Свет как электромагнитная волна. Скорость света. Интерференция света: опыт Юнга; цвета тонких пленок. Свет - это тоже электромагнитные волны

Согласно волновой теории свет представляет собой электромагнитную волну.

Видимое излучение (видимый свет) – электромагнитное излучение, непосредственно воспринимаемое человеческим глазом, характеризующееся длинами волн в диапазоне 400 – 750 нм, что соответствует диапазону частот 0,75·10 15 – 0,4·10 15 Гц. Световые излучения различных частот воспринимаются человеком как разные цвета.

Инфракрасное излучение – электромагнитное излучение, занимающее спектральную область между красным концом видимого света (с длиной волны около 0,76 мкм) и коротковолновым радиоизлучением (с длиной волны 1-2 мм). Инфракрасное излучение создает ощущение тепла, поэтому его часто называют тепловым.

Ультрафиолетовое излучение – невидимое глазом электромагнитное излучение, занимающее спектральную область между видимым и рентгеновским излучениями в пределах длин волн от 400 до 10 нм.

Электромагнитные волны – электромагнитные колебания (электромагнитное поле) распространяющиеся в пространстве с конечной скоростью, зависящей от свойств среды (в вакууме - 3∙10 8 м/с). Особенности электромагнитных волн, законы их возбуждения и распространения описываются уравнениями Максвелла. На характер распространения электромагнитных волн влияет среда, в которой они распространяются. Электромагнитные волны могут испытывать преломление, дисперсию, дифракцию, интерференцию, полное внутреннее отражение и другие явления, свойственные волнам любой природы. В однородной и изотропной среде вдали от зарядов и токов, создающих электромагнитное поле, волновые уравнения для электромагнитных (в т.ч. и для световых) волн имеют вид:

где и – соответственно электрическая и магнитная проницаемости среды, и – соответственно электрическая и магнитная постоянные, и – напряжённости электрического и магнитного поля, – оператор Лапласа. В изотропной среде фазовая скорость распространения электромагнитных волн равна Распространение плоских монохроматических электромагнитных (световых) волн описывается уравнениями:

kr ; kr (6.35.2)

где и – соответственно амплитуды колебаний электрического и магнитного полей, k – волновой вектор, r – радиус-вектор точки, – круговая частота колебаний, – начальная фаза колебаний в точке с координатой r = 0. Векторы E и H колеблются в одинаковой фазе. Электромагнитная (световая) волна поперечна. Векторы E , H , k ортогональны друг другу и образуют правую тройку векторов. Мгновенные значения и в любой точке связаны соотношением Учитывая, что физиологическое воздействие на глаз оказывает электрическое поле, уравнение плоской световой волны, распространяющейся в направлении оси можно записать следующим образом:


Скорость света в вакууме равна

. (6.35.4)

Отношение скорости света в вакууме к скорости света в среде называется абсолютным показателем преломления среды :

(6.35.5)

При переходе из одной среды в другую изменяются скорость распространения волны и длина волны , частота остается неизменной. Относительным показателем преломления второй среды относительно первой называется отношение

где и – абсолютные показатели преломления первой и второй среды, и – скорость света в первой и второй среде соответственно.

1. Свет – электромагнитная волна

Электромагнитная теория света берет начало от работ Максвелла. В основе электромагнитной теории света лежит факт совпадения скорости света со скоростью распространения электромагнитныхволн.

Из теории Максвелла следовало, что электромагнитные волны являются поперечными. К тому времени понеречность световых волн уже была доказана экспериментально. Поэтому Максвелл обоснованно считал поперечность электромагнитных волн еще одним важным доказательством справедливости электромагнитной теории света.

После того как Герц экспериментально получил электромагнитные волны и измерил их скорость, электромагнитная теория света была впервые экспериментально подтверждена. Было доказано, что электромагнитные волны при распространении проявляют те же свойства, что и световые: отражение, преломление, интерференцию, поляризацию и др. В конце XIX в. было окончательно установлено, что световые волны возбуждаются движущимися в атомах заряженными частицами.

С признанием электромагнитной теории света постепенно исчезли все затруднения, связанные с необходимостью введения гипотетической среды - эфира, который приходилось рассматривать как твердое тело. Световые волны - это не механические волны в особой всепроникающей среде - эфире, а электромагнитные волны. Электромагнитные процессы подчиняются не законам механики, а законам электромагнетизма. Эти законы и были установлены в окончательной форме Максвеллом.

В электромагнитной волне векторы и перпендикулярны друг другу. В естественном свете колебания напряженности электрического поля и магнитной индукции происходят по всем направлениям, перпендикулярным направлению распространения волны. Если свет поляризонан, то колебания векторов и происходят не по всем направлениям, а в двух определенных плоскостях. Электромагнитная волна, изображенная на рисунке 7.1, является поляризованной.

Возникает естественный вопрос: если речь идет о направлении колебаний в световой волне, то, собственно говоря, колебания какого вектора - или - имеются в виду? Специально поставленные опыты доказали, что на сетчатку глаза или фотоэмульсию действует электрическое поле

световой волны. В связи с этим за направление колебаний в световой волне принято направление вектора напряженности электрического поля.

Открытие электромагнитной теории света - одно из немногих открытий, сделанных на кончике пера, т. е. теоретически.

Всеобщее признание электромагнитная теория получила, однако, лишь после своего экспериментального подтверждения.

2. Интерференции механических волн

Сложение волн. Очень часто в среде одновременно распространяется несколько различных волн. Например, когда в комнате беседуют несколько человек, то звуковые волны накладываются друг на друга. Что при этом происходит?

Проще всего проследить за наложением механических волн, наблюдая волны на поверхности воды. Если мы бросим в воду два камня, образовав тем самым две круговые волны, то можно будет заметить, что каждая волна проходит сквозь другую и ведет себя в дальнейшем так, как будто другой волны совсем не существовало. Точно так же любое число звуковых волн может одновременно распространяться в воздухе, ничуть не мешая друг другу. Множество музыкальных инструментов в оркестре или голосов в хоре создает звуковые волны, одновременно улавливаемые нашим ухом. Причем ухо может отличить один звук от другого.

Теперь посмотрим более внимательно, что происходит в местах, где волны накладываются одна на другую. Наблюдая волны на поверхности воды от двух брошенных в воду камней, можно заметить, что некоторые участки поверхности не возмущены, в других же местах возмущение усилилось. Если две волны встречаются в одном месте своими гребнями, то в этом месте возмущение поверхности воды усиливается. Если же, напротив, гребень одной волны встречается с впадиной другой, то поверхность воды не будет возмущена.

Вообще же в каждой точке среды колебания, вызванные двумя волнами, просто складываются. Результирующее смещение любой частицы среды

представляет собой алгебраическую сумму смещений, которые происходили

бы при распространении одной из волн в отсутствие другой.


Интерференция. Сложение в пространстве волн, при котором образуется постоянное но времени распределение амплитуд результирующих колебаний частиц среды, называетсяинтерференцией.

Выясним, при каких условиях наблюдается интерференция волн. Для этого рассмотрим более подробно сложение волн, образующихся на поверхности воды.

Можно одновременно возбудить две круговые волны в ванне с помощью двух птариков, укрепленных на стержне, которые совершают гармонические колебания (рис. 8.43). В любой точке М на поверхности воды (рис. 8.44) будут складываться колебания, вызванные двумя волнами (от источников O 1 и О 2). Амплитуды колебаний, вызванных в точке М обеими волнами, будут, вообще говоря, различаться, так как волны проходят различные пути d 1 и d 2 . Но если расстояние I между источниками много меньше этих путей то обе амплитуды можно считать практически одинаковыми.

Результат сложения волн, приходящих в точку М, зависит от разности фаз между ними. Пройдя различные расстояния d 1 и d 2 волны имеют разность хода d = d 2 - d 1 . Если разность хода равна длине волны , то вторая волна запаздывает по сравнению с первой на один период (именно за период волна проходит путь, равный ее длине волны ). Следовательно, в этом случае гребни (как и впадины) обеих волн совпадают.

Условие максимумов. На рисунке 8.45 изображена зависимость от времени смещений х 1 и х 2 волнами при d = . Разность фаз колебаний равна нулю (или, что то же самое, 2 так как период синуса равен 2 ). В результате сложения этих колебаний возникают результирующие колебания с удвоенной амплитудой. Колебания результирующего смещения х на рисунке

показаны цветной штриховой линией.


1 От латинских слов inter - взаимно, между собой и ferio ударяю, поражаю



То же самое будет происходить, если на отрезке d укладывается не одна, а любое целое число длин волн.

Амплитуда колебаний частиц среды в данной точке максимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна целому числу длин волн:

где k = 0, 1, 2, ... .

Условие минимумов. Пусть теперь на отрезке Ad укладывается половина длины волны. Очевидно, что при этом вторая волна отстает от первой на половину периода. Разность фаз оказывается равной л, т. е. колебания будут происходить в противофазе. В результате сложения этих колебаний амплитуда результирующих колебаний равна нулю, т. е. в рассматриваемой точке колебаний нет (рис. 8.46). То же самое произойдет, если на отрезке укладывается любое нечетное число полуволн.

Амплитуда колебаний частиц среды в данной точке минимальна, если разность хода двух волн, возбуждающих колебания в этой точке, равна нечетному числу полуволн:

Если разность хода d 2 - d 1 принимает промежуточное значение между то и амплитуда результирующих колебаний принимает некоторое промежуточное значение между удвоенной амплитудой и нулем. Но важно то, что амплитуда колебаний в любой точке не меняется с течением времени. На поверхности воды возникает определенное, неизменное во времени распределение амплитуд колебаний, которое называют интерференционной картиной. На рисунке 8.47 показана фотография интерференционной картины для двух круговых волн от двух источников (черные кружки). Белые участки в средней части фотографии соответствуют максимумам колебаний, а темные - минимумам.


Когерентные волны. Для образования устойчивой интерференционной картины необходимо, чтобы источники волн имели одинаковую частоту и разность фаз ихколебаний была постоянной.

Источники, соответствующие этим двум условиям, называются когерентными 1 . Когерентными называют и созданные ими волны. Только при сложении когерентных волн образуется устойчивая интерференционная картина.

Если же разность фаз колебаний источников не остается постоянной, то в любой точке среды разность фаз колебаний, возбуждаемых двумя волнами, будет меняться с течением времени. Поэтому амплитуда результирующих колебаний с течением времени будет непрерывно изменяться. В результате максимумы и минимумы перемещаются в про странстве, и интерференционная картина размывается.

Распределение энергии при интерференции. Волны несут энергию. Что же с этой энергией происходит при гашении волн друг другом? Может быть, она превращается в другие формы, и в минимумах интерференционной картины выделяется тепло? Ничего подобного!

Наличие минимума в данной точке интерференционной картины означает, что энергия сюда не поступает совсем. Вследствие интерференции

происходит пepepaспредилениe энергии в пространстве. Она не распределяется равномерно по всем частицам среды, а концентрируется в максимумах за счет того, что в минимумы не поступает вовсе.

1 От латинского слова cohaereus - влаимосвязанный.

Обнаружение интерференционной картины доказывает, что мы наблюдаем волновой процесс. Волны могут гасить друг друга, а сталкивающиеся частицы никогда не уничтожают друг друга целиком. Интерферируют только когерентные (согласованные)волны.

Юнг Томас (1773-1829) - английский ученый с необыкновенной широтой научных интересов и многогранностью дарований. Одновременно известный врач и физик с огромной интуицией, астроном и механик, металлург и египтолог, физиолог и полиглот, талантливый музыкант и даже способный гимнаст. Главными его заслугами являются открытие интерференции света (ввел в физику термин «интерференция») и объяснение явления дифракции на основе волновой теории. Первым измерил длину световой волны.

Никакой устойчивой картины с определенным распределением максимумов и минимумов освепденности в пространстве не наблюдается.

Интерференция в тонких пленках. Тем не менее интеференцию света удается наблюдать. Хотя ее и наблюдали очень давно, но только не придавали этому значения.

Вы тоже много раз видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов такой пленки керосина либо нефти на поверхности воды.

«Мыльный пузырь, витая в воздухе... зажигается всеми оттенками цветов, присущими окружающим предметам. Мыльный пузырь, пожалуй, самое изысканное чудо природы» (Марк Твен). Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением волн 1 и 2 (рис. 8.48), одна на которых (1) отражается от наружной поверхности пленки, а другая (2) - от внутренней. При этом происходит интеференция световых волн - сложение двух волн, вследствии которого наблюдается устойчивая во времени картина усиления или ослабления результирующих световых колебаний в различных точках пространства. Результат интерференции (усиление или ослабление результирующих колебаний) зависит от угла падения света на пленку, ее толщины и длины волны света. Усиление света произойдет в том случае, если преломленная волна 2 отстанет от отраженной волны 1 на целое число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.
1 Исключение составляют квантовые источники света, лазеры, созданные в 1960 г.

Когерентность волн, отраженных от наружной и внутренней поверхностей пленки, возникает из-за того, что они являются частями одного и того же светового пучка. Цуг волн от каждого излучающего атома разделяется пленкой на два цуга, а затем эти части сводятся вместе и интерферируют.

Юнг понял также, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым пучкам различного цвета соответствуют волны с разной длиной волны . Для взаимного усиления волн, отличающихся друг от друга длиной волны (углы

падения предполагаются одинаковыми), требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

Кольца Ньютона. Простая интерференционная картина возникает в тонкой прослойке воздуха между стеклянной пластиной и положенной на нее плосковыпуклой линзой, сферическая поверхность которой имеет большой радиус кривизны. Эта интерференционная картина имеет вид концентрических колец, получивших название колец Ньютона.

Возьмите плосковыпуклую линзу с малой кривизной сферической поверхности и положите ее выпуклостью вниз на стеклянную пластину.

Внимательно разглядывая плоскую поверхность линзы (лучше через лупу), вы обнаружите в месте соприкосновения линзы и пластины темное пятно и вокруг него совокупность маленьких радужных колец (см. рис. III, 1 на цветной вклейке). Это и есть кольца Ньютона. Ньютон наблюдал и исследовал их не только в белом свете, но и при освещении линзы одноцветным (монохроматическим) пучком. Оказалось, что радиусы колец одного и того же порядкового номера увеличиваются при переходе от фполетового конца спектра к красному; красные кольца имеют максимальный радиус. Расстояния между соседними кольцами уменьшаются с увеличением их радиусов (см. рис. III, 2, 3 на цветной вклейке).

Удовлетворительно объяснить, почему возникают кольца, Ньютон не смог. Удалось это Юнгу. Проследим за ходом его рассуждений. В их основе лежит предположение о том, что свет - это волны. Рассмотрим случай, когда волна определенной длины волны падает почти перпендикулярно на плосковыпуклую линзу (рис. 8.49). Волна 1 появляется к результате отражения от выпуклой поверхности линзы на границе сред стекло - воздух, а волна 2 - в результате отражения от пластины на границе сред воздух - стекло. Эти волны когерентны: они имеют одинаковую длину волны и постоянную разность фаз, которая возникает из-за того, что волна 2 проходит больший путь, чем волна 1. Если вторая волна отстает от первой на целое число длин волн, то, складываясь, волны усиливают друг друга.

Напротив, если вторая волнa отстает от первой на нечетное число полуволн, то колебания, вызванные ими, будут происходить в противоположных фазах, и волны погасят друг друга.

Если известен радиус кривизны R выпуклой поверхности линзы, то можно вычисмшть, на каких расстояниях от точки соприкосновения линзы со стеклянной пластиной разности хода таковы, что волины определенной длины волны , гасят друг друга. Эти расстояния и являются радиусами темных колец Ньютона. Ведь линии постоянной толщины воздушной

прослойки представляют собой окружности. Измерив радиусы колец, можно вычислить длины волн.

Длина световой волны. В результате измерений было установлено, что для красного света кр = 8 . 10 -7 м, а для фиолетового - ф = 4 . 10 7 м. Длины волн, соответствующие другим цветам спектра, принимают промежуточные значения. Для любого цвета длина световой волны очень мала. Поясним это на простом примере. Представьте себе среднюю морскую волну длиной волны в несколько метров, которая увеличилась настолько, что заняла весь Атлантический океан от берегов Америки до Эвропы. Длина световой волны, увеличенной в той же пропорции лишь ненамного превысила бы ширину этой страницы.

В случае постоянных токов или распределений зарядов, медленно меняющихся со временем, выводы из уравнений Максвелла практически не отличаются от выводов из тех уравнений электричества и магнетизма, которые существовали до введения Максвеллом тока смещения. Однако если токи или заряды изменяются со временем, особенно если они изменяются очень быстро, как в случае, например, двух шаров, где заряд мечется от шара к шару (фиг. 351), уравнения Максвелла допускают решения, которых раньше не существовало.

Рассмотрим магнитное поле, порожденное током (скажем, текущим по проводу). Теперь представим, что цепь разрывается. При уменьшении тока магнитное поле, окружающее провод, тоже уменьшается, а следовательно, возбуждается электрическое поле (согласно закону Фарадея, переменное магнитное поле возбуждает поле электрическое). Когда скорость изменения магнитного поля снижается, электрическое поле начинает спадать. В соответствии с домаксвелловскими представлениями больше ничего не происходит: электрическое и магнитное поля исчезают при обращении тока в нуль, так как считалось, что переменное электрическое поле не производит никакого эффекта.

Однако из теории Максвелла следует, что спадающее электрическое поле возбуждает магнитное поле так же, как и спадающее магнитное поле возбуждает электрическое поле, и что эти поля комбинируются таким образом, что при уменьшении одного из них другое возникает

немного дальше от источника, и в результате весь импульс перемещается в пространстве как целое. Если величина В равна величине Е и эти два вектора взаимно перпендикулярны, то, как вытекает из уравнений Максвелла, импульс должен распространяться в пространстве с определенной скоростью.

Этот импульс обладает всеми свойствами, которыми мы ранее характеризовали волновое движение. Если у нас имеется не один, а очень много импульсов, вызванных, например, колебаниями электрических зарядов между двумя шарами, то с таким набором импульсов можно связать определенную длину волны, т. е. расстояние между соседними гребнями. Импульсы распространяются от точки к точке так же, как и волна. И, что особенно важно, при этом выполняется главный принцип, а именно принцип суперпозиции, так как электрические и магнитные поля обладают аддитивными свойствами. Таким образом, движение электрических и магнитных импульсов характеризуется волновыми свойствами.

Рассмотрим опять планетарную систему заряженных частиц (фиг. 352). Согласно теории Максвелла, заряженная частица (в частности, электрон), движущаяся по круговой орбите (как и любая частица, имеющая ускорение), возбуждает электромагнитную волну.

Частота этой волны равна частоте обращения электрона по орбите. Используя численные значения, полученные в гл. 19, находим

Из соотношения между частотой и длиной волны имеем

В результате

Допустим, например, что скорость распространения волны равна см/с. Тогда

Это длина волны ультрафиолетового излучения, т. е. излучения с более короткой длиной волны, чем у фиолетового света. (Минимальная длина волны видимого света порядка см.)

Планетарная система заряженных частиц излучает электромагнитные волны, т. е. теряет энергию (волны уносят с собой энергию, так как они способны совершать работу над зарядами, находящимися вдали от источника), и поэтому для ее стабильного существования требуется подкачка дополнительной энергии извне.

Когда Максвелл понял, что его уравнения допускают такое решение, он вычислил скорость, с которой волна должна распространяться в пространстве. Он пишет:

«Скорость поперечных волновых колебаний в нашей гипотетической среде, вычисленная из электромагнитных опытов Кольрауша и Вебера, столь точно совпадает со скоростью света, вычисленной из оптических опытов Физо, что мы едва ли можем отказаться от вывода, что свет состоит из поперечных колебаний той же самой среды, которая является причиной электрических и магнитных явлений» .

«Я получил свои уравнения, живя в провинции и не подозревая о близости найденной мной скоррсти распространения магнитных эффектов к скорости света, поэтому я думаю, что у меня есть все основания считать магнитную и светоносную среды как одну и ту же среду...» .

[Максвеллу было гораздо сложней получить свой знаменитый результат, чем это можег нам показаться. Мы ввели для удобства букву с, обозначающую скорость света, чтобы связать изменения магнитного поля с возбуждаемым им электрическим полем, заменив довольно таки произвольное число величиной Затем мы использовали эту же величину с для описания связи между магнитным полем и возбуждающими его токами и переменными электрическими полями. Согласно закону Ампера, измеренная циркуляция магнитного поля должна быть пропорциональной измеренному значению тока, протекающего через поверхность. Оказалось, например, что

где число в системе СГС взято из действительных измерений магнитного поля и тока, протекающего через поверхность. Когда Максвелл рассмотрел эти уравнения совместно и нашел решение, соответствующее распространению импульса электромагнитного излучения,

он получил из этих измеренных чисел другое число, которое давало скорость распространения этого импульса. И это число оказалось равным примерно см/с. Но число см/с есть измеренная величина скорости света. Поэтому Максвелл и отождествил импульс излучения с самим светом. Он писал:

«...мы имеем серьезные основания сделать заключение, что сам по себе свет (включая лучистую теплоту и другие излучения) является электромагнитным возмущением в форме волн, распространяющихся через электромагнитное поле согласно законам электромагнетизма» .

Фиг. 353. На рисунке изображено решение уравнений Максвелла, соответствующее волне, распространяющейся в вакууме со скоростью света. Векторы Е и В взаимно перпендикулярны и равны по величине. Возможны как импульсы, так и периодические решения, соответствующие волнам заданной длины. Вакуум есть среда без дисперсии, т. е. в нем все периодические волны распространяются с одинаковыми скоростями .

Удивление было всеобщим, но были и сомневающиеся. Так, в одном из писем к Максвеллу говорилось:

«Совпадение между наблюдаемой скоростью света и вычисленной Вами скоростью поперечных колебаний в вашей среде выглядит прекрасным результатом. Однако мне кажется, что подобные результаты не являются желательными, пока вы не убедите людей в том, что всякий раз, когда возникает электрический ток, небольшой ряд частиц протискивается между двумя рядами вращающихся колесиков» .

После того как свет был отождествлен с электромагнитной волной [различные цвета соответствуют различным частотам (фиг. 354), или длинам волн излучения, причем видимый свет составляет лишь небольшую часть полного спектра электромагнитного излучения] и поскольку были известны взаимодействия электрических и магнитных полей с заряженными частицами (формула Лоренца), впервые оказалось возможным создать теорию взаимодействия света с веществом (если полагать, что среды состоят из заряженных частиц). Так, например, после выхода работ Максвелла Лоренц и Фицджеральд, пытаясь показать сходство между поведением электромагнитной волны и поведением света при его отражении и преломлении, рассчитали случай прохождения

электромагнитной волны через границу двух сред; оказалось, что поведение этой волны совпадает с наблюдаемым поведением света.

Даже если бы Максвеллу и не удалось отождествить электромагнитное излучение со светом, его открытие все равно имело бы огромное значение. Чтобы убедиться в этом, вспомним, что электрическое поле может совершать над зарядом работу. Следовательно, заряд, колеблющийся в одной точке пространства, порождает электромагнитный импульс, который способен распространиться на любое желаемое расстояние от движущегося заряда и электрическое поле которого может совершить там работу над другим зарядом.

Фиг. 354. Спектр электромагнитных колебаний. Рентгеновские лучи, видимый свет, радиоволны и т. п - все это электромагнитные волны с различными длинами волн. Видимый свет отличается от «невидимого» только тем, что последний не воспринимается человеческим глазом.

Не много воды утекло еще с тех пор, как впервые удалось передать по проводам электрическую энергию с тем, чтобы совершать работу вдали от генераторов, производящих ток. Теперь же Максвелл предлагал передавать на большие расстояния без помощи каких-либо проводов энергию, способную совершать работу над удаленными заряженными телами. Кроме того, с помощью контролируемых изменений такой электромагнитной волны можно передавать информацию, которую нетрудно расшифровать в любой удаленной точке. Этот вывод не мог не иметь важных практических последствий.

Свет – электромагнитная волна. В конце XVII века возникли две научные гипотезы о природе света - корпускулярная и волновая . Согласно корпускулярной теории, свет представляет собой поток мельчайших световых частиц (корпускул), которые летят с огромной скоростью. Ньютон считал, что движение световых корпускул подчиняется законам механики. Так, отражение света понималось аналогично отражению упругого шарика от плоскости. Преломление света объяснялось изменением скорости частиц при переходе из одной среды в другую. Волновая теория рассматривала свет как волновой процесс, подобный механическим волнам. Согласно современным представлениям, свет имеет двоякую природу, т.е. он одновременно характеризуется и корпускулярными, и волновыми свойствами. В таких явлениях, как интерференция и дифракция, на первый план выступают волновые свойства света, а в явлении фотоэффекта, - корпускулярные. Под светом в оптике понимают электромагнитные волны достаточно узкого диапазона. Нередко, под светом понимают не только видимый свет, но и примыкающие к нему широкие области спектра. Исторически появился термин «невидимый свет» - ультрафиолетовый свет, инфракрасный свет, радиоволны. Длины волн видимого света лежат в диапазоне от 380 до 760 нанометров. Одной из характеристик света является его цвет , который определяется частотой световой волны. Белый свет представляет собой смесь волн различных частот. Он может быть разложен на цветные волны, каждая из которых характеризуется определенной частотой. Такие волны называются монохроматическими. Согласно самым новым измерениям скорость света в вакууме Отношение скорости света в вакууме к скорости света в веществе называется абсолютным показателем преломления вещества.

При переходе световой волны из вакуума в вещество частота остается постоянной (цвет не изменяется). Длина волны в среде с показателем преломления n изменяется:

Интерференция света - опыт Юнга. Свет от лампочки со светофильтpом, котоpый создает пpактически монохpоматический свет, пpоходит чеpез две узкие, pядом pасположенные щели, за котоpыми установлен экpан. На экpане будет наблюдаться система светлых и темных полос - полос интеpфеpенции. В данном случае единая световая волна pазбивается на две, идущие от pазличных щелей. Эти две волны когеpентны между собой и пpи наложении дpуг на дpуга дают систему максимумов и минимумов интенсивности света в виде темных и светлых полос соответствующего цвета.

Интерференция света - условия max и min. Условие максимума : Если в оптической разности хода волн укладывается четное число полуволн или целое число волн, то в данной точке экрана наблюдается усиление интенсивности света (max). , где - pазность фаз складываемых волн. Условие минимума: Если в оптической разности хода волн укладывается нечетное число полуволн, то в точке минимум.

Максвеллу создать электромагнитную теорию поля. Он доказал, что в природе должны существовать электромагнитные волны. Максвелл рассчитал скорость распро­странения электромагнитных волн в вакууме и в среде: υ=с/ . где с - скорость их распространения в вакууме, ε и μ -диэлектрическая и магнитная проницаемость среды. Свет - это электромагнитные волны.

Таким образом, волновая теория о при­роде света эволюционировала в электромагнитную теорию света. Согласно этой теории свет - это электромагнитные волны опре­деленного оптического диапазона. Оптическое излучение в пределах длин волн от 760 нм до 380 нм способно непосредственно вызывать зрительное ощущение в человеческом глазе. Следовательно, оно является видимым. Оптическое излуче­ние с λ > 760 нм называется инфракрасным, а с λ < 380 нм - ультрафиолетовым.Как любые электромагнитные волны, световые волны могут быть описаны с помощью вектора напряженности Ё электриче­ского поля и вектора магнитной индукции В магнитного поля волны. Но при действии света на вещество, основное значение имеет электрическая составляющая поля волны, действующая на электроны атомов вещества, поэтому световые волны описывают­ся уравнением:E=E 0 cos(ωt-2πr/λ).Где E 0 -амплитуда напряжонности, ω-циклическая честота, λ-длина волны,r- расстояние до источника света.

Скорость света

Скорость света в вакууме - одна из наиболее важных фи­зических констант..Поскольку скорость рас­пространения света очень ве­лика, свет затрачивает замет­ное время лишь на прохождение очень больших расстояний. Следовательно, для определения скорости света следует определять либо очень малые промежутки времени, либо астрономические расстояния.Впервые скорость света измерил датский астроном Ремер в 1676 г., Первое наблюдение было проведено в то время когда Земля, дви­гаясь вокруг Солнца, находилась ближе всего к Юпитеру. По­вторное наблюдение, проведенное через 6 месяцев, когда Земля удалилась от Юпитера примерно на диаметр своей орбиты, пока­зало, что Ио опоздал появиться из тени Юпитера на 22 мин. Это запаздывание вызвано тем, что свет тратит 22 мин на прохожде­ние расстояния, примерно равное диаметру земной орбиты. Раз­делив это расстояние на время запаздывания, Ремер нашел ско­рость света (215000 км/с). Впоследствии были разработаны другие, более точные методы лабораторных измерений скорости света.

В 1881 г. Майкельсон определил скорость света с помощью вращающейся восьмигранной зеркаль­ной призмы Для своих измерений Майкельсон воспользо­вался двумя горными вершинами: Антонио и Вильсон (в Калифорнии), расстояние между кото­рыми (35,426 км) было тщательно измерено. На вершине горы Вильсон был установлен сильный источник 5, свет от которого, проходя через щель, падал на восьмигранную зеркальную призму А. От­раженный от зеркальной грани призмы свет попадал на вогнутое зеркало В, установленное на вершине горы Антонио. Далее свет падал на зеркало т и, отражаясь от него, падал на другую точку зеркала В, после чего попадал на вторую грань зеркальной приз­мы А и отражался. Отраженный свет улавливался с помощью зрительной трубы С. Вышедший из щели свет мог попасть в зри­тельную трубу только при том условии, если за время распростра­нения света с одной горы на другую и обратно в расположении зеркал ничего не изменилось.


Зеркальная призма А при помощи мотора приводилась во вращение, причем скорость мотора регулировалась так, чтобы че­рез зрительную трубу щель S была видна непрерывно. Это могло быть только при том условии, если за время поворота призмы на 1/8 оборота свет проходил путь, равный двойному расстоянию между вершинами гор. Зная число оборотов зеркала в секунду и пройденный светом путь, Майкельсон нашел, что скорость света в воздухе

Скорость света в различных веществах, как показывают опыты, неодинакова. В воде, например, скорость света около 225000 км/с, в стекле около 200000 км/с.

 
Статьи по теме:
Сонник: к чему снится океан
Каждую ночь человеку снится около 5-8 снов. Обычно утром, проснувшись, мы не помним ничего из приснившегося. Нам кажется, что и видений не было. Но бывают такие сны, которые потрясают своей масштабностью или силой вызванных чувств, необычной эмоциональной
Cонник киви, к чему снится киви во сне видеть
Если вам приснился сочный киви, то вероятно подсознание сигнализирует, что нужно побольше кушать свежих фруктов. К чему еще снится этот образ? Сонник поведает о самых актуальных интерпретациях того, что случилось видеть во сне. На зависть всем! Экзотиче
К чему снится пруд с рыбами, что ждет наяву?
На вещи. Если пруд во сне грязный - вас ожидают домашние размолвки или чья-то болезнь. Если вам снится чистым пруд, полный «играющей» рыбы - то наяву дела ваши пойдут успешнее, чем прежде, и вас ждут развлечения. Если человек видит пруд с мутной водо
Александр толстой произведение петр 1 краткое содержание
«Петр Первый» — исторический роман. Жанровая специфика исторического романа предопределена временной дистанцией между моментом создания произведения и тем, к которому обращается автор. В отличие от романа о современности, обращенного к реалиям сегодняшнег