Применение интеграла в жизни. Презентация применение интеграла в жизни

Чтобы посмотреть презентацию с картинками, оформлением и слайдами, скачайте ее файл и откройте в PowerPoint на своем компьютере.
Текстовое содержимое слайдов презентации:
Интеграл и его применение в жизни человека.
Цель: изучение и использование интеграла в деятельности человека. Задачи: узнать что такое интеграл; выявить все сферы деятельности человека где применяется интеграл;выяснить какое значение интеграл занимает в жизни человека. Ученый, создавший интеграл.Евдокс Книдский. Дал полное доказательство теоремы об объёме пирамиды; теоремы о том, что площади двух кругов относятся как квадраты их радиусов. При доказательстве он использовал так называемый метод «исчерпывания» их радиусов. Через две тысячи лет метод «исчерпывания» был преобразован в метод интегрирования. Что такое интеграл? Интеграл (от лат.Integer – целый) –интегралом называется величина, обратная дифференциалу функции. Многие физические и другие задачи сводятся к решению сложных дифференциальных или интегральных уравнений. Для этого необходимо знать, что представляют собой дифференциальное и интегральное исчисление.𝑓𝑥𝑑𝑥 Символ  введен Готфрид Лейбницем (1675г.). Этот знак является изменением латинской буквы S (первой буквы слова summa). Само слово интеграл придумал Якоб Бернулли (1690 г.). Оно происходит от латинского integro, которое переводится как восстанавливать. Я. БернуллиГ. Лейбниц Применение интеграла. В геометрии.Площадь плоской фигуры.Определение: Фигура, ограниченная графиком непрерывной, знакопостоянной функции 𝑓(𝑥), осью абсцисс и прямыми 𝑥=𝑎, 𝑥=𝑏, называется криволинейной трапецией.Теорема. Если 𝑓(𝑥) непрерывная и неотрицательная функция на отрезке [𝑎;𝑏], то площадь соответствующей криволинейной трапеции равна определенному интегралу на этом отрезке.𝑆 =𝑎𝑏𝑓𝑥𝑑𝑥= 𝐹(𝑏)–𝐹(𝑎) Объем фигур вращения.Тело, полученное в результате вращения плоской фигуры, относительно какой-то оси, называют фигурой вращения.Функция 𝑆(𝑥)𝑓(𝑥) фигуры вращения есть круг.𝑆сеч = 𝑟2 Sсеч(𝑥)=𝜋𝑓 2(𝑥)𝑉= 𝑎𝑏𝑓 2(𝑥)𝑑𝑥 В физике.Координаты центра масс.Центр масс – точка, через которую проходит равнодействующая сил тяжести при любом пространственном расположении тела. Пусть материальная однородная пластина имеет форму криволинейной трапеции 𝑥;𝑦 𝑎≤𝑥≤𝑏; 0≤𝑦≤𝑓(𝑥)} и функция 𝑦=𝑓(𝑥) непрерывна на [𝑎;𝑏], а площадь этой криволинейной трапеции равна 𝑆, тогда координаты центра масс пластины о находят по формулам:𝑥0 = 1𝑆 𝑎𝑏𝑥 𝑓(𝑥) 𝑑𝑥; 𝑦0 = 12𝑆 𝑎𝑏𝑓 2(𝑥) 𝑑𝑥; Работа силы 𝐴=𝐹𝑆𝑐𝑜𝑠, 𝑐𝑜𝑠 1. Если на частицу действует сила 𝐹, кинетическая энергия не остается постоянной. В этом случае согласно𝑑(𝑚2/2) = 𝐹𝑑𝑠приращение кинетической энергии частицы за время dt равно скалярному произведению 𝐹𝑑𝑠, где 𝑑𝑠 – перемещение частицы за время 𝑑𝑡. Величина𝑑𝐴=𝐹𝑑𝑠называется работой, совершаемой силой F.А = 𝑎𝑏𝑓𝑥𝑑𝑥 Путь, пройденный материальной точкой.Если материальная точка движется прямолинейно со скоростью 𝑣=𝑣(𝑡) и за время 𝑇= 𝑡2–𝑡1 (𝑡2>𝑡1) прошла путь 𝑆, то 𝑆=𝑡1𝑡2𝑣(𝑡)𝑑𝑡. В экономикеВ курсе микроэкономики часто рассматривают так называемые предельные величины, т.е. для данной величины, представляемой некоторой функцией 𝑦 =𝑓(𝑥), рассматривают ее производную 𝑓′(𝑥). Например, если дана функция издержек С в зависимости от объема q выпускаемого товара 𝐶= 𝐶(𝑞), то предельные издержки будут за­даваться производной этой функции МС=С′(q). Ее экономический смысл – это издержки на производство дополнительной единицы выпускаемого товара. Поэтому часто приходится находить функ­цию издержек по данной функции предельных издержек. В биологииСредняя длина пролета.Нас интересует средняя длина пролета. Так как круг симметричен относительно любого своего диамет­ра, нам достаточно ограничиться лишь теми птицами, которые ле­тят в каком-нибудь одном направлении, параллельном оси Оу. Тогда средняя длина пролета - это среднее расстоя­ние между дугами АСВ и 𝐴𝐶1𝐵. Иными словами, это среднее зна­чение функции 𝑓1𝑥−𝑓2𝑥, где 𝑦=𝑓1𝑥 – уравнение верхней дуги, а 𝑦=𝑓2𝑥 уравнение нижней дуги, т. е.𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 Так как 𝑎𝑏𝑓1𝑥𝑑𝑥 равен площади криволинейной трапеции аАСВb, 𝑎𝑏𝑓2𝑥𝑑𝑥 равен площади криволинейной трапеции аА𝐶1Вb, то их разность равна площади круга, т. е. 𝜋𝑅2. Разность 𝑏−а равна 2R. Подставив это в 𝐿=𝑎𝑏𝑓1𝑥−𝑓2𝑥𝑑𝑥𝑏−𝑎 , получим: 𝐿=𝜋𝑅22𝑅=𝜋2𝑅

Тема исследования

Применение интегрального исчисления в планировании расходов семьи

Актуальность проблемы

Все чаще в социальных и экономических сферах при вычислении степени неравенства в распределении доходов используется математика, а именно, интегральное исчисление. Изучая практическое применение интеграла мы узнаем:

  • Как интеграл и вычисление площади с помощью интеграла помогает в распределении материальных затрат?
  • Как интеграл поможет в накоплении денег на отпуск.

Цель

спланировать расходы семьи с использованием интегрального вычисления

Задачи

  • Изучить геометрический смысл интеграла.
  • Рассмотреть методы интегрирования в социальной и экономической сферах жизни.
  • Составить прогноз материальных затрат семьи при ремонте квартиры с использованием интеграла.
  • Рассчитать объем потребления энергии семьи на год с учетом интегрального исчисления.
  • Расчитать сумму накопительного вклада в Сбербанк на отпуск.

Гипотеза

интегральное исчисление помогает в экономичных расчетах при планировании доходов и расходов семьи.

Этапы исследования

  • Изучили геометрический смысл интеграла и методы интегрирования в социальной и экономической сферах жизни.
  • Произвели расчет материальных затрат, необходимых при ремонте квартиры с помощью интеграла.
  • Расчитали объем потребления электроэнегрии в квартире и затраты на электроэнергию семьи на год.
  • Рассмотрели один из вариантов полонения доходов семьи через вклады в Сбербанк с помощью интеграла.

Объект исследования

инегральное исчисление в социальной и экономических сферах жизни.

Методы

  • Анализ литературы по теме "Практическое применение интгрального исчисления"
  • Изучение методов интегрирования при решении задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Анализ расходов и доходов семьи с помощью интегрального вычисления.

Ход работы

  • Обзор литературы по теме "Практическое применение интегрального исчисления"
  • Решение системы задач на вычисление площадей и объемов фигур с помощью интеграла.
  • Расчет расходов и доходов семьи с помощью интегрального вычисления: ремонт комнаты, объем электроэнергии, вклады в Сбербанк на отпуск.

Наши результаты

Как интеграл и вычисление объема с помощью интеграла помогает в прогнозировании объемов потребления электроэнергии?

Выводы

  • Экономический расчет необходимых средств при ремонте квартиры можно быстрее и более точно выполнить с помощью интегрального вычисления.
  • Расход объемов электроэнергии семьи легче и быстрее рассчитать с помощью интегрального вычисления и программы Microsoft Office Excel, а значит прогнозировать затраты семьи на оплату электроэнергии на год.
  • Прибыль от вкладов в сбербанк можно рассчитать с помощью интегрального вычисления, значит спланировать отпуск семьи.

Список ресурсов

Печатные издания:

  • Учебник. Алгебра и начала анализа 10-11 класс. А.Г. Мордкович. Мнемозина. М: 2007
  • Учебник. Алгебра и начала анализа 10-11 класс. А. Колмогоров Просвещение. М: 2007
  • Математика для социологов и экономистов. Ахтямов А.М. М.: ФИЗМАТЛИТ, 2004. - 464 с.
  • Интегральное вычисление.Справочник по Высшей Математике М. Я. Выгодского, Просвещение, 2000

Иванов Сергей, студент гр.14-ЭОП-33Д

Работа может быть использована на обобщающем уроке по темам "Производная", "Интеграл".

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

ГБПОУ КНТ им. Б. И. Корнилова Исследовательская работа по теме: « применение Производных и интегралов в физике, математике и электротехнике.» Студента гр. 2014-эоп-33д иванова сергея.

1 .История появления производной. В конце 17 века великий английский учёный Исаак Ньютон доказал что Путь и скорость связаны между собой формулой: V (t)= S ’(t) и такая связь существует между количественными характеристиками самых различных процессов исследуемых: физикой, (a = V ’= x ’’ , F = ma = m * x ’’ , импульс P = mV = mx ’ , кинетическая E = mV 2 /2= mx ’ 2 /2), химией, биологией, и техническими науками. Это открытие Ньютона стало поворотным пунктом в истории естествознания.

1 .История появления производной. Честь открытия основных законов математического анализа наравне с Ньютоном принадлежит немецкому математику Готфриду Вильгельму Лейбницу. К этим законам Лейбниц пришел, решая задачу проведения касательной к произвольной кривой, т.е. сформулировал геометрический смысл производной, что значение производной в точке касания есть угловой коэффициент касательной или tg угла наклона касательной с положительным направлением оси О X . Термин производная и современные обозначения y ’ , f ’ ввёл Ж.Лагранж в 1797г.

2 .История появления интеграла. Понятие интеграла и интегральное исчисление возникли из потребности вычислять площади (квадратуру) любых фигур и объёмы (кубатуру) произвольных тел. Предыстория интегрального исчисления восходит к древности. Первым известным методом для расчёта интегралов является метод для исследования площади или объёма криволинейных фигур - метод исчерпывания Евдокса (Евдокс Книдский (ок. 408 г. до н.э. - ок. 355 г. до н.э.) - древнегреческий математик, механик и астроном), который был предложен примерно в 370 до н. э. Суть этого метода заключается в следующем: фигура, площадь или объем которой пытались найти, разбивалась на бесконечное множество частей, для которых площадь или объём уже известны.

«Метод исчерпывания» Предположим, что нам надо вычислить объём лимона, имеющего неправильную форму, и поэтому применить какую-либо известную формулу объёма нельзя. С помощью взвешивания найти объём также трудно, так как плотность лимона в разных частях его разная. Поступим следующим образом. Разрежем лимон на тонкие дольки. Каждую дольку приближённо можно считать цилиндриком, радиус основания, которого можно измерить. Объём такого цилиндра вычислить легко по готовой формуле. Сложив объёмы маленьких цилиндров, мы получим приближенное значение объёма всего лимона. Приближение будет тем точнее, чем на более тонкие части мы сможем разрезать лимон.

2 .История появления интеграла. Вслед за Евдоксом метод «исчерпывания» и его варианты для вычисления объёмов и площадей применял древний учёный Архимед. Успешно развивая идеи своих предшественников, он определил длину окружности, площадь круга, объём и поверхность шара. Он показал, что определение объёмов шара, эллипсоида, гиперболоида и параболоида вращения сводится к определению объёма цилиндра.

Основой теории дифференциальных уравнений стало дифференциальное исчисление, созданное Лейбницем и Ньютоном. Сам термин «дифференциальное уравнение» был предложен в 1676 году Лейбницем. 3 .История появления дифференциальных уравнений. Первоначально дифференциальные уравнения возникли из задач механики, в которых требовалось определить координаты тел, их скорости и ускорения, рассматриваемые как функции времени при различных воздействиях. К дифференциальным уравнениям приводили также некоторые рассмотренные в то время геометрические задачи.

3 .История появления дифференциальных уравнений. Из огромного числа работ XVII века по дифференциальным уравнениям выделяются работы Эйлера (1707-1783) и Лагранжа (1736-1813). В этих работах была прежде развита теория малых колебаний, а следовательно - теория линейных систем дифференциальных уравнений; попутно возникли основные понятия линейной алгебры (собственные числа и векторы в n -мерном случае). Вслед за Ньютоном Лаплас и Лагранж, а позже Гаусс (1777-1855) развивают также методы теории возмущений.

4 .Применение производной и интеграла в математике: В математике производную широко используют в решениях многих задач, уравнений, неравенств, а так же в процессе исследования функции. Пример: Алгоритм исследования функции на экстремум: 1)О.О.Ф. 2) y ′=f ′(x), f ′(x)=0 и решаем уравнение. 3)О.О.Ф. разбиваем на интервалы. 4)Определяем знак производной на каждом интервале. Если f ′(x)>0 , то функция возрастает. Если f ′(x)

4 .Применение производной и интеграла в математике: Интеграл (определенный интеграл) используют в математике (геометрии) для нахождения площади криволинейной трапеции. Пример: Алгоритм нахождения площади плоской фигуры с помощью определенного интеграла: 1)Строим график указанных функций. 2)Указать фигуру ограниченную этими линиями. 3)Найти пределы интегрирования, записать определенный интеграл и вычислить его.

5 .Применение производной и Интеграла в физике. В физике производную используют в основном для решения задач, например: нахождение скорости или ускорения каких-либо тел. Пример: 1)Закон движения точки по прямой задается формулой s(t)= 10t^2 , где t -время (в секундах), s(t) -отклонение точки в момент времени t (в метрах) от начального положения. Найди скорость и ускорение в момент времени t, если: t=1,5 с. 2)Материальная точка движется прямолинейно по закону x(t)= 2+20t+5t2. Найдите скорость и ускорение в момент времени t=2с (х – координата точки в метрах, t – время в секундах).

Физическая величина Среднее значение Мгновенное значение Скорость Ускорение Угловая скорость Сила тока Мощность

5 .Применение производной и Интеграла в физике. Интеграл также используется в задачах, например: нахождение скорости или пути. Тело движется со скоростью v(t) = t + 2 (м/с). Найти путь, который пройдет тело за 2 секунды после начала движения. Пример:

6 .Применение производной и Интеграла в электротехнике. Производная также нашла применение в электротехнике. В цепи электрического тока электрический заряд меняется с течением времени по закону q=q (t). Сила тока I есть производная заряда q по времени. I=q ′(t) Пример: 1)Заряд, протекающий через проводник, меняется по закону q=sin(2t-10) Найти силу тока в момент времени t=5 cек. Интеграл в электротехнике можно использовать для решения обратных задач, т.е. нахождение электрического заряда зная силу тока и т.д. 2)Электрический заряд протекающий через проводник, начиная с момента t = 0, задаётся формулой q(t) = 3t2 + t + 2.Найдите силу тока в момент времени t = 3с. Интеграл в электротехнике можно использовать для решения обратных задач, т.е. нахождение электрического заряда зная силу тока и т.д.

Девиз урока: “Математика – язык, на котором говорят все точные науки” Н.И. Лобачевский

Цель урока: обобщить знания учащихся по теме “Интеграл”, “Применение интеграла”;расширить кругозор, знания о возможном применении интеграла к вычислению различных величин; закрепить навыки использовать интеграл для решения прикладных задач; прививать познавательный интерес к математике, развивать культуру общения и культуру математической речи; уметь учиться выступать перед учащимися и учителями.

Тип урока: повторительно-обобщающий.

Вид урока: урок – защита проекта “Применение интеграла”.

Оборудование: магнитная доска, плакаты “Применение интеграла”, карточки с формулами и заданиями для самостоятельной работы.

План урока:

1. Защита проекта:

  1. из истории интегрального исчисления;
  2. свойства интеграла;
  3. применение интеграла в математике;
  4. применение интеграла в физике;

2. Решение упражнений.

Ход урока

Учитель: Мощным средством исследования в математике, физике, механике и других дисциплинах является определенный интеграл – одно из основных понятий математического анализа. Геометрический смысл интеграла – площадь криволинейной трапеции. Физический смысл интеграла – 1) масса неоднородного стержня с плотностью, 2) перемещение точки, движущейся по прямой со скоростью за промежуток времени.

Учитель: Ребята нашего класса провели большую работу, они подобрали задачи, где применяется определенный интеграл. Им слово.

2 ученик: Свойства интеграла

3 ученик: Применение интеграла (на магнитной доске таблица).

4 ученик: Рассматриваем применение интеграла в математике для вычисления площади фигур.

Площадь всякой плоской фигуры, рассматриваемая в прямоугольной системе координат, может быть составлена из площадей криволинейных трапеций, прилежащих к оси Ох и оси Оу. Площадь криволинейной трапеции, ограниченной кривой у = f(х), осью Ох и двумя прямыми х=а и х=b, где а х b , f(х) 0 вычисляется по формуле см. рис. Если криволинейная трапеция прилегает к оси Оу , то её площадь вычисляется по формуле , см. рис. При вычислении площадей фигур могут представиться следующие случаи: а)Фигура расположена над осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b.(См. рис. ) Площадь этой фигуры находится по формуле 1 или 2. б) Фигура расположена под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b (см. рис. ). Площадь находится по формуле . в) Фигура расположена над и под осью Ох и ограничена осью Ох, кривой у=f(х) и двумя прямыми х=а и х=b(рис. ). г) Площадь ограничена двумя пересекающимися кривыми у=f(х) и у = (х) (рис. )

5 ученик: Решим задачу

х-2у+4=0 и х+у-5+0 и у=0

7 ученик: Интеграл, широко применяющийся в физике. Слово физикам.

1. ВЫЧИСЛЕНИЕ ПУТИ, ПРОЙДЕННОГО ТОЧКОЙ

Путь, пройденный точкой при неравномерном движении по прямой с переменной скоростью за промежуток времени от до вычисляется по формуле .

Примеры:

1. Скорость движения точки м/с. Найти путь, пройденный точкой за 4-ю секунду.

Решение: согласно условию, . Следовательно,

2. Два тела начали двигаться одновременно из одной точки в одном направлении по прямой. Первое тело движется со скоростью м/с, второе - со скоростью v = (4t+5) м/с. На каком расстоянии друг от друга они окажутся через 5 с?

Решение: очевидно, что искомая величина есть разность расстояний, пройденных первым и вторым телом за 5 с:

3. Тело брошено с поверхности земли вертикально вверх со скоростью и = (39,2-9,8^) м/с. Найти наибольшую высоту подъема тела.

Решение: тело достигнет наибольшей высоты подъема в такой момент времени t, когда v = 0, т.е. 39,2-9,8t = 0, откуда I = 4 с. По формуле (1) на ходим

2. ВЫЧИСЛЕНИЕ РАБОТЫ СИЛЫ

Работа, произведенная переменной силой f(х) при перемещении по оси Ох материальной точки от х = а до х=b, находится по формуле При решении задач на вычисление работы силы часто используется закон Г у к а: F=kx, (3) где F - сила Н; х -абсолютное удлинение пружины, м, вызванное силой F , а k -коэффициент пропорциональности, Н/м.

Пример:

1. Пружина в спокойном состоянии имеет длину 0,2 м. Сила в 50 Н растягивает пружину на 0,01 м. Какую работу надо совершить, чтобы растянуть ее от 0,22 до 0,32 м?

Решение: используя равенство (3), имеем 50=0,01k, т. е. kК = 5000 Н/м. Находим пределы интегрирования: а = 0,22 - 0,2 = 0,02 (м), b=0,32 - 0,2 = 0,12(м). Теперь по формуле (2) получим

3. ВЫЧИСЛЕНИЕ РАБОТЫ, ПРОИЗВОДИМОЙ ПРИ ПОДНЯТИИ ГРУЗА

Задача. Цилиндрическая цистерна с радиусом основания 0,5 м и высотой 2 м заполнена водой. Вычислить работу, которую необходимо произвести, чтобы выкачать воду из цистерны.

Решение: выделим на глубине х горизонтальный слой высотой dх (рис. ). Работа А, которую надо произвести, чтобы поднять слой воды весом Р на высоту х, равна Рх.

Изменение глубины х на малую величину dх вызовет изменение объема V на величину dV = пr 2 dх и изменение веса Р на величину * dР = 9807 r 2 dх; при этом совершаемая работа А изменится на величину dА=9807пr 2 хdх. Проинтегрировав это равенство при изменении x от 0 до Н, получим

4. ВЫЧИСЛЕНИЕ СИЛЫ ДАВЛЕНИЯ ЖИДКОСТИ

Значение силы Р давления жидкости на горизонтальную площадку зависит от глубины погружения х этой площадки, т. е. от расстояния площадки до поверхности жидкости.

Сила давления (Н) на горизонтальную площадку вычисляется по формуле Р =9807 S x,

где - плотность жидкости, кг/м 3 ; S - площадь площадки, м 2 ; х - глубина погружения площадки, м.

Если площадка, испытывающая давление жидкости, не горизонтальна, то давление на нее различно на разных глубинах, следовательно, сила давления на площадку есть функция глубины ее погружения Р (х).

5. ДЛИНА ДУГИ

Пусть плоская кривая АВ (рис.) задана уравнением у =f(x) (a x b), причем f(x) и f ?(x) - непрерывные функции в промежутке [а,b]. Тогда дифференциал dl длины дуги АВ выражается формулой или , а длина дуги АВ вычисляется по формуле (4)

где а и b-значения независимой переменной х в точках А и В. Если кривая задана уравнением х = (у)(с у d), то длина дуги АВ вычисляется по формуле (5) где с и д значения независимой переменной у в точках А и В.

6. ЦЕНТР МАСС

При нахождении центра масс пользуются следующими правилами:

1) Координата х? центра масс системы материальных точек А 1 , А 2 ,..., А n с массами m 1 , m 2 , ..., m n , расположенных на прямой в точках с координатами х 1 , х 2 , ..., х n , находятся по формуле

(*); 2) При вычислении координаты центра масс можно любую часть фигуры заменить на материальную точку, поместив ее в центр масс этой части, и приписать ей массу, равную массе рассматриваемой части фигуры. Пример. Пусть вдоль стержня-отрезка [а;b] оси Ох - распределена масса плотностью (х), где (х) - непрерывная функция. Покажем, что а) суммарная масса М стержня равна ; б) координата центра масс х" равна .

Разобьем отрезок [а; b] на n равных частей точками а= х 0 < х 1 < х 2 < ... <х n = b (рис. ). На каждом из n этих отрезков плотность можно считать при больших n постоянно и примерно равной (х k - 1) на k-м отрезке (в силу непрерывности (х). Тогда масса k-ого отрезка примерно равна а масса всего стержня равна

Cлайд 1

МКОУ «Большеатлымская средняя общеобразовательная школа» Тема: «Интеграл и его практическое применение» Сближение теории с практикой дает самые благоприятные результаты, и не одна только практика от этого выигрывает, сами науки развиваются под влиянием ее. П. Л. Чебышев

Cлайд 2

Выполнил: Ершов Николай, ученик 11 класса. Руководитель: Дедовец Надежда Артемовна, учитель математики С. Большой Атлым 2012-2013 уч. год

Cлайд 3

Цель работы: Расширить область математических знаний. Развивать логическое мышление. Вывести общие формулы, позволяющие решать задачи интегрирования. Показать, что интеграл широко применяется в различных сферах жизнедеятельности.

Cлайд 4

Задачи исследования: - собрать, изучить и систематизировать материал об интеграле; - рассмотреть, как интеграл используется при решении различных жизненных ситуаций; - использование интеграла в различных сферах жизнедеятельности. Объект исследования: область математики – интегрирование.

Cлайд 5

Немного истории -1675 г, опубликовано в 1686 г ввел Г.Лейбниц - 1675 г, Ж Лагранж 5 век до н.э. др.гр. ученый Демокрит 3-4 век до н.э. Архимед ввел метод исчерпывания

Cлайд 6

Cлайд 7

«Интеграл» придумал Я.Бернулли (1690) «восстанавливать» от латинского integro «целый» от латинского integer

Cлайд 8

Cлайд 9

Лейбниц Готфрид Вильгельм (1646-1716) « Общее искусство знаков представляет чудесное пособие, так как оно разгружает воображение… Следует заботиться о том, чтобы обозначения были удобны для открытий. Обозначения коротко выражают и отображают сущность вещей. Тогда поразительным образом сокращается работа мысли.» Лейбниц

Cлайд 10

Cлайд 11

Cлайд 12

Площадь фигуры Объем тела вращения Работа электрического заряда Работа переменной силы Масса Перемещение Дифференциальное уравнение Давление Количество теплоты

Cлайд 13

Задача.Найти объём наклонной треугольной призмы с основанием S и высотой h. 1. Введём ось ОХ перпендикулярно основаниям призмы. 2. (АВС) OX=a, a=0, (A1B1C1) OX=b, b=h 3. Проведём плоскость перпендикулярно ОХ через точку с абсциссой х. А2В2С2-треугольник, равный основаниям. Площадь А2В2С2 равна S. Ответ: V=Sh 4. S(x) непрерывна на

Cлайд 14

Из эксперимента известно, что скорость размножения бактерий пропорциональна их количеству. За какое время количество бактерий увеличится в m раз по сравнению с начальным? Решение: Пусть x(t) – количество бактерий в момент времени t. x(0) = x0. Изменение количества бактерий со временем описывается уравнением x´(t) = kx(t), k>0, ln|x| = kt+ln|C|, x=ekteln|C| , x=Cekt - общее решение уравнения. ЗАДАЧА

Cлайд 15

Уже Архимед успешно находил площади фигур, несмотря на то, что в математике его времени не было понятия интеграла Но лишь интегральное исчисление дает общий метод решения задач из различных областей наук. Недаром даже поэты воспевали интеграл. Смысл- там, где змеи интеграла Меж цифр и букв, меж d и f. Там – власть, там творческие горны! Пред волей чисел все – рабы. И солнца путь вершат, покорны Немым речам и ворожбы. В.Брюсов.

Cлайд 18

Заключение Применение физических моделей при введении понятия интеграла, рассмотрении его свойств, отработке техники интегрирования и изучении приложений способствует осознанному качественному усвоению материала, развитию правильного представления об изучаемом понятии, его огромной значимости в различных науках, формированию мировоззрения, таких специальных качеств, как умение строить математические модели реальных процессов и явлений, исследовать и изучать их, а, следовательно, способствует развитию мышления, памяти, внимания и речи.
 
Статьи по теме:
Шашлык с дымком в духовке
Когда появляется желание полакомиться ароматным шашлыком, а за окном дождь или вообще зима, а очень хочется почувствовать запах лета и насладиться мясом с «дымком», тогда и вынимается из рукава вот этот рецепт. Домашний шашлык с запахом костра в «быстром»
Значение рыси в славянской культуре Работа с энергией тотема
...фигню всякую про вас думаю...:-)))Тотем Рысь... Будьте молчаливым.Станьте наблюдателем.Почитайте секрет мудрости,которую Вы храните! СЕКРЕТЫ Если Вы хотите узнать секрет, просите помощь у Рыси. К сожалению, трудно уговорить тихую Рысь, заговорить. Ры
Житийная литература «Сказание о Борисе и Глебе»
В XIX веке жанр жития переживал упадок. Казалось, что за двести лет на русской земле, прежде столь щедрой на подвижников, молчальников, святителей, юродивых, перевелись святые. За время существования Священного Синода, с 1721 по 1917 год, коронация в Росс
Что такое проектно-сметная документация
Капитальный ремонт объекта капитального строительства – одновременная разработка рабочего проекта и сметы, чертежи и расчеты производятся после утверждения проектного задания. состав:Раздел 5. "Сведения об инженерном оборудовании, о сетях инженерно – те