Близкодействие и действие на расстоянии. Принципы дальнодействия и близкодействия

Взаимодействие между частицами (заряженными и незаряженными) можно описывать при помощи полей, но можно и не вводить понятие поля. Концепцию, в соответствии с которой взаимодействие между частицами описывают напрямую, без введения понятия поля, называют концепцией дальнодействия . Название это означает, что частицы взаимодействуют на далеком расстоянии. Наоборот, вторую концепцию, в соответствии с которой взаимодействие осуществляется через посредство поля (гравитационного и электромагнитного), называют концепцией близкодействия . Смысл понятия близкодействия заключается в том, что частица взаимодействует с полем, которое имеется вблизи нее, хотя само это поле может создаваться частицами, находящимися очень далеко.

В первом случае на заряд \(q\) действует сила \(F\) со стороны заряда \(Q\), находящегося на расстоянии \(r\). Во втором случае заряд \(Q\) создает в пространстве вокруг себя поле \(\vec{Е}(x, y, z)\). В частности, в точке с координатами \(x_{0}\), \(y_{0}\), \(z_{0}\), где находится заряд \(q\), создается поле \(\vec{Е}(x_{0}, y_{0}, z_{0})\). Это поле, а не непосредственно заряд \(Q\) взаимодействует с зарядом \(q\).

Исторически знания о природе развивались таким образом, что концепция близкодействия, предложенная в 30-е гг. XIX в. английским физиком М. Фарадеем, воспринималась лишь как удобное описание.

Положение принципиально изменилось после открытия электромагнитных волн, распространяющихся с конечной скоростью - скоростью света. Из теории электромагнитных волн следовало, что любое изменение электромагнитного поля распространяется через пространство также со скоростью света. Можно сказать, что если заряд \(Q\) в какой-то момент времени начнет движение, то заряд \(q\) «ощутит» изменение действующей на него силы не в тот же момент времени, а спустя время \(r/c\) (\(c\) - скорость света), т. е. время, необходимое для того, чтобы электромагнитная волна дошла от заряда \(Q\) до заряда \(q\).

Конечность распространения электромагнитных волн приводит к тому, что описание электромагнитного взаимодействия на основе концепции дальнодействия становится неудобным.

Чтобы понять это, рассмотрим следующий пример. В 1054 г. на небосводе появилась яркая звезда, свет которой наблюдался даже днем в течение нескольких недель. Затем звезда угасла, и в настоящее время в районе небесной сферы, где находилась звезда, отмечается слабо светящееся образование, которое получило название Крабовидной туманности. В соответствии с современными представлениями об эволюции звезд произошла вспышка звезды, во время которой ее мощность излучения увеличилась в миллиарды раз, после чего звезда распалась. На месте ярко светящейся звезды образовались практически не излучающая нейтронная звезда и расширяющееся облако слабо светящегося газа.

С точки зрения концепции близкодействия наблюдение света звезды сводится к следующему. Заряды, находящиеся на звезде, создали поле, которое в виде волны дошло до Земли и оказало воздействие на электроны в сетчатке глаза наблюдателя. При этом волна достигла Земли за сотни лет. Люди наблюдали вспышку звезды, когда самой звезды уже не было. Если попробовать описать это наблюдение на основе концепции дальнодействия, то приходится считать, что заряды в сетчатке глаза взаимодействуют не с зарядами звезды, а с теми, которые когда-то были на звезде, которой уже нет. Заметим, что в процессе образования нейтронной звезды многие заряды исчезают, поскольку из электронов и протонов образуются нейтроны - нейтральные частицы, практически не участвующие в электромагнитном взаимодействии. Согласитесь, что описание на основе взаимодействия с тем, что когда-то было, но не существует в настоящий момент времени, «не очень удобное».

Другая причина признать поле материальным связана с тем, что электромагнитная волна переносит через пространство энергию и импульс . Если поле не считать материальным, то следует признать, что энергия и импульс не связаны с чем-то материальным и сами по себе переносятся через пространство.

Сформулированная в 1905 г. Альбертом Эйнштейном теория относительности базируется на постулате, в соответствии с которым не существует взаимодействий (в том числе и фундаментальных), распространяющихся быстрее света.

Мы начали с «материализации духов». Так вот... Физики - народ остроумный, и понятие «духи» уже используется в современной теории поля. Можно сказать, что пока еще эти духи не материализованы, т. е. не наблюдаются на опыте. Но и наука о фундаментальных полях пока еще не завершена.

Конечность распространения фундаменталь­ных полей и их связь с энергией и импуль­сом (перенос энергии и импульса этими по­лями) приводят к признанию этих полей в качестве одной из составляющих материи. Материя, таким образом, представлена час­тицами (веществом) и фундаментальными полями.

Понятие взаимодействия. Концепция дальнодействия и близкодействия

Под взаимодействием в более узком смысле понимают такие процессы, в ходе которых между взаимодействующими структурами и системами происходит обмен квантами определенных полей, энергией, а иногда и информацией.

В настоящее время принято считать, что любые взаимодействия каких угодно объектов могут быть сведены к ограниченному классу четырех основных видов фундаментальных взаимодействий: сильному, электромагнитному, слабому и гравитационному . Интенсивность взаимодействия принято характеризовать с помощью так называемой константы взаимодействия, которая представляет собой безразмерный параметр, определяющий вероятность процессов, обусловленных данным видом взаимодействия. Отношение значений констант дает относительную интенсивность соответствующих взаимодействий.

Концепции дальнодействия и близкодействия

Близкодействие и дальнодействие --это взаимно противоположные взгляды для объяснения взаимодействия материальных структур. По концепции близкодействия любое взаимодействие на материальные объекты может быть передано только между соседними точками пространства за конечный промежуток времени. Дальнодействие допускает действие на расстоянии мгновенно с бесконечной скоростью, т. е. фактически вне времени и пространства. После Ньютона эта концепция получает широкое распространение в физике, хотя он сам понимал, что введенные им силы дальнодействия (например, силы тяготения) являются лишь формальным приближенным приемом, позволяющим дать верное в некоторых пределах описание наблюдаемых явлений. Окончательное утверждение принципа близкодействия пришло с выработкой концепции физического поля как материальной среды. Уравнения поля описывают состояние системы в данной точке в данный момент времени как зависящее от состояния в ближайший предшествующий момент в ближайшей соседней точке. Если электромагнитное поле может существовать независимо от материального носителя, то электрическое взаимодействие нельзя объяснить мгновенным действием на расстоянии. Поэтому дальнодействие Ньютона уступило место близкодействию, полям, распространяющимся в пространстве с конечной скоростью. Таким образом, согласно современной науке, взаимодействия между структурами передаются посредством соответствующего поля с конечной скоростью, равной скорости света в вакууме.

Характеристика основных видов взаимодействия (гравитационное, электромагнитное, сильное и слабое)

1. Гравитационное взаимодействие является универсальным, однако в микромире не учитывается, так как из всех взаимодействий является самым слабым и проявляется только при наличии достаточно больших масс. Его радиус действия не ограничен, время также не ограничено. Обменный характер гравитационного взаимодействия до сих пор остается под вопросом, так как гипотетическая фундаментальная частица- гравитон- пока не обнаружена.

(И. Ньютон) - самое слабое взаимодействие.

2. Электромагнитное взаимодействие: константа порядка 10 -2 , радиус взаимодействия не ограничен, время взаимодействия t ~ 10 -20 с. Оно реализуется между всеми заряженными частицами. Частица-переносчик - фотон (г-квант).

3. Слабое взаимодействие связано со всеми видами в-распада, им обусловлены многие распады элементарных частиц и взаимодействие нейтрино с веществом. Константа взаимодействия порядка 10 -13 , t ~ 10 -10 с. Это взаимодействие, как и сильное, является короткодействующим: радиус взаимодействия r~10 -18 м. Частицы-переносчики - промежуточный векторный бозон: W + , W - , Z 0 . (Ферми).

4. Сильное взаимодействие обеспечивает связь нуклонов в ядре. Константа взаимодействия принимается равной1, радиус действия порядка 10 -15 м, время протекания t ~10 -23 с. Сильное взаимодействие осуществляется между кварками - частицами, из которых состоят протоны и нейтроны - c помощью т.н. глюонов. (Юкава).

Близкоде́йствие - представление, согласно которому взаимодействие между удаленными друг от друга телами осуществляется с помощью промежуточной среды (поля) и осуществляется с конечной скоростью. В начале 18 века одновременно с теорией близкодействия зародилась противоположная ей теория дальнодействия , согласно которой тела действуют друг на друга без посредников, через пустоту, на любом расстоянии, и такое взаимодействие осуществляется с бесконечно большой скоростью (но подчиняется определенным законам). Примером дальнодействия можно считать силу всемирного тяготения в классической теории гравитации И. Ньютона .

Одним из родоначальников теории близкодействия считается М. В. Ломоносов . Ломоносов был противником теории дальнодействия, считая, что тело не может воздействовать на другие тела мгновенно. Он полагал, что электрическое взаимодействие передается от тела к телу через особую среду «эфир», заполняющую все пустое пространство, в частности и пространство между частицами, из которых состоит «весомая материя», т. е. вещество. Электрические явления, по Ломоносову, следует рассматривать как определенные микроскопические движения, происходящие в эфире. То же самое относится и к магнитным явлениям.

Однако теоретические представления Ломоносова и Л. Эйлера в то время не могли получить развития. После открытия закона Кулона , который по своей форме был таким же, как и закон всемирного тяготения, теория дальнодействия совсем вытесняет теорию близкодействия. И только в начале 19 века М. Фарадей возрождает теорию близкодействия. Согласно Фарадею, электрические заряды не действуют друг на друга непосредственно. Каждый из них создает в окружающем пространстве электрическое и магнитное (если он движется) поля. Поля одного заряда действуют на другой и наоборот. Всеобщее признание теории близкодействия начинается со второй половины 19 века, после экспериментального доказательства теории Дж. Максвелла , сумевшего придать идеям Фарадея точную количественную форму, столь необходимую в физике - систему уравнений электромагнитного поля.

Важным отличием теории близкодействия от теории дальнодействия является наличие максимальной скорости распространения взаимодействий (полей, частиц) - скорости света. В современной физике проводится четкое разделение материи на частицы-участники (или источники) взаимодействий (называемые веществом) и частицы-переносчики взаимодействий (называемые полем). Из четырех видов фундаментальных взаимодействий надежную экспериментальную проверку существования частиц-переносчиков получили три: сильное, слабое и электромагнитное взаимодействия. В настоящее время предпринимаются попытки по обнаружению переносчиков гравитационного взаимодействия - так называемого

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Уже в античном мире мыслители задумывались над природой и сущностью простран-ства и времени. Одни из философов отрицали возможность существования пустого прос-транства или, по их выражению, небытия. Это были представители элейской школы в Древней Греции - Парменид и Зенон. Другие философы, в том числе Демокрит, утвер-ждали, что пустота существует, как и атомы, и необходима для их перемещений и соеди-нений.

В естествознании до XVI века господствовала геоцентрическая система Птоло-мея. Она представляла собой первую универсальную математическую модель мира, в которой время было бесконечным, а пространство конечным, включающим в себя равно-мерное круговое движение небесных тел вокруг неподвижной Земли. Коренное изменение пространственной и всей физической картины произошло в гелиоцентрической системе мира, представленной Коперником. Признав подвижность Земли, он отверг все ранее существовавшие представления о ее уникальности как центра Вселенной и тем самым направил движение научной мысли к признанию безграничности и бесконечности прос-транства. Эта мысль получила развитие в философии Джордано Бруно, который сделал вывод о бесконечности Вселенной и отсутствии у нее центра.

Важную роль в развитии представлений о пространстве сыграл открытый Галилеем принцип инерции. Согласно этому принципу все физические (механические) явления происходят одинаково во всех системах, движущихся равномерно и прямолинейно с постоянной по величине и направлению скорости.

Дальнейшее развитие представления о пространстве и времени связано с физико- космической картиной мира Р. Декарта. В ее основу он положил идею о том, что все явления природы объясняются механическим воздействием элементарных материальных частиц. Само же воздействие Декарт представлял в виде давления или удара при сопри-косновении частиц друг с другом и ввел таким образом в физику идею близкодействия.

Новая физическая картина мира была представлена в классической механике И. Ньютона. Он нарисовал стройную картину планетной системы, дал строгую количествен-ную теорию движения планет. Вершиной его механики стала теория тяготения, провозгла-сившая универсальный закон природы - закон всемирного тяготения . Согласно этому закону, любые два тела притягивают друг друга с силой, прямо пропорциональной их массам и обратно пропорциональной квадрату расстояния между ними.

Этот закон выражается следующей формулой:

где: k - гравитационная постоянная;

m1, m2 - тяготеющие массы;

r - расстояние между ними.

Данный закон ничего не говорит о зависимости силы тяготения от времени. Сила тяготения чисто математически может быть названа дальнодействующей, она мгновенно связывает взаимодействующие тела и для ее вычисления не требуется никаких допущений о среде, передающей взаимодействие.

Распространив на всю Вселенную закон тяготения, Ньютон рассмотрел и возможную ее структуру. Он пришел к выводу, что Вселенная - бесконечна. Лишь в этом случае в ней может существовать множество космических объектов - центров гравитации. В рамках ньютоновской модели Вселенной утвердилось представление о бесконечном пространстве, в котором находятся космические объекты, связанные между собой силой тяготения. Последовавшее во второй половине XVIII века открытие основных законов электро - и магнитостатики, аналогичных по математической форме закону всемирного тяготения еще более утвердило в сознании ученых идею дальнодействующих сил, зависящих только от расстояния, но не от времени.

Поворот в сторону идей близкодействия связан с идеями Фарадея и Масквелла, которые разработали концепцию электромагнитного поля как самостоятельной физической реальности. Исходным при этом было признание близкодействия и конечной скорости передачи любых взаимодействий.

Вывод о том, что волновое электромагнитное поле отрывается от разряда и может самостоятельно существовать и распространяться в пространстве, казался абсурдным. Сам Максвелл упорно стремился вывести свои уравнения из механических свойств эфира. Но когда Герц экспериментально обнаружил существование электромагнитных волн, это бы-ло воспринято как решающее доказательство справедливости теории Максвелла. Место мгновенного дальнодействия заняло передающееся с конечной скоростью близкодей-ствие.

Взаимодействие материи – неотъемлемое свойство материи, выступающее как причина движения материи.

Фундаментальные взаимодействия - различные, не сводящиеся друг к другу типы взаимодействия элементарных частиц и составленных из них тел.

Существуют четыре типа взаимодействия:

1. Гравитационное взаимодействие – ответственно за взаимодействие между телами, обладающими массой. Является определяющим в мегамире – мире планет, звезд, галактик.

2. Электромагнитное взаимодействие - ответственно за взаимодействия между электрически заряженными частицами и телами. Существенно в макромире и атомных явлениях. Определяет строение и свойства атомов и молекул.

3. Сильное взаимодействие - ответственно за взаимодействие между кварками и адронами, за связь нуклонов в ядре. Является определяющим в микромире.

4. Слабое взаимодействие - ответственно за другие виды взаимодействия между элементарными частицами - все виды бета-распада ядер, процессы взаимодействия нейтрино с веществом, за многие распады элементарных частиц. Проявляет себя в микромире.

Рационалистическое мировоззрение предполагает, что любое событие имеет материальную причину: воздействие со стороны материального тела (тел). Поэтому любая программа рационального объяснения окружающего мира включает в себя представления о механизмах взаимодействия материальных объектов.

Концепция близкодействия предполагает, что взаимодействие возможно только при непосредственном контакте взаимодействующих объектов, любое действие на расстоянии должно передаваться через материальных посредников, так называемых переносчиков взаимодействия, с конечной скоростью.

Концепция дальнодействия предполагает, что взаимодействие материальных тел не требует материального посредника и может передаваться мгновенно.

Концепция близкодействия была выдвинута Аристотелем, который был убежден в отсутствие пустоты в мире. Следовательно, между любыми двумя взаимодействующими телами располагается ряд примыкающих друг к другу других тел, которые передают взаимодействие при непосредственном контакте.

В XVII в. концепция близкодействия была развита Рене Декартом. В механике Декарта взаимодействие происходит только путём давления или удара, т.е. при соприкосновении тел.

Концепция дальнодействия прослеживалась в атомистической теории Демокрита и Левкиппа, так как взаимодействие между атомами передавалось через пустоту.

В механической картине мира , основоположником которой был Исаак Ньютон, принята концепция дальнодействия, при этом считалось, что действие одного тела на другое – это всегда и действие второго на первое, то есть взаимодействие.

В конце XIX в. возникла новая идея – идея поля, основная роль которого – передача взаимодействия. Майкл Фарадей выдвинул идею электромагнитного поля, передающего взаимодействие при электризации проводников и намагничивании вещества. Развил и математически оформил эту идею Максвелл. Таким образом, в основе электромагнитной научной картине мира лежит концепция близкодействия. Механизм передачи взаимодействия с помощью поля состоит в следующем. Тело, участвующее во взаимодействии, создает вокруг себя поле, которое занимает область пространства радиусом равным радиусу взаимодействия. Другие тела взаимодействуют не непосредственно с первым телом, а с созданным им полем в тех точках, где они находятся. Изменение состояния одного из взаимодействующих тел вызывает возмущение созданного им поля, которое распространяется в виде волны, достигает других тел, и только тогда их состояние начинает изменяться. Наряду с электромагнитным полем, которое переносит электромагнитные взаимодействия, в электромагнитной картине мира рассматривается также гравитационное поле – переносчик гравитационных сил.

В современной картине мира идея поля получила дальнейшее развитие. Полевой механизм взаимодействия был уточнен в квантово-полевой механизм . С позиций современной физики все формы существования материи дискретны. Возмущение поля – волна – согласно корпускулярно-волновому дуализму, может одновременно рассматриваться как совокупность частиц – квантов полей. Поэтому взаимодействие, переносимое полем, рассматривается как процесс обмена квантами поля между взаимодействующими телами и частицами вещества. Кванты, которыми обмениваются взаимодействующие тела, представляют собой не обычные частицы, а виртуальные частицы. Виртуальные частицы отличаются тем, что обнаружить их за время их существования невозможно. Об их существовании и свойствах можно судить только косвенно – по силе переносимого взаимодействия. Непосредственно зарегистрировать виртуальную частицу нельзя. Например, виртуальный фотон по зрительному ощущению на сетчатке глаза зарегистрировать нельзя. Описание механизма взаимодействия на языке обмена виртуальными частицами не исключает, а дополняет классическое описание на языке полей и волн. Таким образом, концепция дальнодействия в науке оказалась отброшенной окончательно.

 
Статьи по теме:
Как приготовить свиной желудок с гречкой
Сычуг, колбик, субпродукт. Какие еще названия есть у свиного желудка? Люди, занимающиеся разведением этих забавных животных с пятачком, знают, как приготовить свиной желудок, чтобы даже самый привередливый гурман испытал гастрономическое удовольствие. Се
Зерновое кофе для кофемашины
Сегодня зерновой кофе на рынке представляют множество различных брендов. Выбор настолько велик, что даже настоящие профессионалы могут запутаться. Поэтому сегодня разговор пойдет о том, какой кофе в зернах лучше или хуже и о мастерстве cup-tester. Кофе
Домашняя ветчина из свинины в ветчиннице с грибами, черносливом и орехами
С появлением ребенка в доме начинаешь задумываться о здоровой и, самое главное, вкусной пище. Ветчинница Редмонд — это не электрический прибор, а просто дополнительный аксессуар для приготовления домашней колбасы в мультиварке. Понятно, что вареная колбас
Свинина по-китайски: простой и вкусный рецепт
Свинина по-китайски - визитная карточка китайской кухни. Существует множество способов приготовления мяса и каждый из них хорош по-своему. Практически в каждом рецепте присутствует сахар или другой подсластитель, поэтому блюдо всегда выходит восхитительно