Ветрогенератор из. Как сделать ветряной генератор своими руками. Процесс наматывания катушек

Мощности самодельного ветрогенератора будет достаточно для зарядки аккумуляторных батарей разнообразной техники, обеспечения освещения и в целом работы бытовых электроприборов. Установив ветрогенератор, вы избавите себя от расходов на электроэнергию. При желании рассматриваемый агрегат можно собрать своими руками. Нужно лишь определиться с основными параметрами ветрогенератора и сделать все в соответствии с инструкцией.

Конструкция ветрогенератора включает в себя несколько лопастей, вращающихся под воздействием ветряных потоков. В результате такого воздействия создается энергия вращения. Образовавшаяся энергия посредством ротора поступает на мультипликатор, который в свою очередь передает энергию на электрогенератор.

Также существуют конструкции ветрогенераторов без мультипликаторов. Отсутствие мультипликатора позволяет существенно повысить производительнос ть установки.

Ветрогенераторы можно устанавливать как по отдельности, так и группами, объединенными в ветропарк. Также ветродвигатели можно комбинировать с дизельными генераторами, что позволит экономить топливо и обеспечить максимально эффективную работу системы электрообеспечен ия дома.

Что нужно знать до начала сборки ветрогенератора?

Перед началом сборки ветрогенератора вам нужно определиться с рядом основных моментов.

Первый шаг. Выберите подходящий тип конструкции ветродвигателя. Установка может быть вертикальной и горизонтальной. В случае самостоятельной сборки лучше отдавать выбор в пользу именно вертикальных моделей, т.к. они более просты в изготовлении и балансировке.

Второй шаг. Определите подходящую мощность. В этом моменте все индивидуально – ориентируйтесь на собственные потребности. Для получения большей мощности нужно увеличивать диаметр и массу рабочего колеса.

Увеличение этих характеристик приведет к возникновению определенных сложностей на этапе закрепления и балансировки колеса ветрогенератора. Учитывайте данный момент и объективно оценивайте свои возможности. Если вы новичок, рассмотрите вариант с установкой нескольких ветрогенераторов средней мощности вместо одного очень производительног о агрегата.

Третий шаг. Подумайте, сможете ли вы самостоятельно изготовить все элементы ветрогенератора. Каждая деталь должна быть точно просчитана и сделана в полном соответствии с заводскими аналогами. При отсутствии необходимых навыков лучше купите готовые элементы.

Четвертый шаг. Выберите подходящие аккумуляторные батареи. От автомобильных аккумуляторов лучше отказаться, т.к. они недолговечны, взрывоопасны и требовательны в уходе и обслуживании.

Более предпочтительным вариантом являются герметичные аккумуляторы. Они стоят в пару раз дороже, зато служат в несколько раз дольше и в целом отличаются более высокими характеристиками.

Отдельное внимание уделите выбору подходящего количества лопастей. Самыми популярными являются ветрогенераторы с 2-мя и 3-мя лопастями. Однако у подобных установок есть ряд недостатков.

При работе генератора с 2-мя или 3-мя лопастями имеют место мощные центробежные и гироскопические силы. Под воздействием упомянутых сил существенно возрастает нагрузка на основные элементы ветрогенератора. При этом в некоторых моментах силы действуют в противовес друг другу.

Чтобы нивелировать поступающие нагрузки и сохранить конструкцию ветрогенератора в целостности, нужно выполнить грамотный аэродинамический расчет лопастей и изготовить их в точном соответствии с расчетными данными. Даже минимальные погрешности в несколько раз уменьшают КПД установки и повышают вероятность скорой поломки ветрогенератора.

При работе быстроходных ветродвигателей создается много шума, в особенности, если идет речь о самодельных установках.Чем больший размер будут иметь лопасти, тем сильнее будет шум. Этот момент накладывает ряд ограничений. К примеру, установить настолько шумную конструкцию на крыше дома уже не получится, если, конечно, владельцу не нравится ощущение жизни в условиях аэродрома.

Учитывайте, что с увеличением количества лопастей будет повышаться уровень вибрации, образующейся во время работы ветрогенератора. Двухлопастные установки более сложны в балансировке, особенно для неопытного пользователя. Следовательно, шума и вибрации от ветряков с двумя лопастями будет очень много.

Отдайте выбор в пользу ветрогенератора на 5-6 лопастей. Практика показывает, что такие модели являются наиболее оптимальными для самостоятельного изготовления и использования в домашних условиях.

Винт рекомендуется делать диаметром порядка 2 м. С работой по его сборке и балансировке справится практически любой желающий. Набравшись опыта, можете попробовать собрать и установить колесо с 12-ю лопастями. Сборка такого агрегата потребует больше усилий. Расход материалов и временные затраты тоже увеличатся. Однако 12 лопастей позволят даже при несильном ветре в 6-8 м/с получать мощность на уровне 450-500 Вт.

Учитывайте, что при 12 лопастях колесо будет довольно тихоходным, а это может привести к различным проблемам. К примеру, вам придется собрать специальный редуктор, более сложный и дорогой в изготовлении.

Таким образом, лучшим вариантом для начинающего домашнего мастера является ветрогенератор с колесом диаметром 200 см, оснащенным лопастями средней длины в количестве 6 штук.

Комплектующие и инструменты для сборки

Сборка ветряка потребует наличия множества различных комплектующих и дополнительных приспособлений. Соберите и купите все необходимое заранее, чтобы вам не пришлось отвлекаться на это в будущем.


В зависимости от условий конкретной ситуации перечень необходимых инструментов может немного меняться. В этом моменте вы самостоятельно сориентируетесь по ходу выполнения работы.

Пошаговое руководство по сборке ветрогенератора

Сборка и установка самодельного ветрогенератора выполняется в несколько этапов.

Первый этап. Подготовьте трехточечное бетонное основание. Глубину и в целом мощность фундамента определяйте в соответствии с типом грунта и климатическими условиями в месте строительства. Дайте бетону набрать прочность в течение 1-2 недель и установите мачту. Для этого заройте опорную мачту в землю примерно на 50-60 см и зафиксируйте с помощью растяжек.

Второй этап. Подготовьте ротор и шкив. Шкив представляет собой фрикционное колесо. По окружности такого колеса расположена канавка либо обод. При выборе диаметра ротора нужно ориентироваться на среднегодовое значение скорости ветра. Так, при средней скорости в 6-8 м/с ротор диаметром 5 м будет более эффективен, чем ротор на 4 м.

Третий этап. Изготовьте лопасти будущего ветрогенератора. Для этого возьмите бочку и разделите ее на несколько одинаковых частей в соответствии с выбранным количеством лопастей. Разметьте лопасти при помощи маркера, а затем вырежьте элементы. Для резки прекрасно подойдет болгарка, также можно использовать ножницы по металлу.

Четвертый этап. Скрепите днище бочки со шкивом генератора. Для крепления используйте болты. После этого вам нужно отогнуть лопасти на бочке. Не переборщите, иначе готовая установка будет работать нестабильно. Установите подходящую скорость вращения ветрогенератора путем изменения изгибов лопастей.

Пятый этап. Подключите провода к генератору и соберите их в цепь в дозе. Закрепите генератор на мачте. Провода подключите к генератору и мачте. Соберите генератор в цепь. Также подключите к цепи аккумулятор. Учитывайте тот факт, что максимально допустимая длина проводов в случае с такой установкой составляет 100 см. Подключите нагрузку при помощи проводов.

На сборку одного генератора уходит в среднем 3-6 часов, в зависимости от имеющихся навыков и в целом работоспособност и мастера.

Ветрогенератор требует регулярного ухода и обслуживания.

  1. Через 2-3 недели после установки нового генератора нужно демонтировать прибор и убедиться в надежности имеющихся креплений . В целях собственной безопасности проверяйте крепления исключительно при слабом ветре.
  2. Смазывайте подшипники как минимум 1 раз в 6 месяцев. При появлении первых признаков нарушения балансировки колеса сразу же снимите его и устраните имеющиеся неисправности. Самым частым признаком разбалансировки является нехарактерное дрожание лопастей.
  3. Не менее чем раз в 6 месяцев проверяйте щетки токоприемника . Каждые 2-6 лет красьте металлические элементы установки. Регулярная покраска защитит металл от разрушения под воздействием коррозии.
  4. Следите за состоянием генератора . Регулярно проверяйте, не перегревается ли генератор во время работы. Если поверхность установки нагревается до такого состояния, что на ней становится очень трудно держать руку, отнесите генератор в мастерскую.
  5. Контролируйте состояние коллектора . Любые загрязнения нужно в кратчайшие сроки удалять с контактов, т.к. они существенно снижают эффективность работы установки. Следите и за механическим состоянием контактов. Перегрев агрегата, сгоревшие обмотки и прочие подобные дефекты – все это должно сразу же устраняться.

Таким образом, в сборке ветрогенератора нет ничего сложного. Достаточно лишь подготовить все необходимые элементы, собрать установку по инструкции и подключить готовый агрегат к электросети. Правильно собранный ветрогенератор для дома станет надежным источником бесплатной электроэнергии. Следуйте полученному руководству и все получится.

Удачной работы!

Видео – Ветрогенераторы для дома своими руками

Неисчерпаемая энергия, которую несут с собой воздушные массы, всегда привлекала внимание людей. Наши прадеды научились запрягать ветер в паруса и колеса ветряных мельниц, после чего он два столетия бесцельно носился по необозримым просторам Земли.

Сегодня для него вновь нашлась полезная работа. Ветрогенератор для частного дома из разряда технических новинок становится реальным фактором нашего быта.

Давайте поближе познакомимся с ветряными электростанциями, оценим условия их рентабельного применения и рассмотрим существующие разновидности. Домашние умельцы получат в нашей статье информацию для размышления по теме самостоятельной сборки ветряка и устройствах, необходимых для его эффективной работы.

Что такое ветрогенератор?

Принцип работы бытовой ветряной электростанции прост: воздушный поток вращает лопасти ротора, насаженного на вал генератора и создает в его обмотках переменный ток. Полученное электричество запасается в аккумуляторах и по мере необходимости расходуется бытовыми приборами. Конечно, это упрощенная схема работы домашнего ветряка. В практическом плане он дополняется устройствами, выполняющими преобразование электричества.

Сразу за генератором в энергоцепочке стоит контроллер. Он преобразует трехфазный переменный ток в постоянный и направляет его на зарядку аккумуляторов. Большинство бытовых приборов не может работать от «постоянки», поэтому за аккумуляторами ставится другое устройство – инвертор. Он выполняет обратную операцию: превращает постоянный ток в бытовой переменный напряжением 220 Вольт. Понятно, что эти преобразования не проходят бесследно и забирают от исходной энергии довольно приличную часть (15-20%).

Если ветряк работает в паре с солнечной батареей или другим генератором электричества (бензиновым, дизельным), то схема дополняется автоматическим выключателем (АВР). При отключении основного источника тока, он активирует резервный.

Для получения максимальной мощности ветряной генератор должен располагаться вдоль ветрового потока. В простых системах реализуется принцип флюгера. Для этого на противоположном конце генератора закрепляется вертикальная лопасть, разворачивающая его навстречу ветру.

В более мощных установках стоит поворотный электромотор, управляемый датчиком направления.

Основные виды ветрогенераторов и их особенности

Существует две разновидности ветрогенераторов:

  1. С горизонтальным расположением ротора.
  2. С вертикальным ротором.

Первый тип – самый распространенный. Он характеризуется высоким КПД (40-50%), но имеет повышенный уровень шума и вибрации. Кроме этого, для его установки требуется большое свободное пространство (100 метров) или высокая мачта (от 6 метров).

Генераторы с вертикальным ротором энергетически менее эффективны (КПД почти в 3 раза ниже, чем у горизонтальных).

К их преимуществам можно отнести простой монтаж и надежность конструкции. Низкая шумность позволяет ставить вертикальные генераторы на крышах домов и даже на уровне земли. Эти установки не боятся обледенения и ураганов. Они запускаются от слабого ветра (от 1,0-2,0 м/с) в то время, как горизонтальному ветряку нужен воздушный поток средней силы (3,5 м/с и выше). По форме рабочего колеса (ротора) вертикальные ветрогенераторы весьма разнообразны.

Роторные колеса вертикальных ветряков

Благодаря малой частоте вращения ротора (до 200 об/мин), механический ресурс таких установок существенно превышает показатели горизонтальных ветрогенераторов.

Как рассчитать и подобрать ветрогенератор?

Ветер это не природный газ, качаемый по трубам и не электроэнергия, бесперебойно поступающая по проводам в наш дом. Он капризен и непостоянен. Сегодня ураган срывает крыши и ломает деревья, а завтра сменяется полным штилем. Поэтому перед покупкой или самостоятельным изготовлением ветряка нужно оценить потенциал воздушной энергии в своем районе. Для этого следует определить среднегодовую силу ветра. Эту величину можно узнать в интернете по соответствующему запросу.

Получив вот такую таблицу, находим район своего проживания и смотрим на интенсивность его окраски, сравнивая ее с оценочной шкалой. Если среднегодовая скорость ветра получится меньше 4,0 метров в секунду, то ветряк ставить нет смысла. Он не даст нужного количества энергии.

Если сила ветра достаточна для установки ветряной электростанции, то можно переходить к следующему шагу: подбору мощности генератора.

Если речь идет об автономном энергоснабжении дома, то в расчет берут среднестатистическое потребление электроэнергии 1 семьей. Оно находится в диапазоне от 100 до 300 кВт*ч в месяц. В регионах с низким годовым ветропотенциалом (5-8 м/сек) такое количество электричества способен сгенерировать ветряк мощностью 2-3 кВт. При этом следует учитывать, что зимой средняя скорость ветра выше, поэтому выработка энергии в этот период будет больше, чем летом.

Выбор ветрогенератора. Ориентировочные цены

Цены на вертикальные отечественные ветрогенераторы мощностью 1,5-2,0 кВт находятся в диапазоне от 90 до 110 тысяч рублей. Комплектация при такой цене включает только генератор с лопастями, без мачты и дополнительного оборудования (контроллер, инвертор, кабель, аккумуляторы). Полнокомплектная электростанция вместе с монтажом обойдется дороже на 40-60%.

Стоимость более мощных ветроустановок (3-5 кВт) составляет от 350 до 450 тысяч рублей (с дополнительным оборудованием и монтажными работами).

Ветряк своими руками. Забава или реальная экономия?

Скажем сразу, что сделать ветрогенератор своими руками полноценным и эффективным непросто. Грамотный расчет ветрового колеса, передаточного механизма, подбор подходящего по мощности и оборотам генератора – отдельная тема. Мы дадим лишь краткие рекомендации по основным этапам данного процесса.

Генератор

Автомобильные генераторы и электродвигатели от стиральных машин с прямым приводом для этой цели не подходят. Они способны генерировать энергию от ветрового колеса, но она будет незначительной. Автогенераторам для эффективной работы нужны очень высокие обороты, которые не может развить ветряк.

В моторах для стиралок другая проблема. Там стоят ферритовые магниты, а для ветрогенератора нужны более производительные – ниодимовые. Процесс их самостоятельного монтажа и намотки токоведущих обмоток требует терпения и высокой точности.

Мощность устройства, собранного своими руками, как правило, не превышает 100-200 Ватт.

В последнее время среди самодельщиков пользуются популярностью мотор-колеса для велосипедов и скутеров. С позиций ветроэнергетики это мощные ниодимовые генераторы, оптимально походящие для работы с вертикальными ветровыми колесами и зарядки аккумуляторов. С такого генератора можно снимать до 1 кВт ветровой энергии.

Мотор-колесо – готовый генератор для самодельной ветряной электростанции


Винт

Проще всего изготавливаются парусный и роторный винты. Первый состоит из легких изогнутых трубок, закрепленных на центральной пластине. На каждую трубку натягиваются лопасти из прочной ткани. Большая парусность винта требует шарнирного крепления лопастей, чтобы при урагане они складывались и не деформировались.

Роторная конструкция ветрового колеса используется для вертикальных генераторов. Она проста в изготовлении и надежна в работе.

Самодельные ветрогенераторы с горизонтальной осью вращения работают от пропеллерного винта. Домашние умельцы собирают его из труб ПВХ диаметром 160-250 мм. Монтаж лопастей выполняется на круглой стальной пластине с посадочным отверстием для вала генератора.

При росте цен на электроэнергию повсюду идёт поиск и разработка её альтернативных источников. В большинстве регионах страны целесообразно применять ветрогенераторы . Чтобы полностью обеспечить электричеством частный дом, требуется достаточно мощная и дорогостоящая установка.

Ветряной генератор для дома

Если сделать небольшой ветрогенератор, с помощью электрического тока можно подогревать воду или использовать для части освещения, например, хозяйственных построек, садовых дорожек и крыльца. Подогрев воды для хозяйственных нужд или отопления – это простейший вариант использования ветровой энергии без её аккумулирования и преобразования. Здесь вопрос больше заключается в том, достаточно ли мощности будет для отопления.

Перед тем как сделать генератор, сначала следует выяснить особенности ветров в регионе.

Большой ветрогенератор, для многих мест российского климата, мало подходит из-за частой смены интенсивности и направления воздушных потоков. При мощности выше 1 кВт он будет инерционным и не сможет в полной мере раскручиваться, когда меняется ветер. Инерция в плоскости вращения приводит к перегрузкам от бокового ветра, приводящим к его выходу из строя.

С появлением маломощных потребителей энергии имеет смысл применять небольшие самодельные ветрогенераторы не более чем на 12 вольт, чтобы освещать дачу светодиодными светильниками или заряжать телефонные аккумуляторы при отсутствии в доме электричества. Когда в этом нет необходимости, электрогенератор можно применять для нагрева воды.

Тип ветрогенератора

Для безветренной области подходит только парусный ветрогенератор. Чтобы электроснабжение было постоянным, понадобится аккумуляторная батарея не менее чем на 12В, зарядное устройство, инвертор, стабилизатор и выпрямитель.

Для слабоветренных районов можно самостоятельно изготовить вертикальный ветрогенератор, мощностью не более 2-3 кВт. Вариантов есть много и они почти не уступают промышленным образцам. Покупать целесообразно ветряки с парусным ротором. Надёжные модели мощностью от 1 до 100 киловатт выпускаются в Таганроге.

В ветреных регионах можно сделать генератор для дома своими руками вертикальный, если требуемая мощность составляет 0,5-1,5 киловатт. Лопасти можно изготовить из подручных средств, например, из бочки. Более производительные устройства целесообразно купить. Самыми дешёвыми являются «парусники». Вертикальный ветряк стоит дороже, но он надёжней работает при сильных ветрах.

Маломощный ветряк своими руками

В домашних условиях небольшой самодельный ветрогенератор изготовить несложно. Для начала работы в области создания альтернативных источников энергии и накопления в этом ценного опыта как собрать генератор, можно изготовить самостоятельно простое устройство, приспособив мотор от компьютера или принтера.

Ветряной генератор на 12 В с горизонтальной осью

Чтобы сделать своими руками маломощный ветряк, необходимо сначала подготовить чертежи или эскизы.

На скорости вращения 200-300 об./мин. напряжение можно поднять до 12 вольт, а вырабатываемая мощность составит около 3 Вт. С его помощью можно зарядить небольшой аккумулятор. Для других генераторов мощность необходимо увеличивать до 1000 об./мин. Лишь в этом случае они будут эффективны. Но здесь понадобится редуктор, создающий значительное сопротивление и к тому же имеющий высокую стоимость.

Электрическая часть

Чтобы собрать электрогенератор, необходимы комплектующие:

  1. небольшой мотор от старого принтера, дисковода или сканера;
  2. 8 диодов типа 1N4007 для двух выпрямительных мостов;
  3. конденсатор ёмкостью 1000 мкф;
  4. труба ПВХ и пластиковые детали;
  5. алюминиевые пластины.

На рисунке ниже изображена схема генератора.

Шаговый мотор: схема подключения к выпрямителю и стабилизатору

Диодные мосты подключаются к каждой обмотке двигателя, которых две. После мостов подключается стабилизатор LM7805. В результате на выходе получается напряжение, которое обычно подаётся на 12-вольтную батарею.

Большую популярность получили электрогенераторы на неодимовых магнитах с чрезвычайно высокой силой сцепления. Их следует аккуратно использовать. При сильном ударе или нагреве до температуры 80-250 0 С (в зависимости от вида) у неодимовых магнитов происходит размагничивание.

За основу генератора, изготавливаемого своими руками, можно взять ступицу автомобиля.

Ротор на неодимовых магнитах

На ступицу производится наклейка суперклеем неодимовых магнитов диаметром около 25 мм примерно в количестве 20 шт. Однофазные электрогенераторы делаются с равенством количества полюсов и магнитов.

Магниты, расположенные напротив друг друга, должны притягиваться, т. е. повёрнуты противоположными полюсами. После приклеивания неодимовых магнитов производится их заливка эпоксидной смолой.

Катушки мотают круглыми, а общее количество витков составляет 1000-1200. Мощность генератора на неодимовых магнитах подбирается такой, чтобы его можно было использовать как источник постоянного тока, порядка 6А для зарядки АКБ на 12 В.

Механическая часть

Лопасти делают из пластиковой трубы. На ней рисуют заготовки шириной 10 см и длиной 50 см, а затем вырезают. Изготавливается втулка на вал двигателя с фланцем, к которому винтами крепятся лопасти. Их количество может быть от двух до четырёх. Пластик долго не прослужит, но на первое время его хватит. Сейчас появились достаточно износостойкие материалы, например, карбон и полипропилен. Затем можно изготовить более прочные лопасти из алюминиевого сплава.

Балансировку лопастей производят путём отрезания лишних частей на концах, а угол наклона создают путём их нагрева с изгибом.

Генератор крепится болтами к куску пластиковой трубы с приваренной к нему вертикальной осью. На трубу также соосно устанавливается флюгер из алюминиевого сплава. Ось вставляется в вертикальную трубу мачты. Между ними устанавливается упорный подшипник. Вся конструкция может свободно вращаться в горизонтальной плоскости.

Электрическую плату можно разместить на вращающейся части, а напряжение потребителю передавать через два токосъёмных кольца со щётками. Если плату с выпрямителем установить отдельно, тогда количество колец будет равно шести, сколько выводов имеет шаговый мотор.

Ветряк крепят на высоте 5-8 м.

Если устройство будет эффективно вырабатывать энергию, его можно усовершенствовать, сделав вертикально-осевым, например, из бочки. Конструкция меньше подвержена боковым перегрузкам, чем горизонтальная. На рисунке ниже изображён ротор с лопастями из фрагментов бочки, установлен на оси внутри рамы и на него не действует опрокидывающее усилие.

Ветряк с вертикальной осью и ротором из бочки

Профилированная поверхность бочки создаёт дополнительную жёсткость, за счёт чего можно применять жесть меньшей толщины.

Ветрогенератор мощностью более 1 киловатта

Устройство должно приносить ощутимую пользу и выдавать напряжение 220 В, чтобы можно было включить некоторые электроприборы. Для этого оно должно самостоятельно запускаться и вырабатывать электроэнергию в широком диапазоне.

Чтобы сделать ветрогенератор своими руками , прежде следует определить конструкцию. Она зависит от того, какая сила ветра. Если она слабая, то единственным вариантом может быть парусный вариант ротора. Больше 2-3 киловатт энергии здесь не получить. Кроме того, для него понадобятся редуктор и мощный аккумулятор с зарядным устройством.

Цена всего оборудования высокая, поэтому следует выяснить, будет ли это выгодно для дома.

В районах с сильными ветрами, самодельным ветрогенератором можно получить 1,5-5 киловатт мощности. Тогда его можно подключать в домашнюю сеть на 220В. Аппарат с большей мощностью самостоятельно сделать сложно.

Электрогенератор из двигателя постоянного тока

В качестве генератора можно использовать малооборотный мотор, генерирующий электрический ток при 400-500 об/мин: PIK8-6/2,5 36V 0,3Nm 1600min-1. Длина корпуса 143 мм, диаметр – 80 мм, диаметр вала – 12 мм.

Как выглядит двигатель постоянного тока

Для него нужен мультипликатор с передаточным отношением 1:12. При одном обороте лопастей ветряка электрогенератор сделает 12 оборотов. На рисунке ниже изображена схема устройства.

Схема устройства ветряка

Редуктор создаёт дополнительную нагрузку, но всё же это меньше, чем для автомобильного генератора или стартера, где требуется передаточное отношение как минимум 1:25.

Лопасти целесообразно изготавливать из алюминиевого листа размером 60х12х2. Если на мотор их установить 6 штук, устройство будет не таким быстрым и не пойдёт вразнос при больших порывах ветра. Следует предусмотреть возможность балансировки. Для этого лопасти припаиваются к втулкам с возможностью накручивания на ротор, чтобы можно было их смещать дальше или ближе от его центра.

Мощность генератора на постоянных магнитах из феррита или стали не превышает 0,5-0,7 киловатт. Увеличить её можно только на специальных неодимовых магнитах.

Генератор с не намагниченным статором для работы не годится. При небольшом ветре он останавливается, а после не сможет самостоятельно запуститься.

Для постоянного отопления в холодное время года требуется много энергии, и протопить большой дом – это проблема. Для дачи в этом плане он может пригодиться, когда туда приходится ездить не чаще 1 раза в неделю. Если всё правильно взвесить, система отопления на даче работает всего несколько часов. Остальное время хозяева находятся на природе. Используя ветряк как источник постоянного тока для зарядки АКБ, за 1-2 недели можно накопить электроэнергии для отопления помещений на такой промежуток времени, и таким образом, создать себе достаточный комфорт.

Чтобы сделать генератор из двигателя переменного тока или автомобильного стартера, требуется их переделка. Мотор можно модернизировать под генератор, если ротор изготовить на неодимовых магнитах, проточив на их толщину. Его делают с количеством полюсов, как и у статора, чередуя друг с другом. Ротор на неодимовых магнитах, приклеенных к его поверхности, при вращении не должен залипать.

Типы роторов

Конструкции роторов отличаются разнообразием. Распространённые варианты изображены на рисунке ниже, где указаны значения коэффициента использования энергии ветра (КИЭВ).

Виды и конструкции роторов ветряков

Для вращения ветряки делают с вертикальной или горизонтальной осью. Вертикальный вариант обладает преимуществом в удобстве обслуживания, когда основные узлы расположены внизу. Опорный подшипник выполнен самоустанавливающимся и долго служит.

Две лопасти ротора «Савониуса» создают рывки, что не очень удобно. По этой причине его делают из двух пар лопастей, разнесённых на 2 уровня с поворотом одной относительно другой на 90 0 . В качестве заготовок можно использовать бочки, вёдра, кастрюли.

Ротор «Дарье», лопасти которого делают из упругой ленты, отличается простотой изготовления. Для облегчения раскрутки их количество должно быть нечётным. Движение происходит рывками, из-за чего механическая часть быстро разбивается. Кроме того, лента при вращении вибрирует, издавая рёв. Для постоянного применения подобная конструкция не очень подходит, хотя лопасти иногда делают из звукопоглощающих материалов.
В ортогональном роторе крылья выполняются профилированными. Оптимальное количество лопастей равно трём. Устройство быстроходное, но его необходимо раскручивать при пуске.

Геликоидный ротор имеет высокий КПД за счёт сложной кривизны лопастей, снижающей потери. Его применяют реже других ветряков из-за высокой стоимости.

Горизонтальный лопастный ротор исполнения является наиболее эффективным. Но он требует наличия стабильного среднего ветра, а также для него необходима ураганная защита. Лопасти можно изготовить из пропилена, когда их диаметр меньше 1 м.

Если вырезать лопасти из толстостенной пластиковой трубы или бочки, достичь мощности выше 200 Вт не удастся. Профиль в виде сегмента для сжимаемой газообразной среды не подходит. Здесь нужен сложный профиль.

Диаметр ротора зависит от того, какую мощность требуется получить, а также от количества лопастей. Двухлопастнику на 10 Вт нужен ротор диаметром 1,16 м, а на 100 Вт – 6,34 м. Для четырёх-, и шестилопастника диаметр составит соответственно 4,5 м и 3,68 м.

Если насадить ротор непосредственно на вал генератора, его подшипник долго не протянет, поскольку нагрузка на все лопасти неравномерная. Опорный подшипник для вала ветряка должен быть самоустанавливающимся, с двумя или тремя ярусами. Тогда для вала ротора будут не страшны изгибы и смещения в процессе вращения.

Большую роль в работе ветряка играет токосъёмник, который требуется регулярно обслуживать: смазывать, чистить, регулировать. Возможность его профилактики должна быть предусмотрена, хотя это сложно сделать.

Безопасность

Ветряки, мощность которых превышает 100 Вт, являются шумными устройствами. Во дворе частного дома можно установить промышленный ветродвигатель, если он сертифицирован. Его высота должна быть выше ближайших домов. На крыше нельзя устанавливать даже маломощный ветряк. Механические колебания от его работы могут создать резонанс и привести к разрушению строения.

Высокие скорости вращения ветрогенератора требуют качественного изготовления. Иначе, при разрушении устройства существует опасность, что его детали могут отлететь на большие расстояния и нанести травму человеку или домашним животным. Особенно это следует учитывать при изготовлении ветряка своими руками из подручных материалов.

Видео. Ветрогенератор своими руками.

Применение ветрогенераторов целесообразно не во всех регионах, поскольку зависит от климатических особенностей. Кроме того, изготавливать их своими руками не имеет смысла без определённого опыта и знаний. Для начала можно взяться за создание простой конструкции мощностью несколько ватт и напряжением до 12 вольт с помощью, которой можно зарядить телефон или зажечь энергосберегающую лампу. Применение неодимовых магнитов в генераторе позволяет значительно увеличить его мощность.

Мощные ветровые установки, берущие на себя значительную часть электроснабжения дома, лучше приобретать промышленные, на создание напряжения 220В, тщательно взвесив при этом все за и против. Если совместить их с другими видами альтернативных источников энергии, электричества может хватить на все хозяйственные нужды, включая систему отопления дома.

Деятельность как отдельных людей, так и всего нынешнего человечества практически невозможна без электроэнергии. К сожалению, быстро увеличивающийся объем потребления нефти и газа, угля и торфа ведет к уменьшению запасов этих ресурсов на планете. Что же возможно сделать, пока все это еще есть у землян? Согласно выводам специалистов, именно развитием энергетических комплексов можно решить проблемы мировых экономических и финансовых кризисов. Поэтому наиболее актуальными становятся поиск и использование бестопливных источников энергии.

Возобновляемая, экологическая, «зеленая»

Возможно, не стоит напоминать, что все новое - это хорошо забытое старое. Силу течения реки и скорость ветра люди научились применять для получения механической энергии очень давно. Солнце нагревает нам воду и двигает автомобили, питает космические корабли. Колеса, установленные в руслах ручьев и небольших рек, подавали воду на поля еще в Средние века. Одна могла обеспечить мукой несколько окрестных деревень.

В настоящий момент нас интересует простой вопрос: как обеспечить свое жилище дешевым светом и теплом, как сделать ветряк своими руками? 5 кВт-ной мощности или чуть менее, главное, чтобы можно было снабдить свое жилище током для работы электроприборов.

Интересно, что в мире существует классификация зданий по уровню ресурсоэффективности:

  • обычные, построенные до 1980-1995 гг.;
  • с низким и ультранизким уровнем энергопотребления - до 45-90 кВч на 1 кВ/м;
  • пассивные и энергонезависимые, получающие ток из возобновляющихся источников (например, установив ветрогенератор роторный (5 кВт) своими руками или систему солнечных панелей, можно решить эту задачу);
  • энергоактивные здания, вырабатывающие электричества больше, чем им требуется, получают деньги, отдавая ее через сеть другим потребителям.

Получается, что собственные, домашние мини-станции, установленные на крышах и во дворах, могут со временем составить своеобразную конкуренцию крупным поставщикам тока. Да и правительства разных стран всячески поощряют создание и активное использование

Как определить рентабельность собственной электростанции

Исследователи доказали, что резервные возможности ветров намного больше всех накопившихся многовековых топливных запасов. Среди способов получения энергии из возобновляемых источников ветрякам отведено особое место, так как их изготовление проще, чем создание солнцеулавливающих панелей. По сути, ветрогенератор на 5 кВт своими руками можно собрать, имея нужные составляющие, среди которых магниты, медная проволока, фанера и металл для лопастей.

Знатоки утверждают, что производительной и, соответственно, выгодной может стать конструкция не только правильной формы, но и построенная в правильном месте. Это значит, что необходимо учитывать наличие, постоянство и даже скорость воздушных потоков в каждом отдельном случае и даже в конкретном регионе. Если в местности периодически наступают штили, спокойные и безветренные дни, устройство мачты с генератором не принесет никакой пользы.

Прежде чем начинать делать ветряк своими руками (5 кВт), необходимо продумать его модель и вид. Не стоит ожидать от слабой конструкции большого выхода энергии. И наоборот, когда нужно запитать только пару лампочек на даче, нет смысла строить огромный ветряк своими руками. 5 кВт - мощность, достаточная для обеспечения электроэнергией практически всей системы освещения и домашних приборов. Будет постоянный ветер - будет и свет.

Как сделать ветрогенератор своими руками: последовательность действий

На выбранном для высокой мачты месте укрепляют сам ветряк с присоединенным к нему генератором. Вырабатываемая энергия по проводам поступает к нужному помещению. Считается, что чем выше конструкция мачты, больше диаметр ветряного колеса и сильнее воздушный поток, тем выше КПД всего устройства. На деле все не совсем так:

  • например, сильный ураган может запросто поломать лопасти;
  • некоторые модели можно установить на крыше обычного дома;
  • правильно выбранная турбина легко запускается и отлично работает даже при ветре с очень слабой скоростью.

Основные виды ветряков

Классическими считаются конструкции с горизонтальным размещением оси вращения ротора. Обычно они имеют 2-3 лопасти и устанавливаются на большой высоте от земли. Наибольшая эффективность такой установки проявляется при постоянного направления и его скорости в 10 м/с. Существенным недостатком этой лопастной конструкции является сбой вращения лопастей при часто меняющемся, порывистом Это приводит либо к непродуктивной работе, либо к разрушению всей установки. Чтобы запустить такой генератор после остановки, необходима принудительная начальная раскрутка лопастей. Кроме того, при активном вращении лопасти издают специфические, неприятные человеческому уху звуки.

Вертикальный ветрогенератор («Волчок» 5 кВт или другой) имеет иное размещение ротора. Н-образными или бочкообразными турбинами захватывается ветер любого направления. Эти конструкции имеют меньшие размеры, запускаются даже при самых слабых воздушных потоках (при 1,5-3 м/с), не требуют высоких мачт, их можно использовать даже в городских условиях. Кроме того, номинальной мощности ветряки, своими руками (5 кВт - это реально) собранные, достигают при ветре в 3-4 м/с.

Паруса не на кораблях, а на суше

Одним из популярных направлений в ветроэнергетике сейчас стало создание горизонтального генератора с мягкими лопастями. Основным отличием является как материал изготовления, так и сама форма: созданные ветряки своими руками (5 кВт, парусный тип) имеют 4-6 треугольных тканевых лопастей. Притом, в отличие от традиционных конструкций, их сечение увеличивается в направлении от центра к периферии. Эта особенность позволяет не только «поймать» слабый ветер, но и избежать потерь при ураганном воздушном потоке.

Плюсами парусников можно назвать следующие показатели:

  • большая мощность при медленном вращении;
  • самостоятельная ориентировка и подстройка под любой ветер;
  • высокая флюгерность и малая инерция;
  • отсутствие необходимости принудительного раскручивания колеса;
  • совершенно беззвучное вращение даже при больших оборотах;
  • отсутствие вибраций и звуковых возмущений;
  • относительная дешевизна конструкции.

Ветряки своими руками

5 кВт необходимой электроэнергии можно получить несколькими способами:

  • построить простейшую роторную конструкцию;
  • собрать комплекс из нескольких последовательно расположенных на одной оси парусных колес;
  • использовать аксильную конструкцию с неодимовыми магнитами.

Важно помнить, что мощность ветряного колеса пропорциональна произведению кубического значения скорости ветра на ометаемую площадь турбины. Итак, как сделать ветрогенератор на 5 кВт? Инструкция далее.

За основу можно взять автомобильную ступицу и тормозные диски. 32 магнита (25 на 8 мм) располагают параллельно по кругу на будущих дисках ротора (подвижной части генератора) на каждый диск по 16 штук, притом плюсы обязательно чередуют с минусами. У противолежащих магнитов должны быть разные значения полюсов. После разметки и размещения все находящееся на круге заливают эпоксидкой.

Катушки медной проволоки располагают на статоре. Их количество должно быть меньше, чем число магнитов, то есть 12. Предварительно все провода выводят и соединяют между собой звездой или треугольником, затем тоже заливают эпоксидным клеем. Рекомендуется перед заливкой вставить внутрь катушек кусочки пластилина. После затвердения смолы и их извлечения останутся отверстия, которые нужны для вентиляции и остывания статора.

Как все это работает

Диски ротора, вращаясь относительно статора, образуют магнитное поле, и в катушках возникает электроток. А ветряк, присоединенный посредством системы шкивов, и нужен для того, чтобы двигать эти части рабочей конструкции. Как сделать ветрогенератор своими руками? Некоторые начинают изготовление собственной электростанции со сборки генератора. Другие - с создания лопастной вращающейся части.

Вал от ветряка сцепляют скользящим соединением с одним из дисков ротора. На сильный подшипник ставится нижний, второй диск с магнитами. Статор располагают посередине. Все части крепятся к фанерному кругу с помощью длинных болтов и фиксируются гайками. Между всеми «блинами» обязательно оставляют минимальные зазоры для свободного вращения дисков ротора. В итоге получается 3-фазный генератор.

«Бочка»

Осталось изготовить ветряки. Своими руками 5 кВт-ную вращающуюся конструкцию можно сделать из 3 кругов фанеры и листа самого тонкого и легкого дюраля. Металлические прямоугольные крылья крепятся к фанере болтиками и уголками. Предварительно в каждой плоскости круга выдалбливаются направляющие канавки в форме волны, в которые вставляются листы. Получившийся двухэтажный ротор имеет 4 волнистых лопасти, прикрепленные друг к другу под прямым углом. То есть между каждыми двумя скрепленными ступицами фанерными блинами расположены по 2 изогнутых в форме волны дюралевых лопасти.

Данная конструкция насажена по центру на стальную шпильку, которая и будет передавать крутящий момент генератору. Ветряки, своими руками (5 кВт) созданные, такой конструкции весят примерно 16-18 кг при высоте 160-170 см и диаметре основы 80-90 см.

Что нужно учесть

Ветряк-«бочку» можно установить даже на крыше здания, хотя вполне достаточно вышки высотой 3-4 метра. Однако обязательно нужно защитить от природных осадков корпус генератора. Рекомендуется также установить аккумуляторный накопитель энергии.

Для получения из постоянного 3-фазного тока переменного обязательно в схему нужно включить и преобразователь.

При достаточном количестве ветреных дней в регионе ветряк, своими руками (5 кВт) собранный, может обеспечить током не только телевизор и лампочки, но и систему видеонаблюдения, кондиционер, холодильник и другую электротехнику.

Нами была разработана конструкция ветрогенератора с вертикальной осью вращения. Ниже, представлено подробное руководство по его изготовлению, внимательно прочтя которое, вы сможете сделать вертикальный ветрогенератор сами.

Ветрогенератор получился вполне надежный, с низкой стоимостью обслуживания, недорогой и простой в изготовлении. Представленный ниже список деталей соблюдать не обязательно, вы можете внести какие-то свои коррективы, что-то улучшить, что-то использовать свое, т.к. не везде можно найти именно то, что в списке. Мы постарались использовать недорогие и качественные детали.

Используемые материалы и оборудование:

Наименование Кол-во Примечание
Список используемых деталей и материалов для ротора:
Предварительно вырезанный лист металла 1 Вырезан из стали толщиной 1/4" при помощи гидроабразивной, лазерной и др. резке
Ступица от авто (Хаб) 1 Должна содержать 4 отверстия, диаметр около 4 дюймов
2" x 1" x 1/2" неодимовый магнит 26 Очень хрупкие, лучше заказать дополнительно
1/2"-13tpi x 3" шпилька 1 TPI - кол-во витков резьбы на дюйм
1/2" гайка 16
1/2" шайба 16
1/2" гровер 16
1/2".-13tpi колпачковая гайка 16
1" шайба 4 Для того, чтобы выдержать зазор между роторами
Список используемых деталей и материалов для турбины:
3" x 60" Оцинкованная труба 6
ABS пластик 3/8" (1.2x1.2м) 1
Магниты для балансировки Если нужны Если лопасти не сбалансированы, то магниты прикрепляются для балансировки
1/4" винт 48
1/4" шайба 48
1/4" гровер 48
1/4" гайка 48
2" x 5/8" уголки 24
1" уголки 12 (опционально) В случае, если лопасти не держат форму, то можно добавить доп. уголки
винты, гайки, шайбы и гроверы для 1" уголка 12 (опционально)
Список используемых деталей и материалов для статора:
Эпоксидка с затвердителем 2 л
1/4" винт нерж. 3
1/4" шайба нерж. 3
1/4" гайка нерж. 3
1/4" кольцевой наконечник 3 Для эл. соединения
1/2"-13tpi x 3" шпилька нерж. 1 Нерж. сталь не является ферромагнетиком, поэтому не будет "тормозить" ротор
1/2" гайка 6
Стеклоткань Если нужна
0.51мм эмал. провод 24AWG
Список используемых деталей и материалов для монтажа:
1/4" x 3/4" болт 6
1-1/4" фланец трубы 1
1-1/4" оцинк. труба L-18" 1
Инструменты и оборудование:
1/2"-13tpi x 36" шпилька 2 Используется для поддомкрачивания
1/2" болт 8
Анемометр Если нужен
1" лист алюминия 1 Для изготовления проставок, если понадобятся
Зеленая краска 1 Для покраски держателей пластика. Цвет не принципиален
Голубая краска бал. 1 Для покраски ротора и др. частей. Цвет не принципиален
Мультиметр 1
Паяльник и припой 1
Дрель 1
Ножовка 1
Керн 1
Маска 1
Защитные очки 1
Перчатки 1

Ветрогенераторы с вертикальной осью вращения не настолько эффективны, как их горизонтальные собратья, однако вертикальные ветрогенераторы менее требовательны к месту их установки.

Изготовление турбины

1. Соединяющий элемент - предназначен для соединения ротора к лопастям ветрогенератора.
2. Схема расположения лопастей - два встречных равносторонних треугольника. По данному чертежу потом легче будет расположить уголки крепления лопастей.

Если не уверены в чем то, шаблоны из картона помогут избежать ошибок и дальнейших переделываний.

Последовательность действий изготовления турбины:

  1. Изготовление нижней и верхней опор (оснований) лопастей. Разметьте и при помощи лобзика вырежьте из ABS пластика окружность. Затем обведите ее и вырежьте вторую опору. Должны получиться две абсолютно одинаковые окружности.
  2. В центре одной опоры вырежьте отверстие диаметром 30 см. Это будет верхняя опора лопастей.
  3. Возьмите хаб (ступица от авто) и разметьте и просверлите четыре отверстия на нижней опоре для крепления хаба.
  4. Сделайте шаблон расположения лопастей (рис. выше) и разметьте на нижней опоре места крепления уголков, которые будут соединять опору и лопасти.
  5. Сложите лопасти в стопку, прочно свяжите их и обрежьте до требуемой длины. В данной конструкции лопасти длиной 116 см. Чем длинее лопасти, тем больше энергии ветра они получают, но обратной стороной является нестабильность в сильный ветер.
  6. Разметьте лопасти для крепления уголков. Накерните, а затем просверлите отверстия в них.
  7. Используя шаблон расположения лопастей, который представлен на рисунке выше, прикрепите лопасти к опоре при помощи уголков.

Изготовление ротора

Последовательность действий по изготовлению ротора:

  1. Положите два основания ротора друг на друга, совместите отверстия и напильником или маркером сделайте небольшую метку по бокам. В дальнейшем, это поможет правильно сориентировать их относительно друг-друга.
  2. Сделайте два бумажных шаблона расположения магнитов и приклейте их на основания.
  3. Промаркируйте полярность всех магнитов при помощи маркера. В качестве "тестера полярности" можно использовать небольшой магнит, обмотанный тряпкой или изолентой. Проводя его над большим магнитом, будет хорошо видно, отталкивается он или притягивается.
  4. Приготовьте эпоксидную смолу (добавив в нее отвердитель). И равномерно нанесите ее снизу магнита.
  5. Очень аккуратно поднесите магнит к краю основания ротора и переместите его к своей позиции. Если магнит устанавливать сверху ротора, то большая мощность магнита может его резко примагнитить и он может поломаться. И никогда не суйте свои пальцы и другие части тела между двумя магнитами или магнитом и железом. Неодимовые магниты очень мощные!
  6. Продолжайте приклеивать магниты к ротору (не забудьте смазывать эпоксидкой), чередую их полюса. Если магниты сьезжают под действием магнитной силы, то воспользуйтесь куском дерева, располагая его между ними для страховки.
  7. После того, как один ротор закончили, переходите к второму. Используя ранее поставленную метку, расположите магниты точно напротив первого ротора, но в другой полярности.
  8. Положите роторы подальше друг от друга (чтобы они не примагнитились, иначе потом не отдерете).

Изготовление статора очень трудоемкий процесс. Можно конечно купить готовый статор (попробуй еще найти их у нас) или генератор, но не факт, что они подойдут для конкретного ветряка со своими индивидуальными характеристиками

Статор ветрогенератора - электрический компонент, состоящий из 9-ти катушек. Катушка статора изображена на фото выше. Катушки разделены на 3 группы, по 3 катушки в каждой группе. Каждая катушка намотана проводом 24AWG (0.51мм) и содержит в себе 320 витков. Большее количество витков, но более тонким проводом даст более высокое напряжение, но меньший ток. Поэтому, параметры катушек могут быть изменены, в зависимости от того, какое напряжение вам требуется на выходе ветрогенератора. Нижеследующая таблица поможет вам определиться:
320 витков, 0.51 мм (24AWG) = 100В @ 120 об/мин.
160 витков, 0.0508 мм (16AWG) = 48В @ 140 об/мин.
60 витков, 0.0571 мм (15AWG) = 24В @ 120 об/мин.

Вручную наматывать катушки - это скучное и трудное занятие. Поэтому, чтобы облегчить процесс намотки я бы вам посоветовал сделать простое приспособление - намоточный станок. Тем более, что конструкция его достаточно проста и сделать его можно из подручных материалов.

Витки всех катушек должны быть намотаны одинаково, в одном и том же направлении и обращайте внимание или отмечайте, где начало, а где конец катушки. Для предотвращения разматывания катушек, они обмотаны изолентой и промазаны эпоксидкой.

Приспособа сделана из двух кусков фанеры, изогнутой шпильки, куска ПВХ-трубы и гвоздей. Перед тем, как изогнуть шпильку, нагрейте ее горелкой.

Небольшой кусок трубы между дощечками обеспечивает заданную толщину, а четыря гвоздя обеспечивают необходимые размеры катушек.

Вы можете придумать свою конструкцию намоточного станка, а может у вас уже имеется готовый.
После того, как все катушки намотаны их необходимо проверить на идентичность друг к другу. Это можно сделать при помощи весов, а также нужно померить сопротивления катушек мультиметром.

Не подключайте домашних потребителей напрямую от ветрогенератора! Также соблюдайте меры безопасности при обращении с электричеством!

Процесс соединения катушек:

  1. Зачистите шкуркой концы выводов каждой катушки.
  2. Соедините катушки, как показано на рисунке выше. Должно получиться 3 группы, по 3 катушки в каждой группе. При такой схеме соединений получится трехфазный переменный ток. Концы катушек припаяйте, либо воспользуйтесь зажимами.
  3. Выберите одну из следующих конфигураций:
    А. Конфигурация "звезда ". Для того, чтобы получить большое напряжение на выходе, соедините выводы X,Y и Z между собой.
    B. Конфигурация "треугольник". Для того, чтобы получить большой ток, соедините X с B, Y с C, Z с A.
    C. Для того, чтобы в будущем сделать возможность изменять конфигурацию, нарастите все шесть проводников и выведите их наружу.
  4. На большом листе бумаге нарисуйте схему расположения и подключения катушек. Все катушки должны быть равномерно распределены и соответствовать расположению магнитов ротора.
  5. Прикрепите катушки при помощи скотча к бумаге. Приготовьте эпоксидную смолу с отвердителем для заливки статора.
  6. Для нанесения эпоксидки на стеклоткань используйте малярную кисть. Если необходимо, то добавьте небольшие кусочки стеклоткани. Центр катушек не заполняйте, чтобы обеспечить их достаточное охлаждение при работе. Постарайтесь избегать образования пузырьков. Целью данной операции является закрепление катушек на своих местах и придание плоской формы статору, который будет располагаться между двумя роторами. Статор не будет нагруженным узлом и не будет вращаться.

Для того, чтобы стало более понятно, рассмотрим весь процесс в картинках:

Готовые катушки помещаются на вощеную бумагу с начерченной схемой расположения. Три небольших круга по углам на фото выше - места отверстий для крепления кронштейна статора. Кольцо в центре предотвращает попадание эпоксидки в центральную окружность.

Катушки закреплены на своих местах. Стеклоткань, небольшими кусочками помещается вокруг катушек. Выводы катушек можно вывести внутрь или наружу статора. Не забудьте оставить достаточный запас длины выводов. Обязательно еще раз проверьте все соединения и прозвоните мультиметром.

Статор практически готов. Отверстия для крепления кронштейна, сверлятся в статоре. При сверлении отверстий смотрите не попадите в выводы катушек. После завершения операции, обрежьте лишнюю стеклоткань и если необходимо, шкуркой зачистите поверхность статора.

Кронштейн статора

Труба для крепления оси хаба была обрезана под нужный размер. В ней были просверлены отверстия и нарезана резьба. В дальнейшем в них будут вкручены болты, которые будут удерживать ось.

На рисунке выше показан кронштейн, к которому будет крепиться статор, находящийся между двумя роторами.

На фото выше показана шпилька с гайками и втулкой. Четыре таких шпильки обеспечивают необходимый зазор между роторами. Вместо втулки можно использовать гайки большего размера, либо самому вырезать шайбы из алюминия.

Генератор. Окончательная сборка

Небольшое уточнение: малый воздушный зазор между связкой ротор-статор-ротор (который задается шпилькой с втулкой), обеспечивает более высокую отдаваемую мощность, но возрастает риск повреждения статора или ротора при перекосе оси, который может возникнуть при сильном ветре.

На левом рисунке ниже, показан ротор с 4-мя шпильками для обеспечения зазора и двумя алюминиевыми пластинами (которые в дальнейшем будут убраны).
На правом рисунке показан собранный и покрашенный в зеленый цвет статор, установленный на место.

Процесс сборки:
1. В плите верхнего ротора просверлите 4 отверстия и нарежьте в них резьбу для шпильки. Это необходимо для плавного опускания ротора на свое место. Уприте 4 шпильки в алюминиевые пластины приклеенные ранее и установите на шпильки верхний ротор.
Роторы будут притягиваться друг к другу с очень большой силой, поэтому и нужно такое приспособление. Сразу выровняйте роторы относительно друг-друга по поставленным ранее метках на торцах.
2-4. Поочередно вращая ключом шпильки, равномерно опускайте ротор.
5. После того, как ротор уперся в втулку (обеспечивающая зазор), выкрутите шпильки и уберите алюминиевые пластины.
6. Установите хаб (ступицу) и прикрутите его.

Генератор готов!

После установки шпилек (1) и фланца (2) ваш генератор должен выглядеть приблизительно так (см. рис. выше)

Болты из нержавейки служат для обеспечения электрического контакта. На провода удобно использовать кольцевые наконечники.

Колпачковые гайки и шайбы служат для крепления соедин. платы и опоры лопастей к генератору. Итак, ветрогенератор полностью собран и готов к тестам.

Для начала, лучше всего рукой раскручивать ветряк и измерять параметры. Если все три выходные клеммы закоротить между собой, то ветряк должен вращаться очень туго. Это может быть использовано для остановки ветрогенератора для сервисного обслуживания или в целях безопасности.

Ветрогенератор можно использовать не только для обеспечения дома электричеством. К примеру данный экземпляр, сделан так, чтобы статор вырабатывал большое напряжение, которое затем используется для нагрева.
Рассматриваемый выше генератор выдает 3-х фазное напряжение с различной частотой (зависит от силы ветра), а к примеру в России используется однофазная сеть 220-230В, с фиксированной частотой сети 50 Гц. Это отнюдь не означает, что данный генератор не подойдет для питания бытовых приборов. Переменный ток с данного генератора может быть преобразован в постоянный ток, с фиксированным напряжением. А постоянный ток уже может использоваться для питания светильников, нагрева воды, заряда аккумуляторов, а может быть поставлен преобразователь для преобразования постоянного тока в переменный. Но это уже выходит за рамки данной статьи.

На рисунке выше простая схема мостового выпрямителя, состоящего из 6-ти диодов. Он преобразовывает переменный ток в постоянный.

Место установки ветрогенератора

Ветрогенератор, описываемый здесь, установлен на 4-х метровой опоре на краю горы. Трубный фланец, который установлен снизу генератора обеспечивает легкую и быструю установку ветрогенератора - достаточно прикрутить 4 болта. Хотя для надежности, лучше приварить.

Обычно, горизонтальные ветрогенераторы "любят" когда ветер дует с одного направления, в отличии от вертикальных ветряков, где за счет флюгера, они могут поворачиваться и им не важно направление ветра. Т.к. данный ветряк установлен на берегу скалы, то ветер там создает турбулентные потоки с разных направлений, что не очень эффективно для данной конструкции.

Другим фактором, который необходимо учитывать при подборе места размещения, является сила ветра. Архив данных по силе ветра для вашей местности можно найти в интернете, правда это будет очень приблизительно, т.к. все зависит от конкретного места.
Также, в выборе месторасположения установки ветрогенератора поможет анемометр (прибор для измерения силы ветра).

Немного о механике ветрогенератора

Как известно, ветер возникает из-за разности температур поверхности земли. Когда ветер вращает турбины ветрогенератора, он создает три силы: подьемную, торможения и импульсную. Подьемная сила обычно возникает над выпуклой поверхностью и является следствием разности давлений. Сила торможения ветра возникает за лопастями ветрогенератора, она является нежелательной и тормозит ветряк. Импульсная сила возникает из-за изогнутой формы лопастей. Когда молекулы воздуха толкают лопасти сзади, то им некуда потом деваться и они собираются позади них. В результате, они толкают лопасти в направлении ветра. Чем больше подьемная и импульсная силы и меньше сила торможения, тем быстрее лопасти будет вращаться. Соответственно вращается ротор, который создает магнитное поле на статоре. В результате чего вырабатывается электрическая энергия.

Скачать схему расположения магнитов.

 
Статьи по теме:
Желчегонные препараты - классификация, показания, особенности применения, отзывы, цены
Спасибо Сайт предоставляет справочную информацию исключительно для ознакомления. Диагностику и лечение заболеваний нужно проходить под наблюдением специалиста. У всех препаратов имеются противопоказания. Консультация специалиста обязательна! В настоящ
Энергообеспечение мышечной деятельности
Рубрика "Биохимия". Аэробные и анаэробные факторы спортивной работоспособности. Биоэнергетические критерии физической работоспособности. Биохимические показатели уровня развития аэробной и анаэробных составляющих спортивной работоспособности. Соотношение
Кислотно-основной гомеостаз
1. Хромопротеины, их строение, биологическая роль. Основные представители хромопротеинов. 2. Аэробное окисление у, схема процесса. Образование пвк из глю, последовательность р-ий. Челночный механизм транспорта водорода. 4. Индикан мочи,значение исследов
Святой апостол андрей первозванный (†ок
Святой апостол Андрей Первозванный был родом из города Вифсаида, который располагался на берегу Галилейского моря. Его отца звали Иона, и он занимался рыбной ловлей. Этим он кормил семью. Повзрослевшие сыновья Симон и Андрей присоединились к отцу и тоже с