Диффузия в газах, жидкостях и твердых телах

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Диффузия играет огромную роль в природе, в быту человека и в технике . Диффузионные процессы могут оказывать как положительное, так и отрицательное влияние на жизнедеятельность человека и животных. Примером положительного воздействия является поддержание однородного состава атмосферного воздуха вблизи поверхности Земли. Диффузия играет важную роль в различных областях науки и техники, в процессах, происходящих в живой и неживой природе. Она оказывает влияние на течение химических реакций.

С участием диффузии или при нарушении и изменении этого процесса могут протекать отрицательные явления в природе и жизни человека, такие как обширное загрязнение окружающей среды продуктами технического прогресса человека.

Актуальность: Диффузия доказывает, что тела состоят из молекул, которые находятся в беспорядочном движении; диффузия имеет большое значение в жизни человека, животных и растений, а также в технике.

Цель:

    доказать, что диффузия зависит от температуры;

    рассмотреть примеры диффузии в домашних опытах;

    убедиться, что диффузия в разных веществах происходит по-разному.

    Рассмотреть тепловую диффузию веществ.

Задачи исследования:

    Изучить научную литературу по теме «Диффузия».

    Доказать зависимость скорости диффузии от рода вещества, температуры.

    Изучить влияние явления диффузии на окружающую среду и человека.

    Описать и спроектировать наиболее интересные опыты по диффузии.

Методы исследования:

    Анализ литературы и материалов интернета.

    Проведение опытов по изучению зависимости диффузии от рода вещества и температуры.

    Анализ результатов.

Предмет исследования: явление диффузии, зависимость протекания диффузии от различных факторов, проявление диффузии в природе, технике, быту.

Гипотеза: диффузия имеет большое значение для человека и природы.

1.Теоретическая часть

1.1.Что такое диффузия

Диффузия - это самопроизвольное перемешивание соприкасающихся веществ, происходящее вследствие хаотического (беспорядочного) движения молекул.

Еще одно определение: диффузия (лат. diffusio — распространение, растекание, рассеивание) — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией .

Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной).

Диффузия происходит в жидкостях, твердых телах и газах. Наиболее быстро диффузия происходит в газах, медленнее в жидкостях, ещё медленнее в твёрдых телах, что обусловлено характером теплового движения частиц в этих средах. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения. Столетиями рабочие сваривали металлы и получали сталь нагреванием твердого железа в атмосфере углерода, не имея ни малейшего представления о происходящих при этом диффузионных процессах. Лишь в 1896г. началось изучение проблемы.

Диффузия молекул протекает очень медленно. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным.

1.2. Роль диффузии в природе

С помощью диффузии происходит распространение различных газообразных веществ в воздухе: например, дым костра распространяется на большие расстояния . Если посмотреть на дымовые трубы предприятий и выхлопные трубы автомобилей, во многих случаях вблизи труб виден дым. А потом он куда-то исчезает. Дым растворяется в воздухе за счет диффузии. Если же дым плотный, то его шлейф тянется довольно далеко.

Результатом диффузии может быть выравнивание температуры в помещении при проветривании. Таким же образом происходит загрязнение воздуха вредными продуктами промышленного производства и выхлопными газами автомобилей. Природный горючий газ, которым мы пользуемся дома, не имеет ни цвета, ни запаха. При утечке заметить его невозможно, поэтому на распределительных станциях газ смешивают с особым веществом, обладающим резким, неприятным запахом, который легко ощущается человеком даже при весьма малой его концентрации . Такая мера предосторожности позволяет быстро заметить накопление газа в помещении, если образовалась утечка (рис 1).

Благодаря явлению диффузии нижний слой атмосферы - тропосфера - состоит из смеси газов: азота, кислорода, углекислого газа и паров воды . При отсутствии диффузии произошло бы расслоение под действием силы тяжести: внизу оказался бы слой тяжёлого углекислого газа, над ним - кислород, выше - азот, инертные газы (рис 2).

В небе мы тоже наблюдаем это явление. Рассеивающиеся облака - тоже пример диффузии и как точно об этом сказано у Ф.Тютчева: «В небе тают облака…» (рис 3)

На принципе диффузии основано перемешивание пресной волы с солёной при впадении рек в моря. Диффузия растворов различных солей в почве способствует нормальному питанию растений.

Диффузия играет большую роль в жизни растений и животных. Муравьи помечают свой путь капельками пахучей жидкости и узнают дорогу домой (рис 4)

Благодаря диффузии, насекомые находят себе пищу. Бабочки, порхая меж растений, всегда находят дорогу к красивому цветку. Пчёлы, обнаружив сладкий объект, штурмуют его своим роем. А растение растет, цветет для них тоже благодаря диффузии. Ведь мы говорим, что растение дышит и выдыхает воздух, пьёт воду, получает из почвы различные микродобавки .

Плотоядные животные находят своих жертв тоже благодаря диффузии. Акулы чувствуют запах крови на расстоянии нескольких километров, также как и рыбы пираньи (рис 5).

Большую роль играют диффузионные процессы в снабжении кислородом природных водоёмов и аквариумов. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели её обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума (рис 6).

Уже было отмечено, что есть много общего в значении явления диффузии для жизнедеятельности растений и животных. Прежде всего, следует отметить роль диффузионного обмена через поверхность растений в выполнении функции дыхания. Для деревьев, например, наблюдается особенно большое развитие поверхности(листовая крона), так как диффузионный обмен сквозь поверхность листьев выполняет функцию дыхания. К.А. Тимирязев говорил: «Будем ли мы говорить о питании корня за счёт веществ, находящихся в почве, будем ли говорить о воздушном питании листьев за счет атмосферы или питании одного органа за счёт другого, соседнего, - везде для объяснения мы будем прибегать к тем же причинам: диффузия» (рис 7).

Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови - в ткани.

В научной литературе я изучила процесс односторонней диффузии - осмос, т.е. диффузия веществ через полупроницаемые мембраны. Процесс осмоса отличается от свободной диффузии тем, что на границе двух соприкасающихся жидкостей расположено препятствие в виде перегородки (мембраны), которая проницаема только для растворителя и вовсе не проницаема для молекул растворенного вещества (рис 8).

В почвенных растворах содержатся минеральные соли и органические соединения. Вода из почвы попадает в растение путем осмоса через полупроницаемые мембраны корневых волосков. Концентрация воды в почве оказывается выше, чем внутри корневых волосков, поэтому вода проникает в зерно и дает жизнь растению.

1.3. Роль диффузии в быту и технике

Диффузия используется во многих технологических процессах: засолка, получение сахара (стружка сахарной свёклы промывается водой, молекулы сахара диффундируют из стружки в раствор), варка варенья, окрашивание тканей, стирка вещей, цементация, сварка и пайка металлов, в том числе диффузионная сварка в вакууме (свариваются металлы, которые другими методами соединить невозможно, - сталь с чугуном, серебро с нержавеющей сталью и т.д.) и диффузионная металлизация изделий(поверхностное насыщение стальных изделий алюминием, хромом, кремнием), азотирование - насыщение поверхности стали азотом (сталь становится твёрдой, износоустойчивой), цементация - насыщение стальных изделий углеродом, цианирование -насыщение поверхности стали углеродом и азотом .

Распространение запахов в воздухе - наиболее часто встречающийся пример диффузии в газах. Почему же запах распространяется не мгновенно, а спустя некоторое время? Дело в том, что во время движения в определенном направлении молекулы пахучего вещества сталкиваются с молекулами воздуха. Траектория движения каждой частицы газа представляет собой ломаную линию, т.к. при столкновениях частицы меняют направление и скорость своего движения.

2. Практическая часть

Как много удивительного и интересного происходит вокруг нас! Многое хочется узнать, попытаться объяснить самостоятельно. Именно для этого я решила провести ряд экспериментов, в ходе которых попыталась выяснить, действительно ли теория диффузии справедлива, находит ли она свое подтверждение на практике. Любую теорию можно считать достоверной лишь в том случае, если она многократно подтверждается экспериментально.

Опыт №1 Наблюдение явления диффузии в жидкостях

Цель : изучить диффузию в жидкости. Пронаблюдать растворение кусочков перманганата калия в воде, при неизменной температуре (при t = 20°С)

Приборы и материалы :стакан с водой, термометр, перманганат калия.

Я взяла кусочек перманганата калия и два стакана с чистой водой при температуре 20 °С. Положила в стаканы кусочки перманганата калия и начала наблюдать за происходящим. Через 1 минуту вода в стаканах начинает окрашиваться.

Вода является хорошим растворителем. Под действием молекул воды происходит разрушение связей между молекулами твердых веществ марганцовки.

В первом стакане я не перемешивала раствор, а во втором перемешала. Перемешивая воду (взбалтывая), я убедилась, что процесс диффузии происходит гораздо быстрее (2 минуты)

Цвет воды в первом стакане становится более интенсивным по истечении времени. Молекулы воды проникают между молекулами перманганата калия, нарушая силы притяжения. Одновременно с силами притяжения между молекулами начинают действовать силы отталкивания и, как следствие, происходит разрушение кристаллической решетки твердого вещества. Процесс растворения марганцовки закончился. Время прохождения эксперимента 3 часа 15 минут. Вода полностью окрасилась в малиновый цвет (рис 9-12).

Можно сделать вывод, что явление диффузии в жидкости - это длительный процесс, в результате которого происходит растворение твердых тел.

Я захотела выяснить, от чего еще зависит скорость протекания диффузии.

Опыт №2 Изучение зависимости скорости протекания диффузии от температуры

Цель: изучить, как температура воды влияет на скорость протекания диффузии.

Приборы и материалы: термометры - 1 шт, секундомер - 1 шт, стаканы - 4 шт, чай, перманганат калия.

(опыт приготовления чая при начальной температуре 20°С и при температуре 100° С в двух стаканах).

Взяли два стакана с водой при t=20 °С и t=100 °С. На рисунках показано протекание эксперимента через определенное время от начала: в начале эксперимента - рис.1, через 30 с. - рис.2, через 1 мин. - рис.3, через 2 мин. - рис.4, через 5 мин. - рис 5, через 15 мин. - рис.6. Из этого опыта можно сделать вывод о том, что на скорость протекания диффузии влияет температура: чем больше температура, тем выше скорость протекания диффузии (рис 13-17).

Те же результаты я получила, когда вместо чая взяла 2 стакана с водой. В одном из них была вода комнатной температуры, во втором кипяток.

Я опустила в каждый стакан одинаковое количество перманганата калия. В том стакане, где температура воды была выше, процесс диффузии протекал значительно быстрее (рис.18-23.)

Следовательно скорость диффузии зависит от температуры - чем выше температура, тем интенсивнее происходит диффузия.

Опыт № 3 Наблюдение диффузии с применением химических реактивов

Цель: Наблюдение явления диффузии на расстоянии.

Оборудование: вата, нашатырный спирт, фенолфталеин, пробирка.

Описание опыта: Нальём в пробирку нашатырный спирт. Смочим кусочек ваты фенолфталеином и положим сверху в пробирку. Через некоторое время наблюдаем окрашивание ватки (рис 24-26).

Нашатырный спирт испаряется; молекулы нашатырного спирта проникли к ватке, смоченной фенолфталеином, и та окрасилась, хотя ватка в соприкосновение со спиртом не приводилась. Молекулы спирта перемешались с молекулами воздуха и достигли ватки. Данный опыт демонстрирует явление диффузии на расстоянии.

Опыт №4. Наблюдение явления диффузии в газах

Цель: изучение изменения диффузии газа в воздухе в зависимости от изменения температуры в помещении.

Приборы и материалы : секундомер, духи, термометр

Описание опыта и полученные результаты :я исследовала время распространения запаха духов в кабинете V=120м 3 при температуре t = +20 0 . Засекалось время от начала распространения запаха в комнате, до получения явной чувствительности у людей, стоящих на расстоянии 10 м. от исследуемого объекта (духи). (рис 27-29)

Опыт №5 Растворения кусочков гуаши в воде, при неизменной температуре

Цель:

Приборы и материалы: три стакана, вода, гуашь трех цветов.

Описание опыта и полученные результаты:

Взяли три стакана, набрали воды t =25 0 С, бросили одинаковые кусочки гуаши в стаканы.

Начали наблюдать за растворением гуаши.

Фотографии сделаны через 1 минуту, 5 минут, 10 минут, 20 минут, растворение закончилось через 4 часа 19 минут (рис 30-34)

Опыт №6 Наблюдение явления диффузии в твердых телах

Цель: наблюдение диффузии в твердых телах.

Приборы и материалы: яблоко, картофель, морковь, раствор «зеленки», пипетка.

Описание опыта и полученные результаты:

Разрезаем яблоко, морковь, картофель «капаем зеленкой» на одну из половинок.

Наблюдаем, как пятно расплывается по поверхности

Разрезаем по месту соприкосновения с зеленкой, чтобы посмотреть насколько глубоко она проникла внутрь (рис 35-37)

Как провести опыт, чтобы подтвердить гипотезу о возможности протекания диффузии в твердых телах? Возможно ли перемешивание веществ в таком агрегатном состоянии? Скорей всего, ответ «Да». Но наблюдать диффузию в твердых телах (очень вязких) удобно с использованием густых гелей. Таким является плотный раствор желатина. Его можно приготовить следующим образом: 4-5 г сухого пищевого желатина растворить в холодной воде. Желатин сначала должен несколько часов набухать, а затем его полностью растворяют при помешивании в воде объемом 100 мл, опустив в сосуд с горячей водой. После охлаждения получается 4-5 % раствор желатина.

Опыт № 7 Наблюдение диффузии с применением густых гелей

Цель: Наблюдение явления диффузии в твердых телах (с применением густого раствора желатина).

Оборудование: 4%-ный раствор желатина, пробирка, небольшой кристаллик марганцовки, пинцет.

Описание и результат опыта: Раствор желатина поместить в пробирку, в центр пробирки быстро, одним движением ввести пинцетом кристаллик марганцовки.

Кристаллик марганцовки в начале опыта

Расположение кристаллика в пузырьке с раствором желатина через 1,5 часа

Уже через несколько минут вокруг кристаллика начнет расти окрашенный в фиолетовый шарик, со временем он становится все больше и больше. Это означает, что вещество кристаллика распространяется во всех направлениях с одинаковой скоростью (рис 38-39)

В твердых телах диффузия происходит, но значительно медленнее чем, в жидкостях и газах.

Опыт № 8 Разница температур в жидкости - тепловая диффузия

Цель: Наблюдение явления тепловой диффузии.

Оборудование: 4 одинаковых стеклянных сосуда, 2 цвета краски, горячая и холодная вода, 2 пластиковые карточки.

Описание и результат опыта:

1. Добавляем немного красной краски в сосуд 1 и 2, синюю краску в сосуды 3 и 4.

2. Наливаем горячую воду в сосуды 1 и 2.

3. Наливаем холодную воду в сосуды 3 и 4.

4. Сосуд 1 накрываем пластиковой картой, переворачиваем вниз горлышком и ставим на сосуд 4.

5. Сосуд 3 накрываем пластиковой картой, переворачиваем вниз горлышком и ставим на сосуд 2.

6. Удаляем обе карты.

Этот опыт демонстрирует эффект тепловой диффузии. В первом случае горячая вода оказывается поверх холодной и диффузия не происходит до тех пор, пока температуры не сравняются. А во втором случае наоборот, внизу горячая, а вверху холодная. И во втором случае молекулы горячей вода начинают стремиться вверх, а молекулы холодной - вниз (рис 41-44).

Заключение

В ходе данной исследовательской работы можно сделать вывод о том, что диффузия играет огромную роль в жизни человека и животных.

В ходе данной исследовательской работы можно сделать вывод о том, что продолжительность диффузии зависит от температуры: чем выше температура, тем быстрее протекает диффузия.

Я изучила явление диффузии на примере различных веществ.

Скорость протекания зависит от рода вещества: в газах она протекает быстрее, чем в жидкостях; в твердых телах диффузия протекает значительно медленнее.Это утверждение можно объяснить так: молекулы газов свободны, находятся на расстояниях много больше размеров молекул, двигаются с большими скоростями. Молекулы жидкостей расположены также беспорядочно, как и в газах, но значительно плотнее. Каждая молекула, находясь в окружении соседних молекул, медленно перемещается внутри жидкости. Молекулы твердых веществ совершают колебания около положения равновесия.

Существует тепловая диффузия.

Список используемой литературы

    Генденштейн, Л.Э. Физика. 7 класс. Часть 1 / Л.Э. Генденштейн, А.Б, Кайдалов. - М: Мнемозина, 2009.-255 с.;

    Кириллова, И.Г. Книга для чтения по физике для учащихся 7 классов средней школы / И.Г. Кириллова.- М.,1986.-207 с.;

    Ольгин, О. Опыты без взрывов / О. Ольгин.- М.: Химик, 1986.-192 с.;

    Перышкин, А.В. Учебник по физике 7 класс / А.В. Перышкин.- М., 2010.-189 с.;

    Разумовский, В.Г. Творческие задачи по физике / В.Г. Разумовский.- М.,1966.-159 с.;

    Рыженков, А.П. Физика. Человек. Окружающая среда: Приложение к учебнику физики для 7-го класса общеобразовательных учреждений / А.П. Рыженков.- М.,1996.- 120 с.;

    Чуянов, В.А. Энциклопедический словарь юного физика / В.А. Чуянов.- М., 1984.- 352 с.;

    Шабловский, В. Занимательная физика / В. Шабловский. С.-П., Тригон, 1997.-416 с.

Приложение

рисунок 1

рисунок 2

рисунок 3

рисунок 4

рисунок 5

рисунок 6

рисунок 7

Частицы растворителя (синие) способны пересекать мембрану,

частицы растворённого вещества (красные) — нет.

рисунок 8

рисунок 9

рисунок 10

рисунок 11

рисунок 12

рисунок 13

рисунок 14

рисунок 15

рисунок 16

рисунок 17

рисунок 18

рисунок 19

рисунок 20

рисунок 21

рисунок 22

рисунок 23

рисунок 24

рисунок 25

рисунок 26

рисунок 27

рисунок 28

рисунок 29

рисунок 30

рисунок 31

рисунок 32

рисунок 33

рисунок 34

рисунок 35

рисунок 36

Многочисленные опыты показывают, что молекулы всех тел непрерывно движутся. Рассмотрим один из них.

В стеклянный сосуд наливают водный раствор медного купороса. Этот раствор имеет темно-голубой цвет, он тяжелее воды. Поверх раствора в сосуд очень осторожно, чтобы не смешать жидкости, наливают чистую воду. В начале опыта видна резкая граница раздела между водой и раствором медного купороса.

Сосуд оставляют в покое и продолжают наблюдать за границей раздела жидкостей. Через несколько дней обнаруживают, что граница раздела расплылась. Недели через две граница, отделявшая одну жидкость от другой, исчезает, в сосуде образуется однородная жидкость бледно-голубого цвета (см. цветную вклейку I, внизу ). Значит, жидкости перемешались.

Явление, при котором вещества сами собой смешиваются друг с другом, называют диффузией.

Это явление объясняют так (рис. 16). Сначала обмениваются местами вследствие своего движения отдельные молекулы воды и медного купороса, находящиеся около границы раздела этих жидкостей . Граница становится расплывчатой, так как молекулы медного купороса попадают в нижний слой воды и, наоборот, молекулы воды попадают в верхний слой раствора медного купороса. Затем часть этих молекул обменивается местами с молекулами, лежащими в следующих слоях. Граница раздела жидкостей становится еще более расплывчатой. Так как молекулы движутся непрерывно и беспорядочно, то этот процесс приводит к тому, что вся жидкость в сосуде становится однородной.

В газах диффузия происходит быстрее, чем в жидкостях. Если в комнату внести какое-нибудь пахучее вещество, например нафталин, то очень скоро его запах будет ощущаться во всей комнате. Значит, всюду проникают молекулы нафталина - происходит диффузия. Молекулы нафталина, сталкиваясь с молекулами воздуха и двигаясь во все стороны беспорядочно, разлетаются по комнате во всех направлениях.

Явление диффузии происходит и в твердых телах, но очень медленно. В одном из опытов гладко отшлифованные пластины свинца и золота положили одна на другую и сжали грузом. При обычной комнатной температуре (около 20° С) за 5 лет золото и свинец срослись, взаимно проникнув друг в друга на расстоянии 1 мм. Получился тонкий слой из сплава золота со свинцом.

Диффузия имеет большое значение в жизни человека и животных. Так, например, кислород из окружающей среды благодаря диффузии проникает внутрь организма через кожу человека. Питательные вещества благодаря диффузии проникают из кишечника в кровь животных.

Диффузия происходит и при спайке металлических деталей.

Вопрос. 1. Что такое диффузия? Опишите опыт, в котором наблюдают диффузию жидкостей. 2. Как объясняется диффузия с точки зрения молекулярного строения вещества? 3. При каких процессах и как происходит диффузия в организме человека и животных?

Упражнение. 1. На каком явлении основана засолка огурцов, капусты, рыбы и других продуктов? 2. В воде рек, озер и других водоемов всегда содержатся молекулы газов, входящих в состав воздуха. Благодаря какому явлению попадают эти молекулы в воду?_ Почему они проникают до дна водоема? Опишите, как происходит при этом перемешивание воздуха с водой. 1 2 3

Задание. 1. Налейте в стакан холодной воды и опустите на дно его кусочек марганцовки. Не перемешивая воду, определите, через какое время молекулы марганцовки попадут в верхний слой воды. Объясните наблюдаемое явление. 2. Налейте в два стакана по одинаковому количеству воды. Один из них поставьте в теплое место, другой - в холодное (в холодильник, за окно, в сени ). Через некоторое время опустите на дно каждого стакана по кусочку грифеля от «химического» карандаша (или крупинку марганцовки). Поставьте стаканы на прежние места. Утром и вечером отмечайте положение границы окрашенной и чистой воды в этих двух стаканах. На основании проделанного опыта сделайте соответствующий вывод. 3. Прочтите в конце учебника параграф «Броуновское движение».

Применяют полученные знания и умения для решения практических задач повседневной жизни

Учащиеся выполняют задание, вспоминают, достигают поставленной цели за счет собственных ресурсов памяти, мышления. Составляют ответ, высказывают собственную точку зрения, приходят к единому мнению.

Контролируют собственное время, правильность и очередность высказываний своих и собеседника в процессе работы

Диффузия в природе и технике

Работают с текстами, которые получит каждая группа. Задача каждой группы - выделить в тексте главное и составить рассказ о применении процесса диффузии в данной области. Выступающих от группы может быть несколько.

Текст 1 группы . Диффузия в растительном мире

К.А. Тимирязев говорил: «Будем ли мы говорить о питании корня за счёт веществ, находящихся в почве, будем ли говорить о воздушном питании листьев за счет атмосферы или питании одного органа за счёт другого, соседнего, - везде для объяснения мы будем прибегать к тем же причинам: диффузия».
Действительно, в растительном мире очень велика роль диффузии. Например, большое развитие листовой кроны деревьев объясняется тем, что диффузионный обмен сквозь поверхность листьев выполняет не только функцию дыхания, но частично и питания. В настоящее время широко практикуется внекорневая подкормка плодовых деревьев путем опрыскивания их кроны.
Большую роль играют диффузные процессы в снабжении природных водоёмов и аквариумов кислородом. Кислород попадает в более глубокие слои воды в стоячих водах за счёт диффузии через их свободную поверхность. Поэтому нежелательны всякие ограничения свободной поверхности воды. Так, например, листья или ряска, покрывающие поверхность воды, могут совсем прекратить доступ кислорода к воде и привести к гибели ее обитателей. По этой же причине сосуды с узким горлом непригодны для использования в качестве аквариума.

Текст 2 группы . Роль диффузии в пищеварении и дыхании человека

Наибольшее всасывание питательных веществ происходит в тонких кишках, стенки которых специально для этого приспособлены. Площадь внутренней поверхности кишечника человека равна 0,65м2. Она покрыта ворсинками - микроскопическими образованиями слизистой оболочки высотой 0,2-1мм, за счет чего площадь реальной поверхности кишечника достигает 4-5 м2, т.е. достигает в 2-3 раза больше площади поверхности всего тела. Процесс всасывания питательных веществ в кишечнике возможен благодаря диффузии.
Дыхание - перенос кислорода из окружающей среды внутрь организма сквозь его покровы - происходит тем быстрее, чем больше площадь поверхности тела и окружающей среды, и тем медленнее, чем толще и плотнее покровы тела. Отсюда понятно, что малые организмы, у которых площади поверхности велики по сравнению с объемом тела, могут обходиться вовсе без специальных органов дыхания, удовлетворяясь притоком кислорода исключительно через наружную оболочку.
А как же дышит человек? У человека в дыхании принимает участие вся поверхность тела - от самого толстого эпидермиса пяток до покрытой волосами кожи головы. Особенно интенсивно дышит кожа на груди, спине и животе. Интересно, что по интенсивности дыхания эти участки кожи значительно превосходят легкие. С одинаковой по размеру дыхательной поверхности здесь может поглощаться кислорода на 28% а выделяться углекислого газа даже на 54% больше, чем в легких. Однако во всем дыхательном процессе участие кожи ничтожно по сравнению с легкими, так как общая площадь поверхности легких, если развернуть все 700 млн. альвеол, микроскопических пузырьков, через стенки которых происходит газообмен между воздухом и кровью, составляет около 90-100 м2, а общая площадь поверхности кожи человека около 2 м2, т.е, в 45-50 раз меньше. Таким образом, диффузия имеет большое значение в процессах жизнедеятельности человека, животных и растений. Благодаря диффузии кислород из легких пpoникaeт в кровь человека, а из крови - в ткани.

Текст 3 группы. Применение диффузии в технике.

Диффузия находит широкое применение в промышленности. На явлении диффузии основана диффузионная сварка металлов. Методом диффузионной сварки соединяют между собой металлы, неметаллы, металлы и неметаллы, пластмассы. Детали помещают в закрытую сварочную камеру с сильным разряжением, сдавливают и нагревают до 800 градусов. При этом происходит интенсивная взаимная диффузия атомов в поверхностных слоях контактирующих материалов. Диффузионная сварка применяется в основном в электронной и полупроводниковой промышленности, точном машиностроении.
Для извлечения растворимых веществ из твердого измельченного материала применяют диффузионный аппарат. Такие аппараты распространены главным образом в свеклосахарном производстве, где их используют для получения сахарного сока из свекловичной стружки, нагреваемой вместе с водой.
На явлении диффузии основан процесс металлизации - покрытия поверхности изделия слоем металла или сплава для сообщения ей физических, химических и механических свойств, отличных от свойств металлизируемого материала. Он применяется для защиты изделий от коррозии, износа, повышения контактной электрической проводимости, в декоративных целях. Для повышения твердости и жаростойкости стальных деталей применяют цементацию. Она заключается в том, что стальные детали помещают в ящик с графитовым порошком, который устанавливают в термической печи. Атомы углерода вследствие диффузии проникают в поверхностный слой деталей. Глубина проникновения зависит от температуры и времени выдержки деталей в термической печи.

Текст для 4 группы. Но, не всегда диффузия благо для человека. К сожалению, необходимо отметить и вредные проявления этого явления. Дымовые трубы предприятий выбрасывают в атмосферу углекислый газ, оксиды азота и серы. В настоящее время общее количество эмиссии газов в атмосферу превышает 40 миллиардов тонн в год. Избыток углекислого газа в атмосфере опасен для живого мира Земли, нарушает круговорот углерода в природе, приводит к образованию кислотных дождей. Процесс диффузии играет большую роль в загрязнении рек, морей и океанов. Годовой сброс производственных и бытовых стоков в мире равен примерно 10 триллионов тонн.
Загрязнение водоёмов приводит к тому, что в них исчезает жизнь, а воду, используемую для питья, приходится очищать, что очень дорого. Кроме того, в загрязненной воде происходят химические реакции с выделением тепла. Температура воды повышается, при этом снижается содержание кислорода в воде, что плохо для водных организмов. Из-за повышения температуры воды многие реки теперь зимой не замерзают.
Для снижения выброса вредных газов из промышленных труб, труб тепловых электростанций устанавливают специальные фильтры. Для предупреждения загрязнения водоемов необходимо следить за тем, чтобы вблизи берегов не выбрасывался мусор, пищевые отходы, навоз, различного рода химикаты.

Несмотря на то, что для твердого тела характерно упорядоченное расположение атомов в кристаллической решетке, перемещение атомов возможно и в нем. Тепловые движения, которые в основном имеют характер малых колебаний, в некоторых случаях приводят к тому, что атомы вовсе покидают свои места в решетке. О возможности таких срывов атомов свидетельствует уже тот факт, что твердые тела могут испаряться. Правда, при испарении отрыв атомов происходит в поверхностном слое, но нет оснований утверждать, что такой отрыв невозможен и внутри тела.

Именно благодаря тому, что атомы покидают свои места в узлах решетки, возникают некоторые дефекты в кристаллах -такие, как дефекты типа Шоттки и Френкеля. С этими срывами атомов и их последующим перемещением в кристалле связана и диффузия в твердых телах.

Так же, как в газах, частицы в твердых телах имеют различные энергии тепловых движений. И при любой температуре имеется определенная часть атомов, энергия которых значительно превосходит среднюю и достаточно велика для того, чтобы они могли покинуть свое место в решетке, и перейти в новое положение. Чем выше температура, тем таких атомов больше, и поэтому коэффициент диффузии с повышением температуры быстро возрастает (по экспоненциальному закону). Но так как число атомов с достаточно большой энергией всегда мало (если температура много ниже температуры плавления), то процесс диффузии в твердом теле оказывается еще более медленным процессом, чем в газах и жидкостях. Например, коэффициент диффузии меди в золото при

300 °С равен Для сравнения укажем, что при диффузии водного раствора метилового спирта в воду а диффузия аргона в гелий идет с Тем не менее диффузия в твердых телах играет большую роль в целом ряде процессов. Она наблюдается как в однокомпонентном (в этом случае говорят о самодиффузни), так и в многокомпонентных веществах, в моно- и в поликристаллах.

Опыт (в частности, исследования с помощью так называемых меченых атомов) показывает, что диффузия в твердых телах осуществляется главным образом следующими тремя способами:

1. Соседние атомы в решетке обмениваются местами в решетке, как это показано на рис. 198. Обмен этот может, например, явиться следствием поворота участвующей в ней пары атомов вокруг средней точки.

2. Атом, находящийся на «своем» месте в узле решетки, покидает его и располагается в междоузлии, а затем мигрирует в междоузлиях (рис. 199).

3. Атомы из узлов решетки переходят в незанятые узлы, так называемые вакансии (рис. 200). Этот последний процесс возможен только в дефектных кристаллах, так как вакансии являются, конечно, дефектами кристалла. Очевидно, что переход атомов на вакантные места эквивалентен перемещению самих вакансий в направлении, обратном направлению движения атомов.

Наиболее важную роль играет, по-видимому, последний механизм диффузии. Для его осуществления в твердом теле должен существовать градиент плотности вакансий, так что атомы (а значит и вакансии) чаще перемещаются в одном направлении, чем в другом. В поликристаллах важную роль играет процесс заполнения вакансий на границах кристалликов (зерен). По-видимому, в процессе создания вакансий, без которых невозможна диффузия, важную роль играют дислокации.

При экспериментальном изучении диффузии в твердых телах исследуемые вещества приводятся в надежный контакт друг с другом и затем длительное время выдерживаются при той или иной температуре опыта. После такой выдержки снимаются последовательно тонкие слои, перпендикулярные к направлению диффузии, и исследуются концентрации продиффундировавших веществ в зависимости от расстояния до места контакта.

В последнее время широко используются искусственные радиоактивные вещества, присутствие которых легко обнаруживается по их излучению.

Этот метод (метод меченых атомов) позволяет исследовать и явление самодиффузии, т. е. диффузии в твердом теле атомов самого этого тела.

Общий закон диффузии в твердых телах - такой же, как в газах и жидкостях. Это - закон Фика, о котором мы не раз упоминали.

Что касается коэффициента диффузии то выражение для него можно получить из соображений, сходных с теми, которые были приведены на стр. 318 в связи с вопросом о диффузии в жидкостях. Ведь диффузия в твердом теле тоже осуществляется скачками атомов из их положений равновесия в узлах кристаллической решетки. Но теперь о дальности скачка можно вполне определенно сказать, что она равна постоянной решетки а.

Необходимо, однако, иметь в виду, что при вэкансионном механизме диффузии атом из узла решетки может совершить скачок только в том случае, - если соседний узел пустует, если он представляет собой вакансию, как это показано на рис. 200. Но даже и при таком соседстве атому необходима добавочная энергия чтобы скачок в вакансию состоялся. Ведь в узле решетки потенциальная энергия атома минимальна. Поэтому любое смещение атома из узла, включая и смещение в соседнюю вакансию, требует добавочную энергию, которую он с некоторой вероятностью может получить в результате флуктуации. Эта вероятность, как всегда, определяется законом Больцмана:

Здесь -энергия, необходимая для скачка из узла решетки, энергия перемещения атома в вакансию.

По соображениям, приведенным на стр. 318, коэффициент самодиффузии в твердом теле может быть записан в виде:

где а - постоянная решетки и среднее время пребывания атома в узле решетки. Это время, очевидно, тем меньше, чем больше вероятность образования вакансии рядом с атомом и чем больше вероятность

того, что атом получит энергию перемещения На стр. 319 мы видели, что вероятность образования вакансии равна Теперь мы видим, что вероятность того, что атом получит энергию равна Поэтому выражение для коэффициента диффузии может) быть записано в виде:

Множитель (так называемый предэкспоненциальный множитель) - постоянная, характерная для данного вещества. Величина равная сумме энергии образования вакансии и энергии перемещения атома в вакансию, называется энергией активации диффузии и тоже является величиной, характерной для вещества.

Коэффициент диффузии в твердых телах очень мал. Для золота, например, при комнатной температуре он порядка Даже вблизи температуры плавления золота он достигает значения лишь в Это показывает, как сильно зависит коэффициент диффузии от температуры. 1

Малость коэффициента диффузии в твердых телах объясняется тем, что для того, чтобы диффузионный скачок атома в вакансию состоялся, необходимо, чтобы практически одновременно произошли два, вообще говоря, маловероятных события: чтобы рядом с атомом образовалась вакансия и чтобы сам атом получил в результате флуктуации энергию, достаточную для скачка.

При других механизмах диффузии, при диффузии одних веществ в другие, коэффициент диффузии вычисляется иначе. Об этом читатель узнает из специальных курсов. Но во всех случаях коэффициенты диффузии по абсолютному значению малы. Так, например, коэффициент диффузии серы в железо даже при температуре, близкой к равен приблизительно Но несмотря на малость коэффициентов диффузии в твердых телах, роль диффузии в твердых телах очень велика. Именно диффузия обеспечивает такие явления и процессы в твердых телах, как отжиг для устранения неоднородностей в сплавах, насыщение поверхностей деталей углеродом, азотом и т. д., спекание порошков и другие процессы обработки металлов.

Такие бывают конфузии?

DIV_ADBLOCK790">

Давайте более подробно рассмотрим диффузию в различных агрегатных состояниях.

Наиболее быстро диффузия происходит в газах. Давайте вспомним такой пример. Мы сидим в комнате, делаем уроки. И тут в комнату проникает запах пирогов, оказывается мама хлопочет на кухне, и запах нас уже зовет посмотреть, что же там такое вкусненькое нас ожидает. Как мы знаем, молекулы любого вещества находятся на некотором расстоянии друг от друга и беспрерывно хаотично движутся. Именно поэтому отдельные молекулы «пирожков» хаотично перемещаясь, проникают в промежутки между молекулами воздуха, сталкиваются с ними и, таким образом, перемещаются все дальше и дальше от источника, т. е. от блюда с вкуснятиной. Это и есть классический пример явления диффузии в газах.

Медленнее диффузия протекает в жидкостях. Мы можем привести пример и в этом случае. Например процесс заваривания чая, кофе и т. п. А для большей наглядности мы проведем еще опыты.

А еще медленнее диффузия протекает в твердых телах. Простой и доступный каждому пример – это взять два куска разноцветного пластилина и разминая их в руках, наблюдать, как смешиваются цвета. А, соответственно, без внешнего воздействия, если просто прижать два куска друг к другу, потребуются месяцы или даже многие годы, чтобы два цвета хоть немного перемешались, так сказать, проникли один в одного.

Для определения закономерностей протекания диффузии нами был проведен опыт.

Опыт № 1. Наблюдение явления диффузии в жидкости

Цель : наблюдение диффузии в жидкости в зависимости от разных условий.

Приборы и материалы :

https://pandia.ru/text/79/067/images/image004_63.jpg" width="168" height="320">

раствор «зеленки»

стакан с горячей водой

пипетка

Растительное масло

Описание опыта и полученные результаты:

а) в стакан с холодной водой капнули «зеленку» и пронаблюдали, как происходит процесс диффузии(примерно 8 минут) ;

б) провели этот же опыт, только в стакан налили горячую воду, процесс произошел гораздо быстрее, чем в первом случае (примерно 40 секунд) ;

DIV_ADBLOCK792">

Летом, наблюдая за муравьями, мы всегда задумывались над тем, как они в огромном для них мире, узнают дорогу домой. Оказывается, и эту загадку открывает явление диффузии. Муравьи помечают свой путь капельками пахучей жидкости.

Благодаря диффузии, насекомые находят себе пищу. Бабочки, порхая меж растений, всегда находят дорогу к красивому цветку. Пчелы, обнаружив сладкий объект, штурмуют его своим роем. А растение растет, цветет для них тоже благодаря диффузии. Ведь мы говорим, что растение дышит и выдыхает воздух

В небе мы тоже наблюдаем это явление. Рассеивающиеся облака – тоже пример диффузии и как точно об этом сказано у Ф. Тютчева: «В небе тают облака…». Так же мы еще хотим привести несколько примеров диффузии в газах:

· Распространение запаха цветов;

· Слезы из-за нарезания лука;

· Шлейф духов, который можно почувствовать в воздухе.

В жидкостях диффузия протекает помедленнее , чем в газах, но этот процесс можно ускорить, с помощью нагревания. Например, чтобы быстрее засолить огурцы, их заливают горячим рассолом. Мы знаем, что в холодном чае сахар растворится медленнее, чем в горячем.

В твердых телах также происходит диффузия, но только еще медленнее .

Увидеть диффузию в твердом теле в нормальных условиях невозможно, потому что при обычной температуре она происходит слишком медленно. Например, мы прочитали про такой опыт: очень гладко отшлифованные пластинки свинца и золота кладут одна на другую и ставят на них некоторый груз. (пластинку золота, как более тяжелую, располагают внизу.) При комнатной температуре (20 °С) за 4-5 лет золото и свинец взаимно проникают друг в друга на расстояние около 1 мм.

Конечно же мы это не сможем пронаблюдать. Поэтому нам тяжело самим придумать примеры.

Заключение

Исходя из вышеизложенного, можно сделать вывод о том, что диффузия играет огромную роль в жизни человека и животных, без этого явления жизнь на Земле была бы невозможна. Но, к сожалению, люди в результате своей деятельности часто оказывают негативное влияние на естественные процессы в природе. И напоследок, мы составили небольшой кроссворд на тему, а вот на какую вы узнаете ответив на все вопросы.

1 элемент строения клетки

2 изменение положения тела или его частей

3 одна из основных областей естествознания

4 причина, движущая сила какого-либо процесса, явления

5 мельчайшая частица вещества

6 ударно-разрядная погода

7 сила, препятствующая движению одного тела по поверхности другого

8 событие, случай.

 
Статьи по теме:
Таро Звезда — значение в прямом и перевернутом положении
На карте Звезда нарисована девушка с двумя кувшинами. На небе видны звезды. Одна из них большая желтого цвета. Девушка на коленях стоит перед водоемом. Вода из кувшинов льется на землю. 17 аркан Звезда по праву считается картой магов. Это связь всех мисти
Тайный знак игральных карт
Значения и сочетания игральных карт при гадании Гаданием на игральных картах в большей степени интересуются женщины, так как оно связано главным образом с жизненными ситуациями: замужеством, семейной жизнью, любовью и т. д. Значения карт, о которых буде
Гадания на состояние здоровья
Что может быть общего между Скандинавскими рунами, Таро, Русским пасьянсом, Картами Марии Ленорман, Пасьянсом мадам Рекамье, а также гаданиями под названием: Астромеридиан, Архангелы и, наконец – Двойняшки? На первый взгляд, ни-че-го! Однако если задумат
Почему так полезно мясо индейки и есть ли от него вред
Состав мяса индейки В составе мяса индейки содержится действительно большое количество витаминов – в частности, витамин А и Е, в нём мало холестерина, оно хорошо и легко усваивается человеческим организмом и благодаря таким его свойствам специалисты смел