Перспективы развития атомной энергетики в рф. Перспективы атомной энергетики в россии

Повсеместное применение ядерной энергии началось благодаря научно-техническому прогрессу не только в военной области, но и в мирных целях. Сегодня нельзя обойтись без нее в промышленности, энергетике и медицине.

Вместе с тем, использование ядерной энергии имеет не только преимущества, но и недостатки. Прежде всего, это опасность радиации, как для человека, так и для окружающей среды.

Применение ядерной энергии развивается в двух направлениях: использование в энергетике и использование радиоактивных изотопов.

Изначально атомную энергию предполагалось использовать только в военных целях, и все разработки шли в этом направлении.

Использование ядерной энергии в военной сфере

Большое количество высокоактивных материалов используют для производства ядерного оружия. По оценкам экспертов, ядерные боеголовки содержат несколько тонн плутония.

Ядерное оружие относят к потому что оно производит разрушения на огромных территориях.

По радиусу действия и мощности заряда ядерное оружие делится на:

  • Тактическое.
  • Оперативно-тактическое.
  • Стратегическое.

Ядерные боеприпасы делят на атомные и водородные. В основу ядерного оружия положены неуправляемые цепные реакции деления тяжелых ядер и реакции Для цепной реакции используют уран либо плутоний.

Хранение такого большого количества опасных материалов - это большая угроза для человечества. А применение ядерной энергии в военных целях может привести к тяжелым последствиям.

Впервые ядерное оружие было применено в 1945 году для атаки на японские города Хиросима и Нагасаки. Последствия этой атаки были катастрофичными. Как известно, это было первое и последнее применение ядерной энергии в войне.

Международное агентство по атомной энергии (МАГАТЭ)

МАГАТЭ создано в 1957 году с целью развития сотрудничества между странами в области использования атомной энергии в мирных целях. С самого начала агентство осуществляет программу «Ядерная безопасность и защита окружающей среды».

Но самая главная функция - это контроль за деятельностью стран в ядерной сфере. Организация контролирует, чтобы разработки и использование ядерной энергии происходили только в мирных целях.

Цель этой программы - обеспечивать безопасное использование ядерной энергии, защита человека и экологии от воздействия радиации. Также агентство занималось изучением последствий аварии на Чернобыльской АЭС.

Также агентство поддерживает изучение, развитие и применение ядерной энергии в мирных целях и выступает посредником при обмене услугами и материалами между членами агентства.

Вместе с ООН МАГАТЭ определяет и устанавливает нормы в области безопасности и охраны здоровья.

Атомная энергетика

Во второй половине сороковых годов двадцатого столетия советские ученые начали разрабатывать первые проекты мирного использования атома. Главным направлением этих разработок стала электроэнергетика.

И в 1954 году в СССР построили станцию. После этого программы быстрого роста атомной энергетики начали разрабатывать в США, Великобритании, ФРГ и Франции. Но большинство из них не были выполнены. Как оказалось, АЭС не смогла конкурировать со станциями, которые работают на угле, газе и мазуте.

Но после начала мирового энергетического кризиса и подорожания нефти спрос на атомную энергетику вырос. В 70-х годах прошлого столетия эксперты считали, что мощность всех АЭС сможет заменить половину электростанций.

В середине 80-х рост атомной энергетики снова замедлился, сраны начали пересматривать планы на сооружение новых АЭС. Этому способствовали как политика энергосбережения и снижение цены на нефть, так и катастрофа на Чернобыльской станции, которая имела негативные последствия не только для Украины.

После некоторые страны вообще прекратили сооружение и эксплуатацию атомных электростанций.

Атомная энергия для полетов в космос

В космос слетало более трех десятков ядерных реакторов, они использовались для получения энергии.

Впервые ядерный реактор в космосе применили американцы в 1965 году. В качестве топлива использовался уран-235. Проработал он 43 дня.

В Советском Союзе реактор «Ромашка» был запущен в Институте атомной энергии. Его предполагалось использовать на космических аппаратах вместе с Но после всех испытаний он так и не был запущен в космос.

Следующая ядерная установка «Бук» была применена на спутнике радиолокационной разведки. Первый аппарат был запущен в 1970 году с космодрома Байконур.

Сегодня «Роскосмос» и «Росатом» предлагают сконструировать космический корабль, который будет оснащен ядерным ракетным двигателем и сможет добраться до Луны и Марса. Но пока что это все на стадии предложения.

Применение ядерной энергии в промышленности

Атомная энергия применяется для повышения чувствительности химического анализа и производства аммиака, водорода и других химических реагентов, которые используются для производства удобрений.

Ядерная энергия, применение которой в химической промышленности позволяет получать новые химические элементы, помогает воссоздавать процессы, которые происходят в земной коре.

Для опреснения соленых вод также применяется ядерная энергия. Применение в черной металлургии позволяет восстанавливать железо из железной руды. В цветной - применяется для производства алюминия.

Использование ядерной энергии в сельском хозяйстве

Применение ядерной энергии в сельском хозяйстве решает задачи селекции и помогает в борьбе с вредителями.

Ядерную энергию применяют для появления мутаций в семенах. Делается это для получения новых сортов, которые приносят больше урожая и устойчивы к болезням сельскохозяйственных культур. Так, больше половины пшеницы, выращиваемой в Италии для изготовления макарон, было выведено с помощью мутаций.

Также с помощью радиоизотопов определяют лучшие способы внесения удобрений. Например, с их помощью определили, что при выращивании риса можно уменьшить внесение азотных удобрений. Это не только сэкономило деньги, но и сохранило экологию.

Немного странное использование ядерной энергии - это облучение личинок насекомых. Делается это для того, чтобы выводить их безвредно для окружающей среды. В таком случае насекомые, появившееся из облученных личинок, не имеют потомства, но в остальных отношениях вполне нормальны.

Ядерная медицина

Медицина использует радиоактивные изотопы для постановки точного диагноза. Медицинские изотопы имеют малый период полураспада и не представляет особой опасности как для окружающих, так и для пациента.

Еще одно применение ядерной энергии в медицине было открыто совсем недавно. Это позитронно-эмиссионная томография. С ее помощью можно обнаружить рак на ранних стадиях.

Применение ядерной энергии на транспорте

В начале 50-х годов прошлого века были предприняты попытки создать танк на ядерной тяге. Разработки начались в США, но проект так и не был воплощен в жизнь. В основном из-за того, что в этих танках так и не смогли решить проблему экранирования экипажа.

Известная компания Ford трудилась над автомобилем, который бы работал на ядерной энергии. Но дальше макета производство такой машины не зашло.

Все дело в том, что ядерная установка занимала очень много места, и автомобиль получался очень габаритным. Компактные реакторы так и не появились, поэтому амбициозный проект свернули.

Наверное, самый известный транспорт, который работает на ядерной энергии - это различные суда как военного, так и гражданского назначения:

  • Транспортные суда.
  • Авианосцы.
  • Подводные лодки.
  • Крейсеры.
  • Атомные подводные лодки.

Плюсы и минусы использования ядерной энергии

Сегодня доля в мировом производстве энергии составляет примерно 17 процентов. Хотя человечество использует но его запасы не бесконечны.

Поэтому, как альтернативный вариант, используется Но процесс его получения и использования связан с большим риском для жизни и окружающей среды.

Конечно, постоянно совершенствуются ядерные реакторы, предпринимаются все возможные меры безопасности, но иногда этого недостаточно. Примером могут служить аварии на Чернобыльской и Фукусиме.

С одной стороны, исправно работающий реактор не выбрасывает в окружающую среду никакой радиации, тогда как из тепловых электростанций в атмосферу попадает большое количество вредных веществ.

Самую большую опасность представляет отработанное топливо, его переработка и хранение. Потому что на сегодняшний день не изобретен полностью безопасный способ утилизации ядерных отходов.

Российской академии наук прошла международная научно-техническая конференция "Развитие атомной энергетики на основе реакторов на быстрых нейтронах с замкнутым топливным циклом", организованная концерном "Росэнергоатом" при поддержке Федерального агентства по атомной энергии, МАГАТЭ и РАН.

В работе форума приняли участие около 200 человек - члены Совета Федерации, депутаты Государственной Думы РФ, представители научно-исследовательских институтов, конструкторских бюро, предприятий отрасли, средств массовой информации, общественных объединений и организаций, зарубежные гости из Франции, Индии и Украины.

С приветственными словами на конференции выступили вице-президент РАН, академик Н. П. Лаверов, член Комитета по энергетике, транспорту и связи Госдумы В. С. Опекунов. Они охарактеризовали общий круг проблем, которые предстоит решать в ближайшие годы, касающиеся развития атомной энергетики, хранения облученного сырья, радиоактивных отходов, совершенствования технологий создания и эксплуатации реакторов на быстрых нейтронах, разработки новых видов ядерного топлива.

"Впервые, - заметил В. С. Опекунов, - в российском бюджете заложена строка о финансировании строительства энергоблока БН-800 в размере миллиарда рублей, и в течение следующего года при корректировках бюджета эта цифра может быть увеличена. Важно, чтобы идеологией "быстрой" энергетики прониклись не только депутаты Госдумы, но и правительственный блок".

За два дня участники форума заслушали более 20 докладов. Так, начальник управления Росатома В. И. Рачков отметил, что отрасль, которую он представляет, является наиболее динамично развивающейся. Еще в 2000 г. удалось преодолеть кризис 1990-х годов - впервые после распада СССР выработка электроэнергии на АЭС превысила максимальный доперестроечный объем. Рост спроса на нее в 1999 - 2004 гг. в России (в среднем 17 млрд. кВт · ч в год) наполовину обеспечивался за счет увеличения энерговыработки атомных станций с темпом около 9 млрд. кВт · ч в год (ежегодно - 5%).

Однако такая динамика не соответствует основным требованиям времени - увеличению энергонапряженности и сокращению запасов разведанного углеводородного сырья, необходимости ограничения выбросов двуокиси углерода в атмосферу. Атомная же энергетика не зависит от пределов наличия сырья и уровня загрязненности окружающей среды. Ведь существуют варианты опережающего развития "быстрых" технологий с замкнутым топливным циклом. Докладчик дал прогноз развития электроэнергетики России до 2020 г. - в соответствии с этим доля ее атомной составляющей увеличится до 23%. Рост последней будет осуществляться за счет внедрения перспективных инновационных проектов на основе ВВЭР-1000 и ВВЭР-1500, а также АТЭЦ, предназначенных для комбинированного производства электроэнергии и тепла в разных регионах нашей страны. При совершенствовании быстрых реакторов планируется постепенный переход на качественно новый уровень технологий, обеспечивающих надежную безопасность, эффективное топливоиспользование и правильное обращение с радиоактивными отходами.



Докладчики конференции на встрече с журналистами (слева направо): члены Госдумы РФ В. Б. Иванов, В. С. Опекунов и заместитель генерального директора "Росэнергоатома" О. М. Сараев.


Реактор на быстрых нейтронах.


Реакторные установки для кораблей ВМФ.


Высокотемпературные газоохлаждаемые реакторы.

Говоря о финансировании ядерной энергетики России, Рачков, в частности, заявил: потребность в ее инвестициях до 2020 г. составит 32 млрд. дол. Основным их источником на сегодняшний день являются собственные средства компаний. По его мнению, у нас, к сожалению, нет четко проработанного механизма привлечения капиталов в отрасль. Не исключено, что ее собственные резервы в скором времени будут исчерпаны.

И все же с учетом мирового кризиса на тепловые ресурсы отношение к АЭС существенно меняется. Докладчик сослался на министра США С. Бодмана, считающего, что сейчас решаются проблемы перехода к водородной энергетике и получения H 2 из воды. Что же касается России, то ей требуется пятикратное увеличение мощностей АЭС и получение на них не менее 50% водорода.

С большим вниманием участники конференции заслушали доклад вице-президента РНЦ "Курчатовский институт" академика Н. Н. Пономарева-Степного. Он отметил, что из "быстрых" технологий сегодня наиболее усовершенствованы реакторы с натриевым носителем, в разработку которых наша страна вложила, с учетом доперестроечного задела, 10 млрд. дол. и создала соответствующие конструкторские и инженерные школы, а также уникальную экспериментальную базу.

Быстрый реактор БН-600 - ныне единственное в мире успешно эксплуатируемое устройство, особенность которого заключается в том, что оно несет основную научно-технологическую нагрузку совершенствования ядерной энергетики. Докладчик подчеркнул: под последней следует понимать весь комплекс мероприятий, все его звенья - от добычи сырья до захоронения радиоактивных отходов, а также полный жизненный цикл атомных станций - от их разработки до вывода из эксплуатации.

Ученый обратил внимание и на то, что страна неизбежно столкнется с ограниченностью ресурсов дешевого урана. И тогда придется реализовывать возможности ядерной энергетики по замыканию топливного цикла, сжиганию плутония, а затем и по расширенному воспроизводству топлива, используя в качестве его уран и торий. С внедрением инновационных технологий проблема сырья может быть вообще снята.

Существенно дополнили разговор об актуальности разработки и создания реакторов на быстрых нейтронах с замкнутым топливным циклом для развития атомной энергетики ряд других российских и зарубежных специалистов.

И. КИСЕЛЕВ, А. КУЗНЕЦОВ

В настоящее время из 15 атомных электростанций, построенных в СССР, 9 находятся на территории России; установленная мощность их 29 энергоблоков составляет 21242 мегаватта. Среди действующих энергоблоков 13 имеют корпусные реакторы ВВЭР (водо-водяной энергетический реактор, активная зона которого размещается в металлическом или из предварительно напряженного бетона корпусе, рассчитанном на полное давление теплоносителя), 11 блоков- канальные реакторы РМБК-1000(РМБК - графито-водяной реактор без прочного корпуса. Теплоноситель в этом реакторе протекает через трубы, внутри которых находятся тепловыделяющие элементы), 4 блока- ЭГП (водо-графитовый канальный реактор с кипящим теплоносителем) по 12 мегаватт каждый установлены на Билибинской АТЭС и еще один энергоблок снабжен реактором БН-600 на быстрых нейтронах. Следует заметить, что основной парк корпусных реакторов последнего поколения был размещен на Украине (10 блоков ВВЭР-1000 и 2 блока ВВЭР-440).

Новые энергоблоки.

Сооружение нового поколения энергоблоков с корпусными реакторами (с водой под давлением) начинается в этом десятилетии. Первыми из них станут блоки ВВЭР-640, конструкция и параметры которых учитывают отечественный и мировой опыт, а также блоки с усовершенствованным реактором ВВЭР-1000 с существенно повышенными показателями безопасности. Головные энергоблоки ВВЭР-640 размещаются на площадках г. Сосновый Бор Ленинградской области и Кольской АЭС, а на базе ВВЭР-1000 - на площадке Нововоронежской АЭС.

Разработан также проект корпусного реактора ВПБЭР-600 средней мощности с интегральной компоновкой. АЭС с такими реакторами смогут сооружаться несколько позже.

Названные типы оборудования при своевременном выполнении всех научно-исследовательских и опытных работ обеспечат основные потребности атомной энергетики на прогнозируемый 15-20-летний период.

Существуют предложения продолжать работы по графито-водяным канальным реакторам, перейти на электрическую мощность 800 мегаватт и создать реактор, не уступающий реактору ВВЭР по безопасности. Такие реакторы могли бы заменить действующие реакторы РБМК. В перспективе возможно строительство энергоблоков с современными безопасными реакторами БН-800 на быстрых нейтронах. Эти реакторы могут быть использованы и для вовлечения в топливный цикл энергетического и оружейного плутония, для освоения технологий выжигания актиноидов (радиоактивных элементов-металлов, все изотопы которых радиоактивны).

Перспективы развития атомной энергетики.

При рассмотрении вопроса о перспективах атомной энергетики в ближайшем (до конца века) и отдаленном будущем необходимо учитывать влияние многих факторов: ограничение запасов природного урана, высокая по сравнению с ТЭС стоимость капитального строительства АЭС, негативное общественное мнение, которое привело к принятию в ряде стран (США, ФРГ, Швеция, Италия) законов, ограничивающих атомную энергетику в праве использовать ряд технологий (например, с использованием Рu и др.), что привело к свертыванию строительства новых мощностей и постепенному выводу отработавших без замены на новые. В то же время наличие большого запаса уже добытого и обогащенного урана, а также высвобождаемого при демонтаже ядерных боеголовок урана и плутония, наличие технологий расширенного воспроизводства (где в выгружаемом из реактора топливе содержится больше делящихся изотопов, чем загружалось) снимают проблему ограничения запасов природного урана, увеличивая возможности атомной энергетики до 200-300 Q. Это превышает ресурсы органического топлива и позволяет сформировать фундамент мировой энергетики на 200-300 лет вперед.

Но технологии расширенного воспроизводства (в частности, реакторы-размножители на быстрых нейтронах) не перешли в стадию серийного производства из-за отставания в области переработки и рецикла (извлечения из отработанного топлива «полезного» урана и плутония). А наиболее распространенные в мире современные реакторы на тепловых нейтронах используют лишь 0,50,6% урана (в основном делящийся изотоп U238 , концентрация которого в природном уране 0,7%). При такой низкой эффективности использования урана энергетические возможности атомной энергетики оцениваются только в 35 Q. Хотя это может оказаться приемлемым для мирового сообщества на ближайшую перспективу, с учетом уже сложившегося соотношения между атомной и традиционной энергетикой и постановкой темпов роста мощностей АЭС во всем мире. Кроме того, технология расширенного воспроизводства дает значительную дополнительную экологическую нагрузку. .Сегодня специалистам вполне понятно, что ядерная анергия, в принципе, является единственным реальным и существенным источником обеспечения электроэнергией человечества в долгосрочном плане, не вызывающим такие отрицательные для планеты явления, как парниковый эффект, кислотные дожди и т.д. Как известно, сегодня энергетика, базирующаяся на органическом топливе, то есть на сжигании угля, нефти и газа, является основой производства электроэнергии в мире Стремление сохранить органические виды топлива, одновременно являющиеся ценным сырьем, обязательство установить пределы для выбросов СО; или снизить их уровень и ограниченные перспективы широкомасштабного использования возобновляемых источников энергии все это свидетельствует о необходимости увеличения вклада ядерной энергетики.

Учитывая все перечисленное выше, можно сделать вывод, что перспективы развития атомной энергетики в мире будут различны для разных регионов и отдельных стран, исходя из потребностей и электроэнергии, масштабов территории, наличия запасов органического топлива, возможности привлечения финансовых ресурсов для строительства и эксплуатации такой достаточно дорогой технологии, влияния общественного мнения в данной стране и ряда других причин.

Отдельно рассмотрим перспективы атомной энергетики в России. Созданный в России замкнутый научно-производственный комплекс технологически связанных предприятий охватывает все сферы, необходимые для функционирования атомной отрасли, включая добычу и переработку руды, металлургию, химию и радиохимию, машино- и приборостроение, строительный потенциал. Уникальным является научный и инженерно-технический потенциал отрасли. Промышленно-сырьевой потенциал отрасли позволяет уже в настоящее время обеспечить работу АЭС России и СНГ на много лет вперед, кроме того, планируются работы по вовлечению в топливный цикл накопленного оружейного урана и плутония. Россия может экспортировать природный и обогащенный уран на мировой рынок, учитывая, что уровень технологии добычи и переработки урана по некоторым направлениям превосходит мировой, что дает возможность в условиях мировой конкуренции удерживать позиции на мировом урановом рынке.

Но дальнейшее развитие отрасли без возврата к ней доверия населения невозможно. Для этого нужно на базе открытости отрасли формировать позитивное общественное мнение и обеспечить возможность безопасного функционирования АЭС под контролем МАГАТЭ. Учитывая экономические трудности России, отрасль сосредоточится в ближайшее время на безопасной эксплуатации существующих мощностей с постепенной заменой отработавших блоков первого поколения наиболее совершенными российскими реакторами (ВВЭР-1000, 500, 600), а небольшой рост мощностей произойдет за счет завершения строительства уже начатых станций. На длительную перспективу в России вероятен рост мощностей в переходом на АЭС новых поколений, уровень безопасности и экономические показатели которых обеспечат устойчивое развитие отрасли на перспективу.

В диалоге сторонников и противников атомной энергетики необходимы полная и точная информация по состоянию дел в отрасли как в отдельной стране, так и в мире, научно обоснованные прогнозы развития и потребности в атомной энергии. Только на пути гласности и информированности могут быть достигнуты приемлемые результаты. Более 400 блоков во всем мире (по данным, содержащимся в Информационной системе МАГАТЭ по энергетическим реакторам на конец 1994 года, в 30 странах эксплуатируется 432 АЭС общей мощностью приблизительно 340 ГВт) обеспечивают весомую долю потребностей общества в энергии. Миллионы людей в мире добывают уран, обогащают его, создают оборудование и строят атомные станции, десятки тысяч ученых работают в отрасли. Это одна из наиболее мощных отраслей современной индустрии, ставшая уже ее неотъемлемой частью. И хотя взлет атомной энергетики сейчас сменяется периодом стабилизации мощностей, учитывая позиции, завоеванные атомной энергетикой за 40 лет, есть надежда, что она сможет сохранить свою долю в мировом производстве электроэнергии на довольно длительную перспективу, пока не будет сформирован единый взгляд в мировом сообществе на необходимость и масштабы использования атомной энергетики в мире.

Список литературы :

1.”Ядерная энергетика в альтернативных энергетических сценариях” Энергия 1997 №4

2.”Некоторые экономические аспекты современного развития атомной энергетики”Вестник МГУ 1997 №1

3.”Положение и перспективы развития электроэнергетики России”БИКИ 1997 №8

4.Международная жизнь 1997 №5,№6

5.ВЕК 1996 №18, №13

6.Независимая газета 30.01.97

8.”Стратегия ядерной энергии” Международная жизнь 1997 №7

9 “О перспективах атомной энергетики в России” июнь 1995

Курсовая работа студента группы НП1_2 Еровиченкова А.С.

Финансовая Академия при Правительстве Российской Федерации

Кафедра “Экономическая география и региональная экономика”

Москва - 1997

Предпосылки развития атомной энергетики

Россия была, есть и будет одной из ведущих энергетических держав мира. И это не только потому, что в недрах страны находится 12% мировых запасов угля, 13% нефти и 36% мировых запасов природного газа, которых достаточно для полного обеспечения собственных потребностей и для экспорта в сопредельные государства. Россия вошла в число ведущих мировых энергетических держав, прежде всего, благодаря созданию уникального производственного, научно-технического и кадрового потенциала топливно-энергетического комплекса (ТЭК).

Но экономический кризис последних лет существенным образом затронул и этот комплекс. Производство первичных энергоресурсов в 1993 г. составило 82% от уровня 1990 и продолжало падать. Уменьшение потребления топлива и энергии, обусловленное общим экономическим спадом, временно облегчило задачу энергообеспечения страны, хотя в ряде регионов пришлось вынужденно ограничивать потребление энергии. Отсутствие необходимых инвестиций не позволило в 90-х годах компенсировать естественное выбытие производственных мощностей и обновлять основные фонды, износ которых в отраслях ТЭК колеблется в пределах 30-80%. В соответствии с нормами безопасности требуют реконструкции и до половины АЭС.

Следует заметить, что в 1981-1985 гг. среднегодовой ввод мощностей в электроэнергетике был 6 млн. кВт в год, а в 1995 г. - только 0,3 млн. кВт. В 1995 году в России произведено 860 млрд. кВт\час, а в 1996 г. в связи со снижением спроса и износом установленного на электростанциях оборудования - 840 млрд.. кВт\час.

Производство электроэнергии на электростанциях России (млрд. Квт-ч)

1990 1995 2000 2005
ВСЕГО 1082 860 922 1020
ГЭС и ГАС 167 177 166 180
КЭС 397 252 242 249
ТЭЦ 400 332 392 457
АЭС 118 99 122 134

Таблица 1

Доля России в объёме мирового производства электроэнергии составляла в 1990 г 8,2%, а в 1995 г сократилась до 7,6%.

В 1993 году по производству электроэнергии на душу населения Россия занимала 13-е место в мире (6297 кВт\ч).

В 1991-1996 гг. электропотребление в России снизилось более чем на 20%, в том числе в 1996 г - на 1%. В 1997 г впервые в 90-е годы ожидается рост производства электроэнергии.

В начале 90-х годов установленные энергетические мощности России превышали 7% мировых. В 1995 г установленная мощность электроэнергетики России составляла 215,3 млн. кВт, в том числе доля мощностей ТЭС - 70%, ГЭС - 20% и АЭС - 10%.

В 1992-1995 гг. было введено 66 млн. кВт генерирующих мощностей. В настоящее время 15 млн. кВт оборудования ТЭС выработали ресурс. В 2000 году таких мощностей будет уже 35 млн. кВт и в 2005 году - 55 млн. кВт. К 2005 году предельного срока эксплуатации достигнут агрегаты ГЭС мощностью 21 млн. кВт (50% мощностей ГЭС России). На АЭС в 2001-2005 гг. будут выведены из эксплуатации 6 энергоблоков общей мощностью 3,8 млн. кВт.

По оценкам экспертов в настоящее время на 40% электростанций России используется устаревшее оборудование.Если не будут приняты меры по обновлению генерирующего оборудования, то динамика его старения к 2010 году будет выглядеть следующим образом: (тыс. млн. кВт)

1995 г 2000 г 2005 г 20010 г
ВСЕГО 17,0 49,3 83,3 108,5
ТЭС 14,2 35,3 55,1 75,1
ГЭС 2,8 14,0 24,0 25,0
АЭС - - 3,8 8,4

Таблица 2

В этих условиях для обеспечения прогнозируемого спроса на электрическую энергию и мощность потребуется значительная реконструкция действующих, а затем и строительство новых электростанций. Но какой вид энергии самый экономичный, безопасный и экологически чистый? На развитие какой отрасли направить основные средства? На сегодняшний день при выборе источника электроэнергии нельзя не отметить актуальность такого фактора, как ограниченность источников энергии.

Ограниченность источников энергии.

Современные темпы энергопотребления составляют примерно 0,5 Q в год, однако они растут в геометрической прогрессии. Так, в первой четверти следующего тысячелетия энергопотребление, по прогнозам, составит 1 Q в год. Следовательно, если даже учесть, что темпы роста потребления электроэнергии несколько сократятся из-за совершенствования энергосберегающих технологий, запасов энергетического сырья хватит максимум на 100 лет.

Однако положение усугубляется еще и несоответствием структуры запасов и потребления органического сырья. Так, 80% запасов органического топлива приходится на уголь и лигниты и лишь 20% на нефть и газ, в то время как 8/10 современного энергопотребления приходится на нефть и газ. Следовательно, временные рамки еще более сужаются.

Альтернативой органическому топливу и возобновляемым источником энергии является гидроэнергетика. Однако и здесь источник энергии достаточно сильно ограничен. Это связано с тем, что крупные реки, как правило, сильно удалены от промышленных центров либо их мощности практически полностью использованы. Таким образом, гидроэнергетика, в настоящий момент обеспечивающая около 10% производства энергии в мире, не сможет существенно увеличить эту цифру.

Огромный потенциал энергии Солнца (порядка 10 Q в среднем в сутки) мог бы теоретически обеспечить все мировые потребности энергетики. Но если отнести эту энергию на один квадратный метр поверхности Земли, то средняя тепловая мощность получится не более 200 Вт/м, или около 20 Вт/м электрической мощности при кпд преобразования в электроэнергию 10%. Это, очевидно, ограничивает возможности солнечной энергетики при создании электростанций большой мощности (для станции мощностью 1 млн. кВт площадь солнечных преобразователей должна быть около 100 км). Принципиальные трудности возникают и при анализе возможностей создания генераторов большой мощности, использующих энергию ветра, приливы и отливы в океане, геотермальную энергию, биогаз, растительное топливо и т.д. Все это приводит к выводу об ограниченности возможностей рассмотренных так называемых “воспроизводимых” и относительно экологически чистых ресурсов энергетики, по крайней мере, в относительно близком будущем. Хотя эффект от их использования при решении отдельных частных проблем энергообеспечения может быть уже сейчас весьма впечатляющим, суммарная доля воспроизводимых ресурсов в ближайшие 40 50 лет не превысит 15 20%.

Конечно, существует оптимизм по поводу возможностей термоядерной энергии и других эффективных способов получения энергии, интенсивно исследуемых наукой, но при современных масштабах энергопроизводства, при практическом освоении этих возможных источников потребуется несколько десятков лет из-за высокой капиталоемкости (до 30% всех капитальных затрат в промышленности требует энергетика) и соответствующей инерционности в реализации проектов. Так что в перспективе до середины следующего века можно ориентироваться на существенный вклад в мировую энергетику лишь тех новых источников, для которых уже сегодня решены принципиальные проблемы массового использования и создана техническая база для промышленного освоения. Единственным здесь конкурентом традиционному органическому топливу может быть только ядерная энергетика, обеспечивающая уже сейчас около 20% мирового производства электроэнергии с развитой сырьевой и производственной базой для дальнейшего развития отрасли.

Важнейшие факторы развития атомной энергетики

На все более конкурентном и многонациональном глобальном энергетическом рынке ряд важнейших факторов будет влиять не только на выбор вида энергии, но также и на степень и характер использования разных источников энергии. Эти факторы включают в себя:

оптимальное использование имеющихся ресурсов;

сокращение суммарных расходов;

сведение к минимуму экологических последствий;

убедительную демонстрацию безопасности;

удовлетворение потребностей национальной и международной политики.

Для ядерной энергии эти пять факторов определяют будущие стратегии в области топливного цикла и реакторов. Цель заключается в том, чтобы оптимизировать эти факторы.

Хотя достижение признания со стороны общественности не всегда включалось в качестве важнейшего фактора, в действительности этот фактор является жизненно важным для ядерной энергии. Необходимо открыто и достоверно ознакомить общественность и лиц, принимающих решения, с реальными выгодами ядерной энергетики. В следующем ниже обсуждении содержатся элементы убедительной аргументации. Растущее нежелание общественности, особенно в промышленно развитых странах, соглашаться с вводом новых промышленных установок сказывается на политике во всем энергетическом секторе и влияет на осуществление всех проектов энергетических установок.

Максимальное использование ресурсов

Известные и вероятные запасы урана должны обеспечить достаточное снабжение ядерным топливом в краткосрочном и среднесрочном плане, даже если реакторы будут работать главным образом с однократными циклами, предусматривающими захоронение отработавшего топлива. Проблемы в топливообеспечении атомной энергетики могут возникнуть лишь к 2030 году при условии развития и увеличения к этому времени атомных энергомощностей. Для их решения потребуются разведка и освоение новых месторождений урана на территории России, использование накопленных оружеййного и энергетического плутония и урана, развитие атомной энергетики на альтернативных видах ядерного топлива. Одна тонна оружейного плутония по теплотворному эквиваленту органического топлива при “сжигании” в тепловых реакторах в открытом топливном цикле соответствует 2,5 млрд. куб. м. природного газа. Приближенная оценка показывает, что общий энергетический потенциал оружейного сырья, с использованием в парке АЭС также реакторов на быстрых нейтронах, может соответствовать выработке 12-14 трлн. киловатт-часов электроэнергии, т.е 12-14 годовым её выработкам на уровне 1993 года, и сэкономить в электроэнергетике около 3,5 трлн.кубометров природного газа. Однако по мере роста спроса на уран и уменьшения его запасов, обусловленного необходимостью удовлетворять потребности растущих мощностей атомных станций, возникнет экономическая необходимость оптимального использования урана таким образом, чтобы вырабатывалась вся потенциально содержащаяся в нем энергия на единицу количества руды. Существуют разнообразные способы достижения этого в ходе процесса обогащения и на этапе эксплуатации. В долгосрочном плане потребуются повторное использование наработанных делящихся материалов в тепловых реакторах и внедрение быстрых реакторов-размножителей.

По уровню научно-технических разработок российская атомная энергетика является одной из лучших в мире. Предприятия имеют огромные возможности для решения повседневных или масштабных задач. Специалисты прогнозируют перспективное будущее в этой области, так как РФ имеет большие запасы руд для выработки энергии.

Краткая история развития атомной энергетики в России

Атомная отрасль берет свое начало со времен СССР, когда планировалось реализовать один из авторских проектов о создании взрывчатки из уранового вещества. Летом, в 1945 году благополучно прошло испытание атомное оружие в США, а в 1949 году на Семипалатинском полигоне впервые использовали ядерную бомбу РДС-1. Дальнейшее развитие атомной энергетики в России было следующим:


Научно-производственные коллективы трудились много лет для достижения высокого уровня в атомном оружии, и останавливаться на достигнутом не собираются. Позже вы узнаете о перспективах в этой области до 2035 года.

Действующие АЭС в России: краткая характеристика

В настоящее время существует 10 действующих АЭС. Особенности каждой из них будут рассмотрены далее.


  • №1 и №2 с реактором АМБ;
  • №3 с реактором БН-600.

Вырабатывает до 10% от общего объема электрической энергии. В настоящее время многие системы Свердловска находятся в режиме длительной консервации, а эксплуатируется только энергоблок БН-600. Белоярская АЭС расположена в г. Заречный.

  1. Билибинская АЭС – единственный источник, снабжающий теплом г. Билбино и имеющий мощность 48 МВт. Станция вырабатывает около 80% энергии и соответствует всем требованиям, предъявляемым к установке аппаратуры:
  • максимальная простота эксплуатации;
  • повышенная надежность работы;
  • защита от механических повреждений;
  • минимальный объем монтажных работ.

Система имеет важное преимущество: при неожиданном прерывании работы блока ей не наносится вред. Станция расположена в Чукотском автономном округе, в 4,5, расстояние до Анадыря – 610 км.


Каково состояние атомной энергетики сегодня?

Сегодня существует более 200 предприятий, специалисты которых не покладая рук трудятся над совершенством атомной энергетики России . Поэтому мы уверенно двигаемся вперед в этом направлении: разрабатываем новые модели реакторов и постепенно расширяем производство. Согласно мнению участников Всемирной ядерной ассоциации, сильная сторона России — развитие технологий на быстрых нейронах.

Российские технологии, многие из которых были разработаны компанией «Росатом», высоко ценятся за рубежом за относительно небольшую стоимость и безопасность. Следовательно, у нас достаточно высокий потенциал в атомной отрасли.

Зарубежным партнерам РФ оказывает множество услуг, касающихся рассматриваемой деятельности. К их числу относится:

  • возведение атомных энергоблоков с учетом правил безопасности;
  • поставка ядерного топлива;
  • вывод использованных объектов;
  • подготовка международных кадров;
  • помощь в развитии научных работ и ядерной медицины.

Россия строит большое количество энергоблоков за границей. Успешно были такие проекты, как «Бушер» или «Куданкулам», созданные для иранской и индийской АЭС. Они позволили создавать чистые, безопасные и эффективные источники энергии.

Какие проблемы, связанные с атомной отраслью, возникали в России?

В 2011 году на строящейся ЛАЭС-2 произошел обвал металлических конструкций (вес около 1200 тонн). В ходе надзорной комиссии обнаружилась поставка несертифицированной арматуры, в связи с чем были приняты следующие меры:

  • наложение штрафа на ЗАО «ГМЗ-Химмаш» в размере 30 тыс. руб.;
  • выполнение расчетов и проведение работ, направленных на усиление арматуры.

По мнению Ростехнадзора, главной причиной нарушения является недостаточный уровень квалификации специалистов «ГМЗ-Химмаш». Слабое знание требований федеральных норм, технологий изготовления подобного оборудования и конструкторской документации привело к тому, что многие подобные организации лишились лицензий.

В Калининской АЭС повысился уровень тепловой мощности реакторов. Такое событие крайне нежелательно, так как появляется вероятность возникновения аварии с серьезными радиационными последствиями.

Многолетние исследования, проведенные в зарубежных странах, показали, что соседство с АЭС приводит к росту заболеваний лейкемией. По этой причине в России было множество отказов от эффективных, но очень опасных проектов.

Перспективы АЭС в России

Прогнозы дальнейшего использования атомной энергии противоречивы и неоднозначны. Большинство из них сходится к мнению, что к середине XXI века потребность возрастет в связи с неизбежным увеличением численности населения.

Министерство энергетики РФ сообщило энергетическую стратегию России на период до 2035 года (сведения поступили в 2014 году). Стратегическая цель атомной энергетики включает в себя:


С учетом установленной стратегии, в дальнейшем предусматривается решить следующие задачи:

  • улучшить схему производства, обращения и захоронения топливно-сырьевых ресурсов;
  • развить целевые программы, обеспечивающие обновление, устойчивость и повышение эффективности имеющейся топливной базы;
  • реализовать наиболее эффективные проекты с высоким уровнем безопасности и надежности;
  • увеличить экспорт ядерных технологий.

Государственная поддержка массового производства атомных энергоблоков – основа благополучного продвижения товаров за рубеж и высокой репутации России на международном рынке.

Что препятствует развитию атомной энергетики в России?

Развитие атомной энергетики в РФ сталкивается с определенными трудностями. Вот основные из них:


В России атомная энергетика является одним из важных секторов экономики. Успешная реализация разрабатываемых проектов способна помочь развить остальные отрасли, но для этого нужно приложить немало усилий.

 
Статьи по теме:
Как приготовить свиной желудок с гречкой
Сычуг, колбик, субпродукт. Какие еще названия есть у свиного желудка? Люди, занимающиеся разведением этих забавных животных с пятачком, знают, как приготовить свиной желудок, чтобы даже самый привередливый гурман испытал гастрономическое удовольствие. Се
Зерновое кофе для кофемашины
Сегодня зерновой кофе на рынке представляют множество различных брендов. Выбор настолько велик, что даже настоящие профессионалы могут запутаться. Поэтому сегодня разговор пойдет о том, какой кофе в зернах лучше или хуже и о мастерстве cup-tester. Кофе
Домашняя ветчина из свинины в ветчиннице с грибами, черносливом и орехами
С появлением ребенка в доме начинаешь задумываться о здоровой и, самое главное, вкусной пище. Ветчинница Редмонд — это не электрический прибор, а просто дополнительный аксессуар для приготовления домашней колбасы в мультиварке. Понятно, что вареная колбас
Свинина по-китайски: простой и вкусный рецепт
Свинина по-китайски - визитная карточка китайской кухни. Существует множество способов приготовления мяса и каждый из них хорош по-своему. Практически в каждом рецепте присутствует сахар или другой подсластитель, поэтому блюдо всегда выходит восхитительно