициенты многочлена мы можем найти по схеме Горнера:


Мы также можем использовать схему Горнера для того, чтобы проверить, является ли данное число корнем многочлена: если число является корнем многочлена , то остаток от деления многочлена на равен нулю, то есть в последнем столбце второй строки схемы Горнера мы получаем 0.

Используя схему Горнера, мы "убиваем двух зайцев": одновременно проверяем, является ли число корнем многочлена и делим этот многочлен на двучлен .

Пример. Решить уравнение:

1. Выпишем делители свободного члена, и будем искать корни многочлена среди делителей свободного члена.

Делители числа 24:

2. Проверим, является ли число 1 корнем многочлена.

Сумма коэффициентов многочлена , следовательно, число 1 является корнем многочлена.

3. Разделим исходный многочлен на двучлен с помощью схемы Горнера.

А) Выпишем в первую строку таблицы коэффициенты исходного многочлена.

Так как член, содержащий отсутствует, в том столбце таблицы, в котором должен стоять коэффициент при пишем 0. Слева пишем найденный корень: число 1.

Б) Заполняем первую строку таблицы.

В последнем столбце, как и ожидалось, мы получили ноль, мы разделили исходный многочлен на двучлен без остатка. Коэффициенты многочлена, получившегося в результате деления изображены синим цветом во второй строке таблицы:

Легко проверить, что числа 1 и -1 не являются корнями многочлена

В) Продолжим таблицу. Проверим, является ли число 2 корнем многочлена :

Так степень многочлена, который получается в результате деления на единицу меньше степени исходного многочлена, следовательно и количество коэффициентов и количество столбцов на единицу меньше.

В последнем столбце мы получили -40 - число, не равное нулю, следовательно, многочлен делится на двучлен с остатком, и число 2 не является корнем многочлена.

В) Проверим, является ли число -2 корнем многочлена . Так как предыдущая попытка оказалась неудачной, чтобы не было путаницы с коэффициентами, я сотру строку, соответствующую этой попытке:


Отлично! В остатке мы получили ноль, следовательно, многочлен разделился на двучлен без остатка, следовательно, число -2 является корнем многочлена. Коэффициенты многочлена, который получается в результате деления многочлена на двучлен в таблице изображены зеленым цветом.

В результате деления мы получили квадратный трехчлен , корни которого легко находятся по теореме Виета:

Итак, корни исходного уравнения :

{}

Ответ: {}


В этой статье Вы найдете всю необходимую информацию, отвечающую на вопрос, как разложить число на простые множители . Сначала дано общее представление о разложении числа на простые множители, приведены примеры разложений. Дальше показана каноническая форма разложения числа на простые множители. После этого дан алгоритм разложения произвольных чисел на простые множители и приведены примеры разложения чисел с использованием этого алгоритма. Также рассмотрены альтернативные способы, позволяющие быстро раскладывать небольшие целые числа на простые множители с использованием признаков делимости и таблицы умножения.

Навигация по странице.

Что значит разложить число на простые множители?

Сначала разберемся с тем, что такое простые множители.

Понятно, раз в этом словосочетании присутствует слово «множители», то имеет место произведение каких-то чисел, а уточняющее слово «простые» означает, что каждый множитель является простым числом . Например, в произведении вида 2·7·7·23 присутствуют четыре простых множителя: 2 , 7 , 7 и 23 .

А что же значит разложить число на простые множители?

Это значит, что данное число нужно представить в виде произведения простых множителей, причем значение этого произведения должно быть равно исходному числу. В качестве примера рассмотрим произведение трех простых чисел 2 , 3 и 5 , оно равно 30 , таким образом, разложение числа 30 на простые множители имеет вид 2·3·5 . Обычно разложение числа на простые множители записывают в виде равенства, в нашем примере оно будет таким: 30=2·3·5 . Отдельно подчеркнем, что простые множители в разложении могут повторяться. Это явно иллюстрирует следующий пример: 144=2·2·2·2·3·3 . А вот представление вида 45=3·15 не является разложением на простые множители, так как число 15 – составное.

Возникает следующий вопрос: «А какие вообще числа можно разложить на простые множители»?

В поисках ответа на него, приведем следующие рассуждения. Простые числа по определению находятся среди , больших единицы. Учитывая этот факт и , можно утверждать, что произведение нескольких простых множителей является целым положительным числом, превосходящим единицу. Поэтому разложение на простые множители имеет место лишь для положительных целых чисел, которые больше 1 .

Но все ли целые числа, превосходящие единицу, раскладываются на простые множители?

Понятно, что простые целые числа разложить на простые множители нет возможности. Это объясняется тем, что простые числа имеют только два положительных делителя – единицу и самого себя, поэтому они не могут быть представлены в виде произведения двух или большего количества простых чисел. Если бы целое число z можно было бы представить в виде произведения простых чисел a и b , то понятие делимости позволило бы сделать вывод, что z делится и на a и на b , что невозможно в силу простоты числа z. Однако считают, что любое простое число само является своим разложением.

А как насчет составных чисел? Раскладываются ли составные числа на простые множители, и все ли составные числа подлежат такому разложению? Утвердительный ответ на ряд этих вопросов дает основная теорема арифметики . Основная теорема арифметики утверждает, что любое целое число a , которое больше 1 , можно разложить на произведение простых множителей p 1 , p 2 , …, p n , при этом разложение имеет вид a=p 1 ·p 2 ·…·p n , причем это разложение единственно, если не учитывать порядок следования множителей

Каноническое разложение числа на простые множители

В разложении числа простые множители могут повторяться. Повторяющиеся простые множители можно записать более компактно, используя . Пусть в разложении числа a простой множитель p 1 встречается s 1 раз, простой множитель p 2 – s 2 раз, и так далее, p n – s n раз. Тогда разложение на простые множители числа a можно записать как a=p 1 s 1 ·p 2 s 2 ·…·p n s n . Такая форма записи представляет собой так называемое каноническое разложение числа на простые множители .

Приведем пример канонического разложения числа на простые множители. Пусть нам известно разложение 609 840=2·2·2·2·3·3·5·7·11·11 , его каноническая форма записи имеет вид 609 840=2 4 ·3 2 ·5·7·11 2 .

Каноническое разложение числа на простые множители позволяет найти все делители числа и число делителей числа .

Алгоритм разложения числа на простые множители

Чтобы успешно справиться с задачей разложения числа на простые множители, нужно очень хорошо владеть информацией статьи простые и составные числа .

Суть процесса разложения целого положительного и превосходящего единицу числа a понятна из доказательства основной теоремы арифметики . Смысл состоит в последовательном нахождении наименьших простых делителей p 1 , p 2 , …,p n чисел a, a 1 , a 2 , …, a n-1 , что позволяет получить ряд равенств a=p 1 ·a 1 , где a 1 =a:p 1 , a=p 1 ·a 1 =p 1 ·p 2 ·a 2 , где a 2 =a 1:p 2 , …, a=p 1 ·p 2 ·…·p n ·a n , где a n =a n-1:p n . Когда получается a n =1 , то равенство a=p 1 ·p 2 ·…·p n даст нам искомое разложение числа a на простые множители. Здесь же следует заметить, что p 1 ≤p 2 ≤p 3 ≤…≤p n .

Осталось разобраться с нахождением наименьших простых делителей на каждом шаге, и мы будем иметь алгоритм разложения числа на простые множители. Находить простые делители нам поможет таблица простых чисел . Покажем, как с ее помощью получить наименьший простой делитель числа z .

Последовательно берем простые числа из таблицы простых чисел (2 , 3 , 5 , 7 , 11 и так далее) и делим на них данное число z . Первое простое число, на которое z разделится нацело, и будет его наименьшим простым делителем. Если число z простое, то его наименьшим простым делителем будет само число z . Здесь же следует напомнить, что если z не является простым числом, то его наименьший простой делитель не превосходит числа , где - из z . Таким образом, если среди простых чисел, не превосходящих , не нашлось ни одного делителя числа z , то можно делать вывод о том, что z – простое число (более подробно об этом написано в разделе теории под заголовком данное число простое или составное).

Для примера покажем, как найти наименьший простой делитель числа 87 . Берем число 2 . Делим 87 на 2 , получаем 87:2=43 (ост. 1) (если необходимо, смотрите статью ). То есть, при делении 87 на 2 получается остаток 1 , поэтому 2 – не является делителем числа 87 . Берем следующее простое число из таблицы простых чисел, это число 3 . Делим 87 на 3 , получаем 87:3=29 . Таким образом, 87 делится на 3 нацело, следовательно, число 3 является наименьшим простым делителем числа 87 .

Заметим, что в общем случае для разложения на простые множители числа a нам потребуется таблица простых чисел до числа, не меньшего, чем . К этой таблице нам придется обращаться на каждом шаге, так что ее нужно иметь под рукой. Например, для разложения на простые множители числа 95 нам будет достаточно таблицы простых чисел до 10 (так как 10 больше, чем ). А для разложения числа 846 653 уже будет нужна таблица простых чисел до 1 000 (так как 1 000 больше, чем ).

Теперь мы обладаем достаточными сведениями, чтобы записать алгоритм разложения числа на простые множители . Алгоритм разложения числа a таков:

  • Последовательно перебирая числа из таблицы простых чисел, находим наименьший простой делитель p 1 числа a , после чего вычисляем a 1 =a:p 1 . Если a 1 =1 , то число a – простое, и оно само является своим разложением на простые множители. Если же a 1 на равно 1 , то имеем a=p 1 ·a 1 и переходим к следующему шагу.
  • Находим наименьший простой делитель p 2 числа a 1 , для этого последовательно перебираем числа из таблицы простых чисел, начиная с p 1 , после чего вычисляем a 2 =a 1:p 2 . Если a 2 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 . Если же a 2 на равно 1 , то имеем a=p 1 ·p 2 ·a 2 и переходим к следующему шагу.
  • Перебирая числа из таблицы простых чисел, начиная с p 2 , находим наименьший простой делитель p 3 числа a 2 , после чего вычисляем a 3 =a 2:p 3 . Если a 3 =1 , то искомое разложение числа a на простые множители имеет вид a=p 1 ·p 2 ·p 3 . Если же a 3 на равно 1 , то имеем a=p 1 ·p 2 ·p 3 ·a 3 и переходим к следующему шагу.
  • Находим наименьший простой делитель p n числа a n-1 , перебирая простые числа, начиная с p n-1 , а также a n =a n-1:p n , причем a n получается равно 1 . Этот шаг является последним шагом алгоритма, здесь получаем искомое разложение числа a на простые множители: a=p 1 ·p 2 ·…·p n .

Все результаты, полученные на каждом шаге алгоритма разложения числа на простые множители, для наглядности представляют в виде следующей таблицы, в которой слева от вертикальной черты записывают последовательно в столбик числа a, a 1 , a 2 , …, a n , а справа от черты – соответствующие наименьшие простые делители p 1 , p 2 , …, p n .

Осталось лишь рассмотреть несколько примеров применения полученного алгоритма для разложения чисел на простые множители.

Примеры разложения на простые множители

Сейчас мы подробно разберем примеры разложения чисел на простые множители . При разложении будем применять алгоритм из предыдущего пункта. Начнем с простых случаев, и постепенно их будем усложнять, чтобы столкнуться со всеми возможными нюансами, возникающими при разложении чисел на простые множители.

Пример.

Разложите число 78 на простые множители.

Решение.

Начинаем поиск первого наименьшего простого делителя p 1 числа a=78 . Для этого начинаем последовательно перебирать простые числа из таблицы простых чисел. Берем число 2 и делим на него 78 , получаем 78:2=39 . Число 78 разделилось на 2 без остатка, поэтому p 1 =2 – первый найденный простой делитель числа 78 . В этом случае a 1 =a:p 1 =78:2=39 . Так мы приходим к равенству a=p 1 ·a 1 имеющему вид 78=2·39 . Очевидно, что a 1 =39 отлично от 1 , поэтому переходим ко второму шагу алгоритма.

Теперь ищем наименьший простой делитель p 2 числа a 1 =39 . Начинаем перебор чисел из таблицы простых чисел, начиная с p 1 =2 . Делим 39 на 2 , получаем 39:2=19 (ост. 1) . Так как 39 не делится нацело на 2 , то 2 не является его делителем. Тогда берем следующее число из таблицы простых чисел (число 3 ) и делим на него 39 , получаем 39:3=13 . Следовательно, p 2 =3 – наименьший простой делитель числа 39 , при этом a 2 =a 1:p 2 =39:3=13 . Имеем равенство a=p 1 ·p 2 ·a 2 в виде 78=2·3·13 . Так как a 2 =13 отлично от 1 , то переходим к следующему шагу алгоритма.

Здесь нам нужно отыскать наименьший простой делитель числа a 2 =13 . В поисках наименьшего простого делителя p 3 числа 13 будем последовательно перебирать числа из таблицы простых чисел, начиная с p 2 =3 . Число 13 не делится на 3 , так как 13:3=4 (ост. 1) , также 13 не делится на 5 , 7 и на 11 , так как 13:5=2 (ост. 3) , 13:7=1 (ост. 6) и 13:11=1 (ост. 2) . Следующим простым числом является 13 , и на него 13 делится без остатка, следовательно, наименьший простой делитель p 3 числа 13 есть само число 13 , и a 3 =a 2:p 3 =13:13=1 . Так как a 3 =1 , то этот шаг алгоритма является последним, а искомое разложение числа 78 на простые множители имеет вид 78=2·3·13 (a=p 1 ·p 2 ·p 3 ).

Ответ:

78=2·3·13 .

Пример.

Представьте число 83 006 в виде произведения простых множителей.

Решение.

На первом шаге алгоритма разложения числа на простые множители находим p 1 =2 и a 1 =a:p 1 =83 006:2=41 503 , откуда 83 006=2·41 503 .

На втором шаге выясняем, что 2 , 3 и 5 не являются простыми делителями числа a 1 =41 503 , а число 7 – является, так как 41 503:7=5 929 . Имеем p 2 =7 , a 2 =a 1:p 2 =41 503:7=5 929 . Таким образом, 83 006=2·7·5 929 .

Наименьшим простым делителем числа a 2 =5 929 является число 7 , так как 5 929:7=847 . Таким образом, p 3 =7 , a 3 =a 2:p 3 =5 929:7=847 , откуда 83 006=2·7·7·847 .

Дальше находим, что наименьший простой делитель p 4 числа a 3 =847 равен 7 . Тогда a 4 =a 3:p 4 =847:7=121 , поэтому 83 006=2·7·7·7·121 .

Теперь находим наименьший простой делитель числа a 4 =121 , им является число p 5 =11 (так как 121 делится на 11 и не делится на 7 ). Тогда a 5 =a 4:p 5 =121:11=11 , и 83 006=2·7·7·7·11·11 .

Наконец, наименьший простой делитель числа a 5 =11 – это число p 6 =11 . Тогда a 6 =a 5:p 6 =11:11=1 . Так как a 6 =1 , то этот шаг алгоритма разложения числа на простые множители является последним, и искомое разложение имеет вид 83 006=2·7·7·7·11·11 .

Полученный результат можно записать как каноническое разложение числа на простые множители 83 006=2·7 3 ·11 2 .

Ответ:

83 006=2·7·7·7·11·11=2·7 3 ·11 2 991 – простое число. Действительно, оно не имеет ни одного простого делителя, не превосходящего ( можно грубо оценить как , так как очевидно, что 991<40 2 ), то есть, наименьшим делителем числа 991 является оно само. Тогда p 3 =991 и a 3 =a 2:p 3 =991:991=1 . Следовательно, искомое разложение числа 897 924 289 на простые множители имеет вид 897 924 289=937·967·991 .

Ответ:

897 924 289=937·967·991 .

Использование признаков делимости для разложения на простые множители

В простых случаях разложить число на простые множители можно без использования алгоритма разложения из первого пункта данной статьи. Если числа не большие, то для их разложения на простые множители часто достаточно знать и признаки делимости . Приведем примеры для пояснения.

Например, нам требуется разложить на простые множители число 10 . Из таблицы умножения мы знаем, что 2·5=10 , а числа 2 и 5 очевидно простые, поэтому разложение на простые множители числа 10 имеет вид 10=2·5 .

Еще пример. При помощи таблицы умножения разложим на простые множители число 48 . Мы знаем, что шестью восемь – сорок восемь, то есть, 48=6·8 . Однако, ни 6 , ни 8 не являются простыми числами. Но мы знаем, что дважды три – шесть, и дважды четыре – восемь, то есть, 6=2·3 и 8=2·4 . Тогда 48=6·8=2·3·2·4 . Осталось вспомнить, что дважды два – четыре, тогда получим искомое разложение на простые множители 48=2·3·2·2·2 . Запишем это разложение в канонической форме: 48=2 4 ·3 .

А вот при разложении на простые множители числа 3 400 можно воспользоваться признаками делимости. Признаки делимости на 10, 100 позволяют утверждать, что 3 400 делится на 100 , при этом 3 400=34·100 , а 100 делится на 10 , при этом 100=10·10 , следовательно, 3 400=34·10·10 . А на основании признака делимости на 2 можно утверждать, что каждый из множителей 34 , 10 и 10 делится на 2 , получаем 3 400=34·10·10=2·17·2·5·2·5 . Все множители в полученном разложении являются простыми, поэтому это разложение является искомым. Осталось лишь переставить множители, чтобы они шли в порядке возрастания: 3 400=2·2·2·5·5·17 . Запишем также каноническое разложение данного числа на простые множители: 3 400=2 3 ·5 2 ·17 .

При разложении данного числа на простые множители можно использовать по очереди и признаки делимости и таблицу умножения. Представим число 75 в виде произведения простых множителей. Признак делимости на 5 позволяет нам утверждать, что 75 делится на 5 , при этом получаем, что 75=5·15 . А из таблицы умножения мы знаем, что 15=3·5 , поэтому, 75=5·3·5 . Это и есть искомое разложение числа 75 на простые множители.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.
  • Виноградов И.М. Основы теории чисел.
  • Михелович Ш.Х. Теория чисел.
  • Куликов Л.Я. и др. Сборник задач по алгебре и теории чисел: Учебное пособие для студентов физ.-мат. специальностей педагогических институтов.
 
Статьи по теме:
Самые мощные взрывы в истории человечества (9 фото)
Семьдесят лет назад 16 июля 1945 года США провели первые в истории человечества испытания ядерного оружия. С того времени мы успели немало продвинуться вперед: на данный момент на Земле официально зафиксировано более двух тысяч испытаний этого невероятно
Изучение телеграфной азбуки (азбука Морзе)
Азбука Морзе - особый способ кодирования различных языковых знаков - букв, а также цифр при помощи Используется два короткий обозначает точку, длинный - тире. Первоначально код Морзе использовали в телеграфе.Азбука Морзе была изобретена американцем Самюэл
Коктейль «Банановый дайкири»: история напитка, рецепт приготовления
Хотите приготовить неповторимый ромовый коктейль родом с Карибских островов? Он отлично утоляет жажду, имеет мягкий и нежный вкус, при этом его название звучит экстравагантно и сексуально — коктейль «Дайкири». В свое время напиток стал настоящей сенсацией
Мудрые мысли о книге и чтении
Ранее чтение являлось одним из самых распространенных видов досуга. Очень приятным и полезным досугом, надо сказать. А вот сейчас книгу все чаще заменяют электронные устройства - смартфоны, планшеты, ноутбуки, телевизоры и аудиоплееры. Или же полноценному