Состояние и перспективы развития производства терапевтических систем. Современное состояние и перспективы развития теории и практики производства лекарств

Биотехнология традиционных лекарств и лекарств будущего

С целью улучшения лечебных свойств традиционных лекарств усилия всех специалистов, разрабатывающих лекарственные пре-параты, направлены на использование новых технологий их полу-чения, совершенствование составов, повышение специфичности и изучение как можно более полного механизма их действия на различные системы и органы человека. Продвижения в этом направ-лении все ощутимее и появляется надежда, что лекарственные препараты в следующем тысячелетии станут более действенными и эффективными средствами лечения многих заболеваний. Широко будут применяться лекарственные препараты в виде терапевтиче-ских систем и биопродуктов, особенно таких, как пептиды и про-белки, которые практически невозможно получить синтетически. Поэтому становится понятным возрастающее значение биотехноло-гии для фармацевтической промышленности.

Сегодня биотехнология стремительно выдвигается на передний край научно-технического прогресса. Этому, с одной стороны, способствует бурное развитие современной молекулярной биологии и генетики, опирающихся на достижения химии и физики, а с другой стороны, -- острая потребность в новых технологиях, спо-собных улучшить состояние здравоохранения и охраны окружающей среды, а главное -- ликвидировать нехватку продовольствия, энер-гии и минеральных ресурсов.

В качестве первоочередной задачи перед биотехнологией стоит создание и освоение производства лекарственных препаратов для медицины: интерферонов, инсулинов, гормонов, антибиотиков, вакцин, моноклональных антител и других, позволяющих осуществлять ран-нюю диагностику и лечение сердчено-сосудистых, злокачественных, наследственных, инфекционных, в том числе вирусных заболеваний.

По оценкам специалистов мировой рынок биотехнологической продукции уже к середине 90-х годов составил около 150 млрд долларов. По объему выпускаемой продукции и числу зарегистри-рованных патентов Япония занимает первое место среди стран, преуспевающих в области биотехнологии, и второе -- по производ-ству фармацевтической продукции. В 1979 году на мировой рынок было выпущено 11 новых антибиотиков, 7 из них синтезировано в Японии. В 1980 году фармацевтическая промышленность Японии освоила производство веществ широкой номенклатуры: пеницилли-нов, цефалоспорина С, стрептомицина, полусинтетических анти-биотиков второго и третьего поколений, противоопухолевых пре-паратов и иммуномодуляторов. Среди десяти ведущих мировых производителей интерферона -- пять японских. С 1980 года фирмы активно включились в разработку технологий, связанных с иммо-билизованными ферментами и клетками. Проводятся активные исследования, направленные на получение термостойких и кисло-тоустойчивых ферментов. 44% новых продуктов, полученных с помощью биотехнологий, нашли применение в фармации и только 23% -- в пищевой или химической промышленности.

Биотехнология оказывает воздействие на различные отрасли про-мышленности Японии, включая производство вино-водочных изделий, пива, аминокислот, нуклеидов, антибиотиков; рассматривается как одно из самых перспективных направлений развития пищевого и фармацев-тического производства и на этом основании включена в исследователь-скую программу по созданию новых промышленных технологий. Суще-ствует государственная программа, направленная на разработку новых технологий получения гормонов, интерферонов, вакцин, витаминов, аминокислот, антибиотиков и диагностических препаратов.

Второе место после Японии по объему продуктов биотехнологии и первое место по производству фармацевтической продукции принадле-жит США. На антибиотики приходится 12% мировой продукции. Зна-чительные успехи достигнуты в области синтеза инсулина, гормона роста человека, интерферона, фактора свертывания крови VIII, диа-гностических тестов, вакцины против гепатита В и других лекарст-венных препаратов, а также непрерывного процесса конверсии саха-ра в этиловый спирт. В 1983 году был синтезирован лейкоцитарный интерферон человека высокой чистоты. Методами генной инженерии овладели многие фармацевтические фирмы США. Быстро развиваются средства информации, связанные с биотехнологией. Определенные успехи в области биотехнологии имеются и в других странах мира.

Понятие "биотехнология" собирательное и охватывает такие области, как ферментационная технология, применение биофакто-ров с использованием иммобилизованных микроорганизмов или энзимов, генная инженерия, иммунная и белковая технологии, технология с использованием клеточных культур как животного, так и растительного происхождения.

Биотехнология -- это совокупность технологических мето-дов, в том числе и генной инженерии, использующих живые организмы и биологические процессы для производства лекар-ственных средств, или наука о разработке и применении живых систем, а также неживых систем биологического происхождения в рамках технологических процессов и инду-стриального производства.

Современная биотехнология -- это химия, где изменение и превра-щение веществ происходит с помощью биологических процессов. В острой конкуренции успешно развиваются две химии: синтетическая и биологическая. Синтетическая химия, сочетая и перетасовывая атомы, переделывая молекулы, создавая новые вещества, неведомые в природе, окружила нас новым миром, который стал привычным и необходимым. Это -- лекарства, моющие средства и красители, цемент, бетон и бумага, синтетические ткани и меха, пластинки и драгоценные камни, духи и искусственные алмазы. Но чтобы получить вещества "второй природы" необходимы жесткие условия и специфические катализаторы. Напри-мер, связывание азота происходит в промышленных прочных аппаратах при высокой температуре и огромном давлении. При этом в воздух выбрасываются столбы дыма, а в реки -- потоки сточных вод. Для азотофиксирующих бактерий этого совсем не требуется. Имеющиеся в их распоряжении энзимы осуществляют эту реакцию в мягких условиях, образуя чистый продукт без отходов. Но самое неприятное заключается в том, что пребывание человека в окружении "второй природы" стало оборачиваться аллергией и другими опасностями. Неплохо бы держаться поближе к природе-матери. И если делать искусственные ткани, пленки, то хотя бы из микробного белка, если применять лекарственные пре-параты, то прежде всего те, которые вырабатываются в организме. Отсюда вырисовываются перспективы развития и использования в фармацевтической промышленности биотехнологий, где применяются живые клетки (в основном такие микроорганизмы, как бактерии и дрожжевые грибки или отдельные энзимы, выполняющие роль катали-заторов только определенных химических реакций). Обладая феноме-нальной избирательностью, энзимы осуществляют одну-единственную реакцию и позволяют получить чистый продукт без отходов.

Однако энзимы нестойкие и быстро разрушаются, например, при повышении температуры трудно выделяются, их нельзя использо-вать многократно. Это и обусловило, главным образом, развитие науки об обездвиженных (иммобилизованных) ферментах. Основа, на которую "сажают" фермент, может иметь вид гранул, волокон, пленок из полимеров, стекла, керамики. Потери энзима при этом минимальны, а активность сохраняется месяцами. В настоящее время научились получать иммобилизованные бактерии, которые вырабатывают энзимы. Это упростило их использование в произ-водстве и сделало метод более дешевым (не надо выделять энзим, очищать его). Кроме того, бактерии работают в десять раз дольше, что сделало технологический процесс экономичнее й проще. Тра-диционная ферментационная технология превратилась в биотехно-логию со всеми признаками передовой технологии.

Ферментные технологии с большим экономическим эффектом стали применять для получения чистых аминокислот, переработки крахмалосодержащего сырья (например, кукурузного зерна в сироп, состоящий из глюкозы и фруктоы). За последние годы это произ-водство превратилось в многотоннажное. Развиваются производства по переработке опилок, соломы, бытовых отходов в кормовой белок или спирт, который используют для замены бензина. Ферменты сегодня широко используются в медицине как фиброиолитические препараты (фибринолизин + гепарин, стрептолиаза); при расстрой-ствах пищеварения (пепсин + хлористоводородная кислота, пепси-дил, абомин, панкреатин, ораза, панкурмен, фестал, дигестал, три-фермент, холензим и др.); для лечения гнойных ран, При образова-нии спаек, рубцов после ожогов и операций и т.д. Биотехнология позволяет получать большое количество ферментов медицинского назначения. Их используют для растворения тромбов, лечения на-следственных заболеваний, удаления нежизнеспособных, денатури-рованных структур, клеточных и тканевых фрагментов, освобожде-ния организма от токсических веществ. Так, с помощью тромболи-тических ферментов (стрептокиназы, урокиназы) спасена жизнь многим больным с тромбозом конечностей, легких, коронарных сосудов сердца. Протеазы в современной медицине применяются для освобождения организма от патологических продуктов, для лечения ожогов.

Известно около 200 наследственных заболеваний, обусловленных дефицитом какого-либо фермента или иного белкового фактора. В настоящее время делаются попытки лечения этих заболеваний с применением ферментов.

В последние годы все больше внимания уделяют ингибиторам ферментов. Ингибиторы протеаз, получаемые из актиномицетов (лейпептин, антипаин, химостатин) и генноинженерных штаммов E.coli (эглин) и дрожжей (ос-1 антитрипсин) эффективны при сеп-тических процессах, инфаркте миокарда, панкреатите, эмфиземе легких. Концентрацию глюкозы в крови больных диабетом можно уменьшить путем использования ингибиторов кишечных инвертаз и амилаз, отвечающих за превращение крахмала и сахарозы в глюкозу. Особой задачей является поиск ингибиторов ферментов, с помощью которых патогенные микроорганизмы разрушают анти-биотики, вводимые в организм больного.

Новые возможности открывает генная инженерия и другие ме-тоды биотехнологии в производстве антибиотиков, обладающих высокой избирательной физиологической активностью по отноше-нию к определенным группам микроорганизмов. Однако антибио-тики имеют и ряд недостатков (токсичность, аллергенность, устой-чивость патогенных микроорганизмов и др.), которые существенно можно ослабить за счет их химической модификации (пеницилли-ны, цефалоспорины), мутасинтеза, генной инженерии и других способов. Многообещающим подходом может служить инкапсули-рование антибиотиков, в частности, включение их в липосомы, что позволяет прицельно доставлять лекарственное вещество только к определенным органам и тканям, повышает его эффективность и снижает побочное действие.

С помощью генной инженерии можно заставить бактерии выра-батывать интерферон -- белок, выделяемый клетками человека в низких концентрациях при попадании в организм вируса. Он уси-ливает иммунитет организма, подавляет размножение аномальных клеток (противоопухолевое действие), используется для лечения болезней, вызываемых вирусами герпеса, бешенства, гепатитов, цитомегаловирусом, вызывающим опасное поражение сердца, а также для профилактики вирусных инфекций. Вдыхание аэрозоля интерферона позволяет предупредить развитие ОРЗ. Интерфероны оказывают лечебное действие при заболевании раком груди, кожи, гортани, легких, мозга, а также рассеяного склероза. Они полезны при лечении лиц, страдающих приобретенными иммунодефицитами (рассеянной миеломой и саркомой Капоци).

В организме человека вырабатывается несколько классов интер-ферона: лейкоцитарный (а), фибробластный (р-интерферон, удоб-ный для массового производства, поскольку фибробласты в отличие от лейкоцитов размножаются в культуре), иммунный (у) из Т-лим-фоцитов и е-интерферон, образуемый эпителиальными клетками.

До введения методов генной инженерии интерфероны получали из лейкоцитов донорской крови. Технология сложная и дорогостоя-щая: из 1 л крови получали 1 мг интерферона (одна доза для инъекций).

В настоящее время а-, (3- и у-интерфероны получают с примене-нием штамма E.coli, дрожжей, культивируемых клеток насекомых (Dro-zophila). Очищают с использованием моноклональных (клон -- совокуп-ность клеток или особей, произошедших от общего предка путем бесполого размножения) антител или другими способами.

Биотехнологическим методом получают и интерлейкины -- срав-нительно короткие (около 150 аминокислотных остатков) полипеп-тиды, участвующие в организации иммунного ответа. Образуются в организме определенной группой лейкоцитов (микрофагами) в от-вет на введение антигена. Используются как лечебные средства при иммунных расстройствах. Путем клонирования соответствующих генов в E.coli или культивирования лимфоцитов in vitro получают интерлейкин-L (для лечения ряда опухолевых заболеваний), фактор крови VIII (культивированием клеток млекопитающих), фактор IX (необходим для терапии гемофилии), а также фактор роста }

 
Статьи по теме:
Что такое проектно-сметная документация
Капитальный ремонт объекта капитального строительства – одновременная разработка рабочего проекта и сметы, чертежи и расчеты производятся после утверждения проектного задания. состав:Раздел 5. "Сведения об инженерном оборудовании, о сетях инженерно – те
Волошин Александр Стальевич
Председатель советов директоров ОАО "Уралкалий" и ОАО "Первая грузовая компания"Председатель советов директоров ОАО "Уралкалий" (с сентября 2010 года), ОАО "Первая грузовая компания" (с февраля 2012 года). Ранее - председатель совета директоров РАО "ЕЭС Р
Аншлюс австрии - презентация
13 марта 1938 года Австрия была присоединена к Германии. Для Гитлера аншлюс не только создал плацдарм для наступления на Чехословакию, но и стал личной местью Родине за непризнание в молодые годы.Блеф в Берхтесгадене Разбитая после Первой мировой войны Ав
Приснился цветущий сад. Магия чисел. Современный универсальный сонник
Сны – это бездонная шкатулка с образами, которые каждую ночь оживают в нашем сознании. Иногда сновидения бывают всего лишь ответом на утомительный долгий день, который был наполнен размышлениями и разговорами.А некоторые из них могут быть глашатаями перем