Реферат производство, передача и использование электрической энергии. Производство, передача и использование электрической энергии

Все технологические процессы любого производства связаны с потреблением энергии. На их выполнение расходуется подавляющая часть энергетических ресурсов.

Важнейшую роль на промышленном предприятии играет электрическая энергия – самый универсальный вид энергии, являющейся основным источником получения механической энергии.

Преобразование энергии различных видов в электрическую происходит на электростанциях .

Электростанциями называются предприятия или установки, предназначенные для производства электроэнергии. Топливом для электрических станций служат природные богатства – уголь, торф, вода, ветер, солнце, атомная энергия и др.

В зависимости от вида преобразуемой энергии электростанции могут быть разделены на следующие основные типы: тепловые, атомные, гидроэлектростанции, гидроаккумулирующие, газотурбинные, а также маломощные электрические станции местного значения – ветряные, солнечные, геотермальные, морских приливов и отливов, дизельные и др.

Основная часть электроэнергии (до 80 %) вырабатывается на тепловых электростанциях (ТЭС). Процесс получения электрической энергии на ТЭС заключается в последовательном преобразовании энергии сжигаемого топлива в тепловую энергию водяного пара, приводящего во вращение турбоагрегат (паровую турбину, соединённую с генератором). Механическая энергия вращения преобразуется генератором в электрическую. Топливом для электростанций служат каменный уголь, торф, горючие сланцы, естественный газ, нефть, мазут, древесные отходы.

При экономичной работе ТЭС, т.е. при одновременном отпуске потребителем оптимальных количеств электроэнергии и теплоты, их КПД достигает более 70 %. В период, когда полностью прекращается потребление теплоты (например, в неотопительный сезон), КПД станции снижается.

Атомные электростанции (АЭС) отличаются от обычной паротурбинной станции тем, что на АЭС в качестве источника энергии используется процесс деления ядер урана, плутония, тория и др. В результате расщепления этих материалов в специальных устройствах – реакторах, выделяется огромное количество тепловой энергии.

По сравнению с ТЭС атомные электростанции расходуют незначительное количество горючего. Такие станции можно сооружать в любом месте, т.к. они не связаны с местом расположения естественных запасов топлива. Кроме того, окружающая среда не загрязняется дымом, золой, пылью и сернистым газом.

На гидроэлектростанциях (ГЭС) водная энергия преобразуется в электрическую при помощи гидравлических турбин и соединённых с ними генераторов.

Различают ГЭС плотинного и деривационного типов. Плотинные ГЭС применяют на равнинных реках с небольшими напорами, деривационные (с обходными каналами) – на горных реках с большими уклонами и при небольшом расходе воды. Следует отметить, что работа ГЭС зависит от уровня воды, определяемого природными условиями.

Достоинствами ГЭС являются их высокий КПД и низкая себестоимость выработанной электроэнергии. Однако следует учитывать большую стоимость капитальных затрат при сооружении ГЭС и значительные сроки их сооружения, что определяет большой срок их окупаемости.

Особенностью работы электростанций является то, что они должны вырабатывать столько энергии, сколько её требуется в данный момент для покрытия нагрузки потребителей, собственных нужд станций и потерь в сетях. Поэтому оборудование станций должно быть всегда готово к периодическому изменению нагрузки потребителей в течении дня или года.

Большинство электростанций объединены в энергетические системы , к каждой из которых предъявляются следующие требования:

  • Соответствие мощности генераторов и трансформаторов максимальной мощности потребителей электроэнергии.
  • Достаточная пропускная способность линий электропередач (ЛЭП).
  • Обеспечение бесперебойного электроснабжения при высоком качестве энергии.
  • Экономичность, безопасность и удобство в эксплуатации.

Для обеспечения указанных требований энергосистемы оборудуют специальными диспетчерскими пунктами, оснащёнными средствами контроля, управления, связи и специальными схемами расположения электростанций, линий передач и понижающих подстанций. Диспетчерский пункт получает необходимые данные и сведения о состояниях технологического процесса на электростанциях (расходе воды и топлива, параметрах пара, скорости вращения турбин и т.д.); о работе системы – какие элементы системы (линии, трансформаторы, генераторы, нагрузки, котлы, паропроводы) в данный момент отключены, какие находятся в работе, в резерве и т.д.; об электрических параметрах режима (напряжениях, токах, активных и реактивных мощностях, частоте и т.д.).

Работа электростанций в системе даёт возможность за счёт большого количества параллельно работающих генераторов повысить надёжность электроснабжения потребителей, полностью загрузить наиболее экономические агрегаты электростанций, снизить стоимость выработки электроэнергии. Кроме того, в энергосистеме снижается установленная мощность резервного оборудования; обеспечивается более высокое качество электроэнергии, отпускаемой потребителям; увеличивается единичная мощность агрегатов, которые могут быть установлены в системе.

В России, как и во многих других странах, для производства и распределения электроэнергии применяется трёхфазный переменный ток частотой 50Гц (в США и ряде других стран 60Гц). Сети и установки трёхфазного тока более экономичны по сравнению с установками однофазного переменного тока, а также дают возможность широко использовать в качестве электропривода наиболее надёжные, простые и дешевые асинхронные электродвигатели.

Наряду с трёхфазным током в некоторых отраслях промышленности применяют постоянный ток, который получают выпрямлением переменного тока (электролиз в химической промышленности и цветной металлургии, электрифицированный транспорт и др.).

Электрическую энергию, вырабатываемую на электростанциях, необходимо передать в места её потребления, прежде всего в крупные промышленные центры страны, которые удалены от мощных электростанций на многие сотни, а иногда и тысячи километров. Но электроэнергию недостаточно передать. Её необходимо распределить среди множества разнообразных потребителей – промышленных предприятий, транспорта, жилых зданий и т.д. Передачу электроэнергии на большие расстояния осуществляют при высоком напряжении (до 500кВт и более), чем обеспечиваются минимальные электрические потери в линиях электропередачи и получается большая экономия материалов за счёт сокращения сечений проводов. Поэтому в процессе передачи и распределения электрической энергии приходится повышать и понижать напряжение. Этот процесс выполняется посредством электромагнитных устройств, называемых трансформаторами. Трансформатор не является электрической машиной, т.к. его работа не связана с преобразованием электрической энергии в механическую и наоборот; он преобразует лишь напряжение электрической энергии. Повышение напряжения осуществляется при помощи повышающих трансформаторов на электростанциях, а понижение – при помощи понижающих трансформаторов на подстанциях у потребителей.

Промежуточным звеном для передачи электроэнергии от трансформаторных подстанций к приёмникам электроэнергии являются электрические сети .

Трансформаторная подстанция – это электроустановка, предназначенная для преобразования и распределения электроэнергии.

Подстанции могут быть закрытыми или открытыми в зависимости от расположения её основного оборудования. Если оборудование находится в здании, то подстанция считается закрытой; если на открытом воздухе, то – открытой.

Оборудование подстанций может быть смонтировано из отдельных элементов устройств или из блоков, поставляемых в собранном для установки виде. Подстанции блочной конструкции называются комплектными.

В оборудование подстанций входят аппараты, осуществляющие коммутацию и защиту электрических цепей.

Основной элемент подстанций – силовой трансформатор. Конструктивно силовые трансформаторы выполняются так, чтобы максимально отвести тепло, выделяемое ими при работе от обмоток и сердечника в окружающую среду. Для этого, например, сердечник с обмотками погружают в бак с маслом, делают поверхность бака ребристой, с трубчатыми радиаторами.

Комплектные трансформаторные подстанции, устанавливаемые непосредственно в производственных помещениях мощностью до 1000 кВА, могут оснащаться сухими трансформаторами.

Для увеличения коэффициента мощности электроустановки на подстанциях устанавливают статические конденсаторы, компенсирующие реактивную мощность нагрузки.

Автоматическая система контроля и управления аппаратами подстанции следит за процессами, происходящими в нагрузке, в сетях электроснабжения. Она выполняет функции защиты трансформатора и сетей, отключает при посредстве выключателя защищаемые участки при аварийных режимах, осуществляет повторное включение, автоматическое включение резерва.

Трансформаторные подстанции промышленных предприятий подключаются к питающей сети различными способами в зависимости от требований надёжности бесперебойного электроснабжения потребителей.

Типовыми схемами, осуществляющими бесперебойное электроснабжение, являются радиальная, магистральная или кольцевая.

В радиальных схемах от распределительного щита трансформаторной подстанции отходят линии, питающие крупные электроприёмники: двигатели, групповые распределительные пункты, к которым присоединены более мелкие приёмники. Радиальные схемы применяются в компрессорных, насосных станциях, цехах взрыво- и пожароопасных, пыльных производств. Они обеспечивают высокую надёжность электроснабжения, позволяют широко использовать автоматическую аппаратуру управления и защиты, но требуют больших затрат на сооружение распределительных щитов, прокладку кабеля и проводов.

Магистральные схемы применяются при равномерном распределении нагрузки по площади цеха, когда не требуется сооружать распределительный щит на подстанции, что удешевляет объект; можно использовать сборные шинопроводы, что ускоряет монтаж. При этом перемещение технологического оборудования не требует переделки сети.

Недостатком магистральной схемы является низкая надёжность электроснабжения, так как при повреждении магистрали отключаются все электроприёмники, присоединённые к ней. Однако установка перемычек между магистралями и применение защиты существенно повышает надёжность электроснабжения при минимальных затратах на резервирование.

От подстанций ток пониженного напряжения промышленной частоты распределяется по цехам с помощью кабелей, проводов, шинопроводов от цехового распределительного устройства до устройств электроприводов отдельных машин.

Перерывы в электроснабжении предприятий, даже кратковременные, приводят к нарушениям технологического процесса, порче продукции, повреждению оборудования и невосполнимым убыткам. В некоторых случаях перерыв в электроснабжении может создать взрыво- и пожароопасную обстановку на предприятиях.

Правилами устройства электроустановок все приёмники электрической энергии по надёжности электроснабжения подразделяются на три категории:

  • Приёмники энергии, для которых недопустим перерыв в электроснабжении, поскольку он может привести к повреждению оборудования, массовому браку продукции, нарушению сложного технологического процесса, нарушению работы особо важных элементов городского хозяйства и в конечном счёте – угрожать жизни людей.
  • Приёмники энергии, перерыв в электроснабжении которых приводит к невыполнению плана выпуска продукции, простою рабочих, механизмов и промышленного транспорта.
  • Остальные приёмники электрической энергии, например цехи несерийного и вспомогательного производства, склады.

Электроснабжение приёмников электрической энергии первой категории в любых случаях должно быть обеспечено и при нарушении его автоматически восстановлено. Поэтому такие приёмники должны иметь два независимых источника питания, каждый из которых может полностью обеспечить их электроэнергией.

Приёмники электроэнергии второй категории могут иметь резервный источник электроснабжения, подключение которого производится дежурным персоналом через некоторый промежуток времени после отказа основного источника.

Для приёмников третьей категории резервный источник питания, как правило, не предусматривается.

Электроснабжение предприятий подразделяется на внешнее и внутреннее. Внешнее электроснабжение – это система сетей и подстанций от источника электропитания (энергосистемы или электростанции) до трансформаторной подстанции предприятия. Передача энергии в этом случае осуществляется по кабельным или воздушным линиям номинальным напряжением 6, 10, 20, 35, 110 и 220 кВ. К внутреннему электроснабжению относится система распределения энергии внутри цехов предприятия и на его территории.

К силовой нагрузке (электродвигатели, электропечи) подводится напряжение 380 или 660 В, к осветительной – 220 В. Двигатели мощностью 200 кВт и более в целях снижения потерь целесообразно подключать на напряжение 6 или 10 кВ.

Наиболее распространённым на промышленных предприятиях является напряжение 380 В. Широко внедряется напряжение 660 В, что позволяет снизить потери энергии и расход цветных металлов в сетях низшего напряжения, увеличить радиус действия цеховых подстанций и мощность каждого трансформатора до 2500 кВА. В ряде случаев при напряжении 660 В экономически оправданным является применение асинхронных двигателей мощностью до 630 кВт.

Распределение электроэнергии производится с помощью электропроводок – совокупности проводов и кабелей с относящимися к ним креплениями, поддерживающими и защитными конструкциями.

Внутренняя проводка – это электропроводка, проложенная внутри здания; наружная – вне его, по наружным стенам здания, под навесами, на опорах. В зависимости от способа прокладки, внутренняя проводка может быть открытой, если она проложена по поверхности стен, потолков и т.д., и скрытой, если она проложена в конструктивных элементах зданий.

Проводка может быть проложена изолированным проводом или небронированным кабелем сечением до 16 кв.мм. В местах возможного механического воздействия электропроводку заключают в стальные трубы, герметизируют, если среда помещения взрывоопасная, агрессивная. На станках, полиграфических машинах проводка выполняется в трубах, в металлических рукавах проводом с полихлорвиниловой изоляцией, не разрушающейся от воздействия на неё машинными маслами. Большое количество проводов системы управления электропроводом машины укладывается в лотках. Для передачи электроэнергии в цехах с большим количеством производственных машин применяются шинопроводы.

Для передачи и распределения электроэнергии широко применяются силовые кабели в резиновой, свинцовой оболочке; небронированные и бронированные. Кабели могут укладываться в кабельные каналы, укрепляться на стенах, в земляных траншеях, заделываться в стены.

по физике

на тему«Производство, передача и использование электроэнергии»

ученицы 11класса А

МОУ школы № 85

Екатерины.

План реферата.

Введение.

1. Производствоэлектроэнергии.

1. типыэлектростанций.

2. альтернативныеисточники энергии.

2. Передачаэлектроэнергии.

трансформаторы.

3. Использованиеэлектроэнергии.

Введение.

Рождение энергетикипроизошло несколько миллионов лет тому назад, когда люди научились использоватьогонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма,оружием против врагов и диких зверей, лечебным средством, помощником вземледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее,даровавшем людям огонь, появился в Древней Греции значительно позже того, какво многих частях света были освоены методы довольно изощренного обращения согнем, его получением и тушением, сохранением огня и рациональным использованиемтоплива.

На протяжении многихлет огонь поддерживался путем сжигания растительных энергоносителей (древесины,кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаруженавозможность использовать для поддержания огня ископаемые вещества: каменныйуголь, нефть, сланцы, торф.

На сегодняшний деньэнергия остается главной составляющей жизни человека. Она дает возможностьсоздавать различные материалы, является одним из главных факторов приразработке новых технологий. Попросту говоря, без освоения различных видовэнергии человек не способен полноценно существовать.

Производствоэлектроэнергии.

Типыэлектростанций.

Тепловая электростанция (ТЭС), электростанция, вырабатываю­щая электрическуюэнергию в результате пре­образования тепловой энергии, выделяю­щейся присжигании органического топлива. Первые ТЭС появились в конце 19 века и получилипреимущественное распространение. В середине 70-х годов 20 века ТЭС - основнойвид элек­трической станций.

На тепловыхэлектростанциях химическая энергия топлива преобразуется сначала вмеханическую, а затем в электрическую. Топливомдля такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловыеэлектрические стан­ции подразделяют на конденсационные (КЭС),предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды ипара. Крупные КЭС районного значения получили название государственных районныхэлектро­станций (ГРЭС).

Простейшаяпринципиальная схема КЭС, работающей на угле, представлена на рисунке. Угольподается в топливный бункер 1, а из него - в дробильную установку 2, гдепревраща­ется в пыль. Угольная пыль поступает в топку парогенератора (паровогокотла) 3, имеющего систему трубок, в которых цир­кулирует химически очищеннаявода, называемая питательной. В котле вода нагревается, испаряется, аобразовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависятот мощности агрегатов.

Тепловые конденсацион­ныеэлектростанции име­ют невысокий кпд (30- 40%), так как большая часть энергиитеряется с отходящими топочными газами и охлаждающей водой конденсатора. СооружатьКЭС выгодно в непосредственной близости от мест добычи топлива. При этомпотребители электроэнергии могут находиться на значи­тельном расстоянии отстан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальнойтеплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затемпоступает в конденсатор 6, а другая, имеющая большую температуру и давление,отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения.Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается впарогенератор. Количество отбираемого пара зависит от потребности предприя­тийв тепловой энергии.

Коэффициент полезногодействия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей- про­мышленных предприятий или жилых массивов. Чаще всего они работают напривозном топливе.

Значительно меньшеераспространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

Вкамере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания стемпера­турой 750-900 ºС поступают в газо­вую турбину, вращающуюэлектрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - донескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиковэлектрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляютсякрупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). БольшинствоТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котлесвыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическаяэнергия струй пара пере­дается ротору. Вал турбины жестко соединен с валомгенератора.

Современные паровые турбины для ТЭС - весьма совершенные,быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность водновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не являетсяпределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­нонесколько десятков дисков с рабочими лопат­ками и такое же количество, передкаждым диском, групп сопел, через которые протекает струя пара. Давление итемпература пара постепенно снижаются.

Из курса физики из­вестно,что КПД тепловых двига­телей увеличивается с ростом на­чальной температурырабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров:температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезногодействия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячимотрабо­танным паром.

Гидроэлектрическаястанция (ГЭС), комплекссооружений и оборудования, посредством которых энергия потока водыпреобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехническихсооружений, обеспечи­вающих необходимую концентрацию по­тока воды и созданиенапора, и энергетического оборудования, преобразующего энергию движущейся поднапором воды в механическую энергию вращения, которая, в свою очередь,преобразуется в электрическую энергию.

НапорГЭС создается концентрацией падения реки на используемом участке плотиной, либодеривацией, либо плотиной и дери­вацией совместно. Основноеэнергетическое оборудование ГЭС размещается в здании ГЭС: в машинном залеэлектростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления- пульт оператора-диспетчера или автооператор гидро­электростанции. Повышающая транс­форматорная подстанция размещается как внутри зданияГЭС, так и в отдельных зда­ниях или на открытых площадках. Рас­пределительныеустройства зачастую располагаются на открытой площадке. Здание ГЭС можетбыть разделено на секции с одним или несколькими агрегатами и вспомогательнымоборудованием, отделённые от смежных частей здания. При здании ГЭС или внутринего создаётся монтаж­ная площадка для сборки и ремонта раз­личногооборудования и для вспомогательных операций по обслуживанию ГЭС.

Поустановленной мощности (в МВт) различают ГЭС мощные (св. 250), сред­ние (до 25) и малые (до 5). Мощность ГЭС зависит от напора (разности уровнейверхнего и нижнего бьефа), расхода воды, используемого в гидротурбинах,и кпд гидроагрегата. По ряду причин (вследствие, например, сезонных измененийуровня воды в во­доёмах, непостоянства нагрузки энерго­системы, ремонтагидроагрегатов или гидротехнических сооружений и т. п.) напор и расход водынепрерывно меняются, а, кроме того, меняется расход при регули­ровании мощностиГЭС. Различают го­дичный, недельный и суточный циклы режима работы ГЭС.

Помаксимально используемому напо­ру ГЭС делятся на высоконапорные (более60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко пре­вышают 100 м, вгорных условиях посредством плотины можно создавать напоры до 300 м иболее, а с помощью дерива­ции - до 1500 м. Подразделение ГЭС поиспользуемому напору имеет при­близительный, условный характер.

Посхеме использования водных ре­сурсов и концентрации напоров ГЭС обыч­ноподразделяют на русловые , приплотинные , деривационные снапорной и без­напорной деривацией, смешанные, гидроаккумулирующие и приливные .

Врусловых и приплотинных ГЭС напор воды создаётся плотиной, пе­регораживающейреку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некотороезатопление долины реки. Русловые и приплотинныс ГЭС строят и на равнинныхмноговодных реках и на горных реках, в узких сжатых долинах. Для русловых ГЭСхарактерны напоры до 30-40 м.

Приболее высоких напорах оказывает­ся нецелесообразным передавать на зда­ние ГЭСгидростатичное давление воды. В этом случае применяется тип плотиной ГЭС, у которой напорный фронт на всём протяжении перекрывается плотиной, аздание ГЭС располагается за пло­тиной, примыкает к нижнему бьефу.

Другойвид компоновки приплотинная ГЭС соответствует горным усло­виям присравнительно малых рас­ходах реки.

Вдеривационных ГЭС кон­центрация падения реки создаётся по­средствомдеривации; вода в начале ис­пользуемого участка реки отводится из речного руславодоводом, с уклоном, зна­чительно меньшим, чем средний уклон реки на этомучастке и со спрямлением изги­бов и поворотов русла. Конец деривации подводят кместу расположения здания ГЭС. Отработанная вода либо возвраща­ется в реку,либо подводится к следующей де­ривационной ГЭС. Деривация выгодна тогда, когдауклон реки велик.

Особоеместо среди ГЭС занимают гидроаккумулирующие электростанции (ГАЭС) и приливныеэлектростанции (ПЭС). Сооружение ГАЭС обусловлено ростом потребности впиковой мощности в крупных энергетических системах, что и определяетгенераторную мощность, тре­бующуюся для покрытия пиковых на­грузок. СпособностьГАЭС аккумулиро­вать энергию основана на том, что сво­бодная вэнергосистеме в некоторый пе­риод времени электрическая энергияиспользуется агрегатами ГАЭС, которые, работая в ре­жиме насоса, нагнетают водуиз водохра­нилища в верхний аккумулирующий бас­сейн. В период пиков нагрузкиаккуму­лированная энергия возвращается в энергосистему (вода из верхнего бассей­напоступает в напорный трубопровод и вращает гидроагрегаты, работающие в режимегенератора тока).

ПЭСпреобразуют энергию морских приливов в электрическую. Электроэнер­гия приливныхГЭС в силу некоторых особенностей, связанных с периодичным ха­рактером приливови отливов, может быть использована в энергосистемах лишь совместно с энергией регулирующих электростанций, которые восполняют про­валы мощности приливныхэлектростан­ций в течение суток или месяцев.

Важнейшаяособенность гидроэнергетических ресурсов по сравнению стопливно-энергетическими ресурсами - их непрерывная возобновляемость.Отсутствие потребности в топливе для ГЭС определяет низ­кую себестоимостьвырабатываемой на ГЭС электроэнергии. Поэтому сооруже­нию ГЭС, несмотря назначительные, удельные капиталовложения на 1 кВт установлен­ной мощностии продолжительные сроки строи­тельства, придавалось и придаётся боль­шоезначение, особенно когда это связано с размещением электроёмких производств.

Атомная электростанция (АЭС), электростанция, в которой атомная (ядер­ная) энергия преобразуется вэлект­рическую. Генератором энергии на АЭС является атомный реактор. Тепло,которое выделя­ется в реакторе в результате цепной реакции деления ядернекоторых тяжёлых элементов, затем так же, как и на обыч­ных тепловыхэлектростанциях (ТЭС), преобразуется в электроэнергию. В отли­чие от ТЭС,работающих на органическом топливе, АЭС работает на ядерном горю­чем (воснове 233U, 235U, 239Pu).Установлено, что мировые энергетические ресурсы ядерного горючего (уран,плутоний и др.) существенно превышают энергоресурсы природных запасоворганического, топлива (нефть, уголь, природный газ и др.). Это открываетширокие перспективы для удовлетворе­ния быстро растущих потребностей в топ­ливе.Кроме того, необходимо учиты­вать всё увеличивающийся объём потреб­ления угля инефти для технологических целей мировой химической промышленности, котораястановится серьёзным конкурентом тепло­вых электростанций. Несмотря на откры­тиеновых месторождений органического топ­лива и совершенствование способов егодобычи, в мире наблюдается тенденция к относительному, увеличению егостоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченныезапасы топлива органического происхождения. Очевидна необходимость быстрейшегоразвития атомной энергетики, которая уже занимает заметное место вэнергетическом балансе ряда промышленных стран мира.

Принципиальнаясхема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2.Тепло, выделяемое в активной зоне реактора теплоносителем, вбираетсяводой 1-го контура, которая прокачивается через реактор циркуляционнымнасосом.Нагретая вода из реактора поступает в теплообменник(парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-гоконтура. Вода 2-го контура испаряется в парогенераторе, и образуется пар,который затем поступает в турбину 4.

Наиболеечасто на АЭС применяют 4 типа реакторов на тепловых нейтронах:

1)водо-водяные с обычной водой в качестве замедлителя и теплоносителя;

2)графитоводные с водяным теплоносителем и графитовым замедлителем;

3)тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя;

4)граффито - газовые с газовым теплоноси­телем и графитовым замедлителем.

Выборпреимущественно применяемого типа реактора определяется главным образом на­копленнымопытом в реактороносителе, а также наличием необходимого промышленного оборудования,сырьевых запасов и т. д.

Креактору и обслуживающим его си­стемам относятся: собственно реактор сбиологическойзащитой, теплообменни­ки, насосы или газодувныеустановки, осуществляющие циркуляцию теплоноси­теля, трубопроводы и арматурациркуляции контура, устройства для перезагруз­ки ядерного горючего, системыспециальной вентиляции, аварийного расхолаживания и др.

Дляпредохранения персонала АЭС от радиационного облучения реактор окружаютбиологической защитой, основным материалом для которой служат бетон, вода,серпантиновый песок. Оборудование реакторного контура должно быть полностьюгерме­тичным. Предусматривается система конт­роля мест возможной утечкитеплоноси­теля, принимают меры, чтобы появление не плотностей и разрывов контуране приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружаю­щейместности. Радиоактивный воздух и не­большое количество паров теплоносителя,обусловленное наличием протечек из контура, удаляют из необслуживаемыхпомещений АЭС специальной системой вентиляции, в которой для исключениявозможно­сти загрязнения атмосферы предусмот­рены очистные фильтры игазгольдеры выдержки. За выполнением правил ра­диационной безопасностиперсоналом АЭС сле­дит служба дозиметрического контроля.

Наличие биологической защиты, систем специальной вентиляции и аварийного расхо­лаживанияи службы дозиметрического контро­ля позволяет полностью обезопаситьобслуживающий персонал АЭС от вред­ных воздействий радиоактивного облу­чения.

АЭС, являющиесянаиболее современным видом электростанций, имеют ряд существенных преимуществперед другими видами электростанций: при нормальных условиях функционированияони абсолютно не загрязняют окружающую среду, не требуют привязки к источникусырья и соответственно могут быть размещены практически везде. Новыеэнергоблоки имеют мощность практически равную мощности средней ГЭС, однакокоэффициент использования установленной мощности на АЭС (80%) значительнопревышает этот показатель у ГЭС или ТЭС.

Значительныхнедостатков АЭС при нормальных условиях функционирования практически не имеют.Однако нельзя не заметить опасность АЭС при возможных форс-мажорныхобстоятельствах: землетрясениях, ураганах, и т. п. - здесь старые моделиэнергоблоков представляют потенциальную опасность радиационного заражениятерриторий из-за неконтролируемого перегрева реактора.

Альтернативныеисточники энергии.

Энергия солнца.

В последнее времяинтерес к проблеме использования солнечной энергии резко возрос, ведь потенциальныевозможности энергетики, основанной на использование непосредственногосолнечного излучения, чрезвычайно велики.

Простейшийколлектор солнечного излучения представляет собой зачерненный металлический(как правило, алюминиевый) лист, внутри которого располагаются трубы сциркулирующей в ней жид­костью. Нагретая за счет солнечной энергии, поглощенной кол­лектором, жидкость поступает для непосредственного использова­ния.

Солнечнаяэнергетика относится к наиболее материалоемким видам производства энергии. Крупномасштабное использование солнечной энергии влечет за собой гигантское увеличение пот­ребности в материалах, а, следовательно, и в трудовых ресурсахдля добычи сырья, его обогащения, получения материалов, изготовлениягелиостатов, коллекторов, другой аппаратуры, их перевозки.

Покаеще электрическая энергия, рожденная солнечными луча­ми, обходится намного дороже, чем получаемая традиционными способами. Ученые надеются, чтоэксперименты, которые они прове­дут на опытных установках и станциях, помогутрешить не только технические, но и экономические проблемы.

Ветроваяэнергия.

Огромнаэнергия движущихся воздушных масс. Запасы энергии ветра более чем в сто разпревышают запасы гидроэнергии всех рек планеты. Постоянно и повсюду на земледуют ветры. Климатические условия позволяют развивать ветроэнергетику наогромной территории.

Нов наши дни двигатели, использующие ветер, покрыва­ют всего одну тысячнуюмировых потребностей в энергии. Потому к созданию конструкцийветроколеса-сердца любой ветроэнергетической установки привлекаютсяспециалисты-са­молетостроители, умеющие выбрать наиболее целесообразный про­фильлопасти, исследовать его в аэродинамической трубе. Усили­ями ученых и инженеровсозданы самые разнообразные конструкции современных ветровых установок.

Энергия Земли.

Издавналюди знают о стихийных проявлениях гигантской энергии, таящейся в недрахземного шара. Память человечества хранит предания о катастрофическихизвержениях вулканов, унес­ших миллионы человеческих жизней, неузнаваемоизменивших облик многих мест на Земле. Мощность извержения даже сравнительнонебольшого вулкана колоссальна, она многократно превышает мощ­ность самыхкрупных энергетических установок, созданных руками человека. Правда, о непосредственном использовании энергии вулканических извержений говорить неприходится, нет пока у лю­дей возможностей обуздать эту непокорную стихию.

Энергия Земли пригодна не только для отопленияпомещений, как это происходит в Исландии, но и для получения электроэнергии.Уже давно работают электростанции, использующие горячие подземные источники. Первая такая электростанция, совсем еще маломощная, была построена в 1904 годув небольшом итальянском городке Лардерелло. Пос­тепенно мощность электростанции росла, в строй вступали все новые агрегаты, использовалисьновые источники горячей воды, и в наши дни мощность станции достигла ужевнушительной величи­ны-360 тысяч киловатт.

Передачаэлектроэнергии.

Трансформаторы.

Вы приобрелихолодильник ЗИЛ. Продавец вас предупредил, что холодильник рассчитан нанапряжение в сети 220 В. А у вас в доме сетевое напряжение 127 В. Безвыходноеположение? Ничуть. Просто придется сделать дополнительную затрату и приобреститрансформатор.

Трансформатор - очень простое устройство, которое позволяет, как повышать, так и понижатьнапряжение. Преобразование переменного тока осуществляется с помощьютрансформаторов. Впервые трансформаторы были использованы в 1878 г. русскимученым П. Н. Яблочковым для питания изобре­тенных им «электрических свечей» -нового в то время источника света. Идея П. Н. Яблочкова была развитасотрудником Москов­ского университета И. Ф. Усагиным, сконструировавшимусовершенствованные трансформаторы.

Трансформатор состоитиз замкнутого железного сердечника, на который надеты две (иногда и более)катушки с проволочны­ми обмотками (рис. 1). Одна из обмоток, называемая первич­ной,подключается к источнику переменного напряжения. Вторая обмотка, к которойприсоединяют «нагрузку», т. е. приборы и устройства, потребляющиеэлектроэнергию, называется вторич­ной.

Рис.1 Рис.2

Схема устройстватрансформатора с двумя обмотками при­ведена на рисунке 2, а принятое для негоусловное обозначе­ние - на рис. 3.

Действиетрансформатора основано на явлении электромаг­нитной индукции. При прохождениипеременного тока по первич­ной обмотке в железном сердечнике появляетсяпеременный маг­нитный поток, который возбуждает ЭДС индукции в каждой обмотке.Причем мгновенное значение ЭДС индукции е в любом витке первичной или вторичной обмотки согласно закону Фарадеяопределяется формулой:

е = - Δ Ф/ Δ t

ЕслиФ = Ф0соsωt,то

е = ω Ф0 sin ω t , или

е = E sin ω t ,

гдеE =ω Ф0 - амплитуда ЭДС в одном витке.

В первичной обмотке,имеющей п1 витков, полная ЭДС индук­ции e 1 равна п1е.

Во вторичной обмоткеполная ЭДС. е2 равна п2е, где п2 - чис­ло витков этой обмотки.

Отсюда следует, что

e 1 е2 = п1п2 . (1)

Сумманапряжения u 1 , приложенного к первичной обмотке, и ЭДС e 1 должна равняться падению напряжения в первичной обмотке:

u 1 + e 1 = i 1 R 1 , где R 1 - активное сопротивление обмотки, а i 1 - сила тока в ней. Данное уравнение непосредственновытекает из общего урав­нения. Обычно активное сопротивле­ние обмотки мало ичленом i 1 R 1 можно пре­небречь. Поэтому

u 1 ≈ -e 1 . (2)

При разомкнутойвторичной обмотке трансформатора ток в ней не течет, и имеет место соотношение:

u 2 ≈ - e 2 . (3)

Таккак мгновенные значения ЭДС e 1 иe 2 изменяютсясинфазно, то их отношение в формуле (1) можно заменить отношением дей­ствующихзначений E 1 и E 2 этих ЭДС или, учитывая равенства (2) и (3), отношением действующих значенийнапряжений U1 и U2 .

U1 /U2 = E 1 / E 2 = n 1 / n 2 = k . (4)

Величинаk называется коэффициентом трансформации. Ес­ли k >1, то трансформатор является понижающим, при k <1 - повышающим.

При замыкании цепивторичной обмотки в ней течет ток. Тогда соотношение u 2 ≈ - e 2 уже не выполняется точно, и соответ­ственно связь между U1 и U2 становитсяболее сложной, чем в уравнении (4).

Согласно законусохранения энергии, мощность в первичной цепи должна равняться мощности вовторичной цепи:

U1 I 1 = U2 I 2, (5)

где I 1 иI 2 -действующие значения силы в первичной и вто­ричной обмотках.

Отсюда следует, что

U1 /U2 = I 1 / I 2 . (6)

Этоозначает, что, повышая с помощью трансформатора на­пряжение в несколько раз, мыво столько же раз уменьшаем си­лу тока (и наоборот).

Вследствие неизбежныхпотерь энергии на выделение тепла в обмотках и железном сердечнике уравнения(5) и (6) вы­полняются приближенно. Однако в современных мощных транс­форматорахсуммарные потери не превышают 2-3%.

В житейской практикечасто приходится иметь дело с трансформаторами. Кроме тех трансформаторов,которыми мы пользуемся волей-неволей из-за того, что промышленные приборырассчитаны на одно напряжение, а в городской сети используется другое, - кромених приходится иметь дело с бобинами автомобиля. Бобина - это повышающийтрансформатор. Для создания искры, поджигающей рабочую смесь, требуется высокоенапряжение, которое мы и получаем от аккумулятора автомобиля, предварительнопревратив постоянный ток аккумулятора в переменный с помощью прерывателя.Нетрудно сообразить, что с точностью до потерь энергии, идущей на нагреваниетрансформатора, при повышении напряжения уменьшается сила тока, и наоборот.

Для сварочныхаппаратов требуются понижающие трансформаторы. Для сварки нужны очень сильныетоки, и трансформатор сварочного аппарата имеет всего лишь один выходной виток.

Вы, наверное,обращали внимание, что сердечник трансформатора изготовляют из тонких листиковстали. Это сделано для того, чтобы не терять энергии при преобразованиинапряжения. В листовом материале вихревые токи будут играть меньшую роль, чем всплошном.

Дома вы имеете дело смаленькими трансформаторами. Что же касается мощных трансформаторов, то онипредставляют собой огромные сооружения. В этих случаях сердечник с обмоткамипомещен в бак, заполненный охлаждающим маслом.

Передачаэлектроэнергии

Потребителиэлектроэнергии имеются повсюду. Производит­ся же она в сравнительно немногихместах, близких к источникам топливных и гидроресурсов. Поэтому возникает необходимостьпередачи электроэнергии на расстояния, достигающие иногда сотен километров.

Но передачаэлектроэнергии на большие расстояния связана с заметными потерями. Дело в том,что, протекая по линиям электропередачи, ток нагревает их. В соответствии с закономДжоуля - Ленца, энергия, расходуемая на нагрев проводов ли­нии, определяетсяформулой

где R - сопротивление линии. При большой длине линии переда­чаэнергии может стать вообще экономически невыгодной. Для уменьшения потерьможно, конечно, идти по пути уменьшения сопротивления Rлинии посредством увеличения площади попе­речного сечения проводов. Но дляуменьшения R, к примеру, в 100 раз нужно увеличить массу провода такжев 100 раз. Ясно, что нельзя допустить такого большого расходования дорогостоя­щегоцветного металла, не говоря уже о трудностях закрепления тяжелых проводов навысоких мачтах и т. п. Поэтому потери энергии в линии снижают другим путем:уменьшением тока в ли­нии. Например, уменьшение тока в 10 раз уменьшаетколичество выделившегося в проводниках тепла в 100 раз, т. е. достигается тотже эффект, что и от стократного утяжеления провода.

Так как мощность токапропорциональна произведению силы тока на напряжение, то для сохраненияпередаваемой мощности нужно повысить напряжение в линии передачи. Причем, чемдлиннее линия передачи, тем выгоднее использовать более высо­кое напряжение.Так, например, в высоковольтной линии переда­чи Волжская ГЭС - Москваиспользуют напряжение в 500 кв. Между тем генераторы переменного тока строят нанапряжения, не превышающие 16-20 кв., так как бо­лее высокое напряжениепотребовало бы принятия более слож­ных специальных мер для изоляции обмоток идругих частей генераторов.

Поэтому на крупныхэлектростанциях ставят повышающие трансформаторы. Трансформатор увеличиваетнапряжение в ли­нии во столько же раз, во сколько уменьшает силу тока. Потеримощности при этом невелики.

Для непосредственногоиспользования электроэнергии в дви­гателях электропривода станков, восветительной сети и для дру­гих целей напряжение на концах линии нужнопонизить. Это до­стигается с помощью понижающих трансформаторов. Причем обычнопонижение напряжения и соответственно увеличение силы тока происходит внесколько этапов. На каждом этапе напряжение становится все меньше, атерритория, охватываемая электрической сетью, - все шире. Схема передачи ираспределения электроэнергии приведена на рисунке.

Электрические станцииряда областей страны соединены высоковольтными линиями передач, образуя общуюэлектросеть, к которой присоединены потребители. Такое объединение называетсяэнергосистемой. Энергосистема обеспечивает бесперебойность подачи энергиипотребителям не зависимо от их месторасположения.

Использованиеэлектроэнергии.

Использованиеэлектроэнергетики в различных областях науки.

ХХ век стал веком,когда наука вторгается во все сферы жизни общества: экономику, политику,культуру, образование и т.д. Естественно, что наука непосредственно влияет наразвитие энергетики и сферу применения электроэнергии. С одной стороны наукаспособствует расширению сферы применения электрической энергии и тем самымувеличивает ее потребление, но с другой стороны в эпоху, когда неограниченноеиспользование невозобновляемых энергетических ресурсов несет опасность длябудущих поколений, актуальными задачами науки становятся задачи разработкиэнергосберегающих технологий и внедрение их в жизнь.

Рассмотрим этивопросы на конкретных примерах. Около 80% прироста ВВП (внутреннего валовогопродукта) развитых стран достигается за счет технических инноваций, основнаячасть которых связана с использованием электроэнергии. Все новое впромышленность, сельское хозяйство и быт приходит к нам благодаря новымразработкам в различных отраслях науки.

Большая часть научныхразработок начинается с теоретических расчетов. Но если в ХIХ веке эти расчетыпроизводились с помощью пера и бумаги, то в век НТР (научно-техническойреволюции) все теоретические расчеты, отбор и анализ научных данных и дажелингвистический разбор литературных произведений делаются с помощью ЭВМ(электронно-вычислительных машин), которые работают на электрической энергии,наиболее удобной для передачи ее на расстояние и использования. Но еслипервоначально ЭВМ использовались для научных расчетов, то теперь из наукикомпьютеры пришли в жизнь.

Сейчас онииспользуются во всех сферах деятельности человека: для записи и храненияинформации, создания архивов, подготовки и редактирования текстов, выполнениячертежных и графических работ, автоматизации производства и сельскогохозяйства. Электронизация и автоматизация производства - важнейшие последствия«второй промышленной» или «микроэлектронной» революции вэкономике развитых стран. С микроэлектроникой непосредственно связано и развитиекомплексной автоматизации, качественно новый этап которой начался послеизобретения в 1971 году микропроцессора - микроэлектронного логическогоустройства, встраиваемого в различные устройства для управления их работой.

Микропроцессорыускорили рост робототехники. Большинство применяемых ныне роботов относится ктак называемому первому поколению, и применяются при сварке, резании,прессовке, нанесении покрытий и т.д. Приходящие им на смену роботы второгопоколения оборудованы устройствами для распознавания окружающей среды. Ароботы-«интеллектуалы» третьего поколения будут «видеть»,«чувствовать», «слышать». Ученые и инженеры среди наиболееприоритетных сфер применения роботов называют атомную энергетику, освоениекосмического пространства, транспорта, торговлю, складское хозяйство,медицинское обслуживание, переработку отходов, освоение богатств океаническогодна. Основная часть роботов работают на электрической энергии, но увеличениепотребления электроэнергии роботами компенсируется снижением энергозатрат вомногих энергоемких производственных процессах за счет внедрения болеерациональных методов и новых энергосберегающих технологических процессов.

Но вернемся к науке.Все новые теоретические разработки после расчетов на ЭВМ проверяютсяэкспериментально. И, как правило, на этом этапе исследования проводятся спомощью физических измерений, химических анализов и т.д. Здесь инструментынаучных исследований многообразны - многочисленные измерительные приборы,ускорители, электронные микроскопы, магниторезонансные томографы и т.д.Основная часть этих инструментов экспериментальной науки работают наэлектрической энергии.

Очень бурноразвивается наука в области средств связи и коммуникаций. Спутниковая связьиспользуется уже не только как средство международной связи, но и в быту - спутниковые антенны не редкость и в нашем городе. Новые средства связи, напримерволоконная техника, позволяют значительно снизить потери электроэнергии впроцессе передачи сигналов на большие расстояния.

Не обошла наука исферу управления. По мере развития НТР, расширения производственной инепроизводственной сфер деятельности человека, все более важную роль вповышении их эффективности начинает играть управление. Из своего родаискусства, еще недавно основывавшегося на опыте и интуиции, управление в нашидни превратилось в науку. Наука об управлении, об общих законах получения,хранения, передачи и переработки информации называется кибернетикой. Этоттермин происходит от греческих слов «рулевой», «кормчий».Он встречается в трудах древнегреческих философов. Однако новое рождение егопроизошло фактически в 1948 году, после выхода книги американского ученогоНорберта Винера «Кибернетика».

До начала«кибернетической» революции существовала только бумажная Информатика,основным средством восприятия которой оставался человеческий мозг, и которая неиспользовала электроэнергию. «Кибернетическая» революция породилапринципиально иную - машинную информатику, соответствующую гигантски возросшимпотокам информации, источником энергии для которой служит электроэнергия.Созданы совершенно новые средства получения информации, ее накопления,обработки и передачи, в совокупности образующие сложную информационнуюструктуру. Она включает АСУ (автоматизированные системы управления),информационные банки данных, автоматизированные информационные базы,вычислительные центры, видеотерминалы, копировальные и фототелеграфныеаппараты, общегосударственные информационные системы, системы спутниковой искоростной волокнисто-оптической связи - все это неограниченно расширило сферуиспользования электроэнергии.

Многие ученыесчитают, что в данном случае речь идет о новой «информационной»цивилизации, приходящей на смену традиционной организации обществаиндустриального типа. Такая специализация характеризуется следующими важными признаками:

· широкимраспространением информационной технологии в материальном и нематериальномпроизводстве, в области науки, образования, здравоохранения и т.д.;

· наличиемширокой сети различных банков данных, в том числе общественного пользования;

· превращениеинформации в один из важнейших факторов экономического, национального и личногоразвития;

· свободнойциркуляцией информации в обществе.

Такой переход отиндустриального общества к «информационной цивилизации» стал возможенво многом благодаря развитию энергетики и обеспечению удобным в передаче иприменении видом энергии - электрической энергией.

Электроэнергияв производстве.

Современное обществоневозможно представить без электрификации производственной деятельности. Уже вконце 80-х годов более 1/3 всего потребления энергии в мире осуществлялось ввиде электрической энергии. К началу следующего века эта доля может увеличитьсядо 1/2. Такой рост потребления электроэнергии прежде всего связан с ростом еепотребления в промышленности. Основная часть промышленных предприятий работаетна электрической энергии. Высокое потребление электроэнергии характерно длятаких энергоемких отраслей, как металлургия, алюминиевая и машиностроительнаяпромышленность.

Электроэнергияв быту.

Электроэнергия в бытунеотъемлемый помощник. Каждый день мы имеем с ней дело, и, наверное, уже непредставляем свою жизнь без нее. Вспомните, когда последний раз вам отключалисвет, то есть в ваш дом не поступала электроэнергия, вспомните, как выругались, что ничего не успеваете и вам нужен свет, вам нужен телевизор, чайники куча других электроприборов. Ведь если нас обесточить навсегда, то мы простовернемся в те давние времена, когда еду готовили на костре и жили в холодныхвигвамах.

Значимостиэлектроэнергии в нашей жизни можно посветить целую поэму, настолько она важна внашей жизни и настолько мы привыкли к ней. Хотя мы уже и не замечаем, что онапоступает к нам в дома, но когда ее отключают, становится очень не комфортно.

Ценитеэлектроэнергию!

Списокиспользуемой литературы.

1. УчебникС.В.Громова «Физика, 10 класс». Москва: Просвещение.

2. Энциклопедическийсловарь юного физика. Состав. В.А. Чуянов, Москва: Педагогика.

3. ЭллионЛ., Уилконс У… Физика. Москва: Наука.

4. КолтунМ. Мир физики. Москва.

5. Источникиэнергии. Факты, проблемы, решения. Москва: Наука и техника.

6. Нетрадиционныеисточники энергии. Москва: Знание.

7. ЮдасинЛ.С… Энергетика: проблемы и надежды. Москва: Просвещение.

8. ПодгорныйА.Н. Водородная энергетика. Москва: Наука.

Переменное напряжение можно преобразовывать - повышать или понижать.

Устройства, с помощью которых можно преобразовывать напряжение называются трансформаторами. Работа трансформаторов основана наявлении электромагнитной индукции.

Устройство трансформатора

Трансформатор состоит из ферромагнитного сердечника, на который надеты две катушки .

Первичной обмоткой называется катушка, подключенная к источнику переменного напряжения U 1 .

Вторичной обмоткой называется катушка, которую можно подключать к приборам, потребляющим электрическую энергию .

Приборы, потребляющие электрическую энергию, выполняют роль нагрузки, и на них создается переменное напряжение U 2 .

Если U 1 > U 2 , то трансформатор называется понижающим, а еслиU 2 > U 1 - то повышающим.

Принцип работы

В первичной обмотке создается переменный ток, следовательно, в ней создается переменный магнитный поток. Этот поток замыкается в ферромагнитном сердечнике и пронизывает каждый виток обеих обмоток. В каждом из витков обеих обмоток появляется одинаковая ЭДС индукции e i 0

Если n 1 и n 2 - число витков в первичной и вторичной обмотках соответственно, то

ЭДС индукции в первичной обмотке e i 1 = n 1 * e i 0 ЭДС индукции во вторичной обмотке e i 2 = n 1 * e i 0

где e i 0 - ЭДС индукции, возникающая в одном витке вторичной и первичной катушки .

    1. Передача электроэнергии

П
ередача электрической энергии от электростанций до больших городов или промышленных центров на расстояния тысяч километров является сложной научно-технической проблемой.Потери энергии (мощности) на нагревание проводов можно рассчитать по формуле

Для уменьшения потерь на нагревания проводов необходимо увеличить напряжение. Обычно линии электропередачи строятся в расчете на напряжение 400–500 кВ, при этом в линиях используется переменный ток частотой 50 Гц. На рисунке представлена схема линии передачи электроэнергии от электростанции до потребителя. Схема дает представление об использовании трансформаторов при передаче электроэнергии

41. Электромагнитное поле и электромагнитные волны. Скорость электромагнитных волн. Свойства электромагнитных волн. Идеи теории Максвелла

Существование электромагнитных волн было теоретически предсказано великим английским физиком Дж. Максвеллом в 1864 году. Максвелл ввел в физику понятие вихревого электрического поля и предложил новую трактовку законаэлектромагнитной индукции, открытого Фарадеем в 1831 г.:

Всякое изменение магнитного поля порождает в окружающем пространстве вихревое электрическое поле .

Максвелл высказал гипотезу о существовании и обратного процесса:

Изменяющееся во времени электрическое поле порождает в окружающем пространстве магнитное поле.

Однажды начавшийся процесс взаимного порождения магнитного и электрического полей должен далее непрерывно продолжаться и захватывать все новые области пространства.

Вывод:

Существует особая форма материи – электромагнитное поле – которое состоит из порождающих друг друга вихревых электрического и магнитного полей.

Электромагнитное поле характеризуется двумя векторными величинами – напряженностью Е вихревого электрического поля и индукцией В магнитного поля .

Процесс распространения изменяющихся вихревых электрического и магнитного полей в пространстве называется электромагнитной волной.

Гипотеза Максвелла была лишь теоретическим предположением, не имеющим экспериментального подтверждения, однако на ее основе Максвеллу удалось записать непротиворечивую систему уравнений, описывающих взаимные превращения электрического и магнитного полей, т. е. систему уравнений электромагнитного поля (уравнений Максвелла)

Страница 1

Введение.

Рождение энергетики произошло несколько миллионов лет тому назад, когда люди научились использовать огонь. Огонь давал им тепло и свет, был источником вдохновения и оптимизма, оружием против врагов и диких зверей, лечебным средством, помощником в земледелии, консервантом продуктов, технологическим средством и т.д.

Прекрасный миф о Прометее, даровавшем людям огонь, появился в Древней Греции значительно позже того, как во многих частях света были освоены методы довольно изощренного обращения с огнем, его получением и тушением, сохранением огня и рациональным использованием топлива.

На протяжении многих лет огонь поддерживался путем сжигания растительных энергоносителей (древесины, кустарников, камыша, травы, сухих водорослей и т.п.), а затем была обнаружена возможность использовать для поддержания огня ископаемые вещества: каменный уголь, нефть, сланцы, торф.

На сегодняшний день энергия остается главной составляющей жизни человека. Она дает возможность создавать различные материалы, является одним из главных факторов при разработке новых технологий. Попросту говоря, без освоения различных видов энергии человек не способен полноценно существовать.

Производство электроэнергии.

Типы электростанций.

Тепловая электростанция(ТЭС), электростанция, вырабатываю­щая электрическую энергию в результате пре­образования тепловой энергии, выделяю­щейся при сжигании органического топлива. Первые ТЭС появились в конце 19 века и получили преимущественное распространение. В середине 70-х годов 20 века ТЭС - основной вид элек­трической станций.

На тепловых электростанциях химическая энергия топлива преобразуется сначала в механическую, а затем в электрическую. Топливом для такой электростанции могут служить уголь, торф, газ, горючие сланцы, мазут.

Тепловые электрические стан­ции подразделяют на конденсационные (КЭС), предназначенные для выработки только электрической энергии, и теплоэлектро­централи (ТЭЦ), производящие кроме электрической тепловую энергию в виде горячей воды и пара. Крупные КЭС районного значения получили название государственных районных электро­станций (ГРЭС).

Простейшая принципиальная схема КЭС, работающей на угле, представлена на рисунке. Уголь подается в топливный бункер 1, а из него - в дробильную установку 2, где превраща­ется в пыль. Угольная пыль поступает в топку парогенератора (парового котла) 3, имеющего систему трубок, в которых цир­кулирует химически очищенная вода, называемая питательной. В котле вода нагревается, испаряется, а образовавшийся насы­щенный пар доводится до температуры 400-650 °С и под дав­лением 3-24 МПа поступает по паропроводу в паровую турби­ну 4. Параметры пара зависят от мощности агрегатов.

Тепловые конденсацион­ные электростанции име­ют невысокий кпд (30- 40%), так как большая часть энергии теряется с отходящими топочными газами и охлаждающей водой конденсатора. Сооружать КЭС выгодно в непосредственной близости от мест добычи топлива. При этом потребители электроэнергии могут находиться на значи­тельном расстоянии от стан­ции.

Теплоэлектроцентраль отли­чается от конденсационной станции установленной на ней специальной теплофикационной турбиной с отбором пара. На ТЭЦ одна часть пара полностью используется в турбине для выработки электроэнергии в генераторе 5 и затем поступает в конденсатор 6, а другая, имеющая большую температуру и давление, отбирается от промежуточной ступени турбины и исполь­зуется для теплоснабжения. Конденсат насосом 7 через деаэра­тор 8 и далее питательным насосом 9 подается в парогенератор. Количество отбираемого пара зависит от потребности предприя­тий в тепловой энергии.

Коэффициент полезного действия ТЭЦ достигает 60-70%. Такие станции строят обычно вблизи потребителей - про­мышленных предприятий или жилых массивов. Чаще всего они работают на привозном топливе.

Значительно меньшее распространение полу­чили тепловые станции с газотурбинными (ГТЭС), парогазовыми (ПГЭС) и дизельными установками.

В камере сгорания ГТЭС сжигают газ или жидкое топливо; продукты сгорания с темпера­турой 750-900 ºС поступают в газо­вую турбину, вращающую электрогене­ратор. Кпд таких ТЭС обычно составляет 26-28%, мощность - до нескольких со­тен МВт. ГТЭС обычно применяются для покрытия пиков электрической нагрузки. Кпд ПГЭС может достигать 42 - 43%.

Наиболее экономичными яв­ляются крупные тепловые паро­турбинные электростанции (сокра­щенно ТЭС). Большинство ТЭС нашей страны используют в ка­честве топлива угольную пыль. Для выработки 1 кВт-ч электроэнергии затрачивается несколько сот грам­мов угля. В паровом котле свыше 90% выделяемой топливом энергии передается пару. В турбине кине­тическая энергия струй пара пере­дается ротору. Вал турбины жестко соединен с валом генератора.

Современные паровые турбины для ТЭС - весьма совершенные, быстроходные, высокоэкономичные машины с большим ресурсом работы. Их мощность в одновальном исполнении достигает 1 млн. 200 тыс. кВт, и это не является пределом. Такие машины всегда бывают многоступенчатыми, т. е. имеют обыч­но несколько десятков дисков с рабочими лопат­ками и такое же количество, перед каждым диском, групп сопел, через которые протекает струя пара. Давление и температура пара постепенно снижаются.

Из курса физики из­вестно, что КПД тепловых двига­телей увеличивается с ростом на­чальной температуры рабочего тела. Поэтому поступающий в турбину пар доводят до высоких параметров: температуру - почти до 550 °С и давление - до 25 МПа. Коэффи­циент полезного действия ТЭС дости­гает 40%. Большая часть энергии теряется вместе с горячим отрабо­танным паром.

Гидроэлектрическая станция (ГЭС), комплекс сооружений и оборудования, посредством которых энергия потока воды преобразуется в электрическую энергию. ГЭС состоит из последовательной цепи гид­ротехнических сооружений, обеспечи­вающих необходимую концентрацию по­тока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.

Электрическая энергия производится на различных масштабах электрических станциях, в основном, с помощью индукционных электромеханических генераторов.

Производство электроэнергии

Существует два основных типа электростанций:

1. Тепловые.

2. Гидравлические.

Это деление вызвано типом двигателя, который вращает ротор генератора. В тепловых электростанциях в качестве источника энергии используется топливо: уголь, газ, нефть, горючие сланцы, мазут. Ротор приводится во вращение паровыми газовыми турбинами.

Самыми экономичными являются тепловые паротурбинные электростанции (ТЭС). Их максимальный КПД достигает 70%. Это с учетом того, что отработанный пар используется на промышленных предприятиях.

На гидроэлектростанциях для вращения ротора используется потенциальная энергия воды. С помощью гидравлических турбин приводится во вращение ротор. Мощность станции будет зависеть от напора и массы воды, проходящей через турбину.

Использование электроэнергии

Электрическая энергия используется почти повсеместно. Конечно, большая часть производимой электроэнергии приходится на промышленность. Помимо этого, крупным потребителем будет являться транспорт.

Многие железнодорожные линии уже давно перешли на электрическую тягу. Освещение жилищ, улиц городов, производственные и бытовые нужды сел и деревень - все это тоже является крупным потребителем электроэнергии.

Огромная часть получаемой электроэнергии превращается в механическую энергию. Все механизмы, используемые в промышленности, приводятся в движение за счет электродвигателей. Потребителей электроэнергии достаточно, и находятся они повсюду.

А производится электроэнергия лишь в немногих местах. Возникает вопрос о передаче электроэнергии, причем на большие расстояния. При передаче на большие расстояния, происходит много потерь электроэнергии. Главным образом, это потери на нагрев электропроводов.

По закону Джоуля-Ленца энергия, расходуемая на нагрев, вычисляется по формуле:

Так как снизить сопротивление до приемлемого уровня практически невозможно, то приходится уменьшать силу тока. Для этого повышают напряжение. Обычно на станциях стоят повышающие генераторы, а в конце линий передач стоят понижающие трансформаторы. И уже с них энергия расходится по потребителям.

Потребность в электрической энергии постоянно увеличивается. Для того чтобы соответствовать запросам на увеличение потребления есть два пути:

1. Строительство новых электростанций

2. Использование передовых технологий.

Эффективное использование электроэнергии

Первый способ требует затрат большого числа строительных и денежных ресурсов. На строительство одной электростанции тратится несколько лет. К тому же, например, тепловые электростанции потребляют много невозобновляемых природных ресурсов, и наносят вред окружающей природной среде.

 
Статьи по теме:
Сонник: к чему снится океан
Каждую ночь человеку снится около 5-8 снов. Обычно утром, проснувшись, мы не помним ничего из приснившегося. Нам кажется, что и видений не было. Но бывают такие сны, которые потрясают своей масштабностью или силой вызванных чувств, необычной эмоциональной
Cонник киви, к чему снится киви во сне видеть
Если вам приснился сочный киви, то вероятно подсознание сигнализирует, что нужно побольше кушать свежих фруктов. К чему еще снится этот образ? Сонник поведает о самых актуальных интерпретациях того, что случилось видеть во сне. На зависть всем! Экзотиче
К чему снится пруд с рыбами, что ждет наяву?
На вещи. Если пруд во сне грязный - вас ожидают домашние размолвки или чья-то болезнь. Если вам снится чистым пруд, полный «играющей» рыбы - то наяву дела ваши пойдут успешнее, чем прежде, и вас ждут развлечения. Если человек видит пруд с мутной водо
Александр толстой произведение петр 1 краткое содержание
«Петр Первый» — исторический роман. Жанровая специфика исторического романа предопределена временной дистанцией между моментом создания произведения и тем, к которому обращается автор. В отличие от романа о современности, обращенного к реалиям сегодняшнег