Некоторые исторические и современные модели атома. Модели строения атомов

Планетарная модель атома

Планетарная модель атома: ядро (красное) и электроны (зелёные)

Планетарная модель атома , или модель Резерфорда , - историческая модель строения атома , которую предложил Эрнест Резерфорд в результате эксперимента с рассеянием альфа-частиц . По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны , - подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики . Исторически планетарная модель Резерфорда пришла на смену «модели сливового пудинга » Джозефа Джона Томсона , которая постулирует, что отрицательно заряженные электроны помещены внутрь положительно заряженного атома.

Новую модель строения атома Резерфорд предложил в 1911 году как вывод из эксперимента по рассеянию альфа-частиц на золотой фольге, проведённого под его руководством. При этом рассеянии неожиданно большое количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры и в нём сосредоточен значительный электрический заряд. Расчёты Резерфорда показали, что рассеивающий центр, заряженный положительно или отрицательно, должен быть по крайней мере в 3000 раз меньше размера атома, который в то время уже был известен и оценивался как примерно 10 -10 м. Поскольку в то время электроны уже были известны, а их масса и заряд определены, то рассеивающий центр, который позже назвали ядром, должен был иметь противоположный электронам заряд. Резерфорд не связал величину заряда с атомным номером. Этот вывод был сделан позже. А сам Резерфорд предположил, что заряд пропорционален атомной массе.

Недостатком планетарной модели была её несовместимость с законами классической физики. Если электроны движутся вокруг ядра как планеты вокруг Солнца, то их движение ускоренное, и, следовательно, по законам классической электродинамики они должны были бы излучать электромагнитные волны, терять энергию и падать на ядро. Следующим шагом в развитии планетарной модели стала модель Бора , постулирующая другие, отличные от классических, законы движения электронов. Полностью противоречия электродинамики смогла решить квантовая механика .


Wikimedia Foundation . 2010 .

Смотреть что такое "Планетарная модель атома" в других словарях:

    планетарная модель атома - planetinis atomo modelis statusas T sritis fizika atitikmenys: angl. planetary atom model vok. Planetenmodell des Atoms, n rus. планетарная модель атома, f pranc. modèle planétaire de l’atome, m … Fizikos terminų žodynas

    Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

    Модель (франц. modèle, итал. modello, от лат. modulus мера, мерило, образец, норма), 1) образец, служащий эталоном (стандартом) для серийного ли массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип, марка какого либо… …

    I Модель (Model) Вальтер (24.1.1891, Гентин, Восточная Пруссия, 21.4.1945, близ Дуйсбурга), немецко фашистский генерал фельдмаршал (1944). В армии с 1909, участвовал в 1 й мировой войне 1914 18. С ноября 1940 командовал 3 й танковой… … Большая советская энциклопедия

    СТРОЕНИЕ АТОМА - (см.) построен из элементарных частиц трёх видов (см.), (см.) и (см.), образующих устойчивую систему. Протон и нейтрон входят в состав атомного (см.), электроны образуют электронную оболочку. В ядре действуют силы (см.), благодаря которым… … Большая политехническая энциклопедия

    У этого термина существуют и другие значения, см. Атом (значения). Атом гелия Атом (от др. греч … Википедия

    - (1871 1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член корреспондент РАН (1922) и почетный член АН СССР (1925). Родился в Новой Зеландии, после окончания… … Энциклопедический словарь

    Атом гелия Атом (др. греч. ἄτομος неделимый) наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и… … Википедия

    Атом гелия Атом (др. греч. ἄτομος неделимый) наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и… … Википедия

Книги

  • Комплект таблиц. Физика. 11 класс (15 таблиц) , . Учебный альбом из 15 листов. Трансформатор. Электромагнитная индукция в современной технике. Электронные лампы. Электронно-лучевая трубка. Полупроводники. Полупроводниковый диод. Транзистор.…

Одна из первых моделей строения атома была предложена Дж. Томсоном в 1904 г. Атом представлялся как «море положительного электричества» с колеблющимися в нем электронами. Суммарный отрицательный заряд электронов электронейтрального атома приравнивался его суммарному положительному заряду.

Опыт Резерфорда

Для проверки гипотезы Томсона и более точного определения строения атома Э. Резерфорд организовал серию опытов по рассеянию α -частиц тонкими металлическими пластинками - фольгой. В 1910 г. студенты Резерфорда Ханс Гейгер и Эрнест Марсден проводили эксперименты по бомбардировке α -частицами тонких металлических пластинок. Они обнаружили, что большинство α -частиц проходят через фольгу, не изменяя своей траектории. И это было неудивительно, если принять правильность модели атома Томсона.

Источник α -излучения помещали в свинцовый кубик с просверленным в нем каналом, так что удавалось получить поток α -частиц, летящих в определенном направлении. Альфа-частицы являются двукратно ионизированными атомами гелия (Не 2+ ). Они имеют положительный заряд +2 и массу, почти в 7350 раз превышающую массу электрона. Попадая на экран, покрытый сульфидом цинка, α -частицы вызывали его свечение, причем в лупу можно было увидеть и подсчитать отдельные вспышки, возникающие на экране при попадании на него каждой α -частицы. Между источником излучения и экраном помещали фольгу. По вспышкам на экране можно было судить о рассеянии α -частиц, т.е. об их отклонении от первоначального направления при прохождении через слой металла.

Оказалось, что большинство α -частиц проходит через фольгу, не изменяя своего направления, хотя толщина фольги соответствовала сотням тысяч атомных диаметров. Но некоторая доля α -частиц все же отклонялась на небольшие углы, а изредка α -частицы резко изменяли направление своего движения и даже (примерно 1 из 100000) отбрасывались назад, как бы натолкнувшись на массивное препятствие. Случаи такого резкого отклонения α -частиц можно было наблюдать, перемещая экран с лупой по дуге.

Из результатов этого эксперимента можно было сделать следующие выводы:

  1. В атоме есть некоторое «препятствие», которое было названо ядром.
  2. Ядро имеет положительный заряд (иначе положительно заряженные α -частицы не отражались бы назад).
  3. Ядро имеет очень маленькие размеры по сравнению с размерами самого атома (лишь незначительная часть α -частиц изменяла направление движения).
  4. Ядро имеет большую массу, по сравнению с массой α -частиц.

Результаты опыта Резерфорд объяснил, предложив «планетарную» модель атома , уподоблявшую его солнечной системе. Согласно планетарной модели в центре атома находится очень маленькое ядро, размеры которого приблизительно в 100000 раз меньше размеров самого атома. Это ядро заключает в себе почти всю массу атома и несет положительный заряд. Вокруг ядра движутся электроны, число которых определяется зарядом ядра. Внешняя траектория движения электронов определяет внешние размеры атома. Диаметр атома - величина порядка 10 -8 см, а диаметр ядра - порядка 10 -13 ÷10 -12 см.

Чем больше заряд атомного ядра, тем сильнее будет отталкиваться от него α -частица, тем чаще будут встречаться случаи сильных отклонений α -частиц, проходящих через слой металла, от первоначального направления движения. Поэтому опыты по рассеянию α -частиц дают возможность не только обнаружить существование атомного ядра, но и определить его заряд. Уже из опытов Резерфорда следовало, что заряд ядра (выраженный в единицах заряда электрона) численно равен порядковому номеру элемента в периодической системе. Это было подтверждено Г. Мозли , установившим в 1913 г. простую связь между длинами волн определенных линий рентгеновского спектра элемента и его порядковым номером, и Д. Чедвиком , с большой точностью определившим в 1920 г. заряды атомных ядер ряда элементов по рассеянию α -частиц.

Был установлен физический смысл порядкового номера элемента в периодической системе: порядковый номер оказался важнейшей константой элемента, выражающей положительный заряд ядра его атома. Из электронейтральности атома следует, что и число вращающихся вокруг ядра электронов равно порядковому номеру элемента.

Это открытие дало новое обоснование расположению элементов в периодической системе. Вместе с тем оно устраняло и кажущееся противоречие в системе Менделеева - положение некоторых элементов с большей атомной массой впереди элементов с меньшей атомной массой (теллур и йод, аргон и калий, кобальт и никель). Оказалось, что противоречия здесь нет, так как место элемента в системе определяется зарядом атомного ядра. Было экспериментально установлено, что заряд ядра атома теллура равен 52, а атома йода - 53; поэтому теллур, несмотря на большую атомную массу, должен стоять до йода. Точно так же заряды ядер аргона и калия, никеля и кобальта полностью отвечают последовательности расположения этих элементов в системе.

Итак, заряд атомного ядра является той основной величиной, от которой зависят свойства элемента и его положение в периодической системе. Поэтому периодический закон Менделеева в настоящее время можно сформулировать следующим образом:


Свойства элементов и образуемых ими простых и сложных веществ находятся в периодической зависимости от заряда ядра атомов элементов


Определение порядковых номеров элементов по зарядам ядер их атомов позволило установить общее число мест в периодической системе между водородом, имеющим порядковый номер 1, и ураном (порядковый номер 92), считавшимся в то время последним членом периодической системы элементов. Когда создавалась теория строения атома, оставались незанятыми места 43, 61, 72, 75, 85 и 87, что указывало на возможность существования еще неоткрытых элементов. И действительно, в 1922 г. был открыт элемент гафний, который занял место 72; затем в 1925 г. - рений, занявший место 75. Элементы, которые должны занять остальные четыре свободных места таблицы, оказались радиоактивными и в природе не найдены, однако их удалось получить искусственным путем. Новые элементы получили названия технеций (порядковый номер 43), прометий (61), астат (85) и франций (87). В настоящее время все клетки периодической системы между водородом и ураном заполнены. Однако сама периодическая система не является завершенной.

Атомные спектры

Планетарная модель была крупным шагом в теории строения атома. Однако в некоторых отношениях она противоречила твердо установленным фактам. Рассмотрим два таких противоречия.

Во-первых, теория Резерфорда не могла объяснить устойчивости атома. Электрон, вращающийся вокруг положительно заряженного ядра, должен, подобно колеблющемуся электрическому заряду, испускать электромагнитную энергию в виде световых волн. Но, излучая свет, электрон теряет часть своей энергии, что приводит к нарушению равновесия между центробежной силой, связанной с вращением электрона, и силой электростатического притяжения электрона к ядру. Для восстановления равновесия электрон должен переместиться ближе к ядру. Таким образом, электрон, непрерывно излучая электромагнитную энергию и двигаясь по спирали, будет приближаться к ядру. Исчерпав всю свою энергию, он должен «упасть» на ядро, и атом прекратит свое существование. Этот вывод противоречит реальным свойствам атомов, которые представляют собой устойчивые образования, и могут существовать, не разрушаясь, чрезвычайно долго.

Во-вторых, модель Резерфорда приводила к неправильным выводам о характере атомных спектров. При пропускании через стеклянную или кварцевую призму света, испускаемого раскаленным твердым или жидким телом, на экране, поставленном за призмой, наблюдается так называемый сплошной спектр, видимая часть которого представляет собой цветную полосу, содержащую все цвета радуги. Это явление объясняется тем, что излучение раскаленного твердого или жидкого тела состоит из электромагнитных волн всевозможных частот. Волны различной частоты неодинаково преломляются призмой и попадают на разные места экрана. Совокупность частот электромагнитного излучения, испускаемого веществом, и называется спектром испускания. С другой стороны, вещества поглощают излучение определенных частот. Совокупность последних называется спектром поглощения вещества.

Для получения спектра вместо призмы можно воспользоваться дифракционной решеткой. Последняя представляет собой стеклянную пластинку, на поверхности которой на очень близком расстоянии друг от друга нанесены тонкие параллельные штрихи (до 1500 штрихов на 1 мм). Проходя сквозь такую решетку, свет разлагается и образует спектр, аналогичный полученному при помощи призмы. Дифракция присуща всякому волновому движению и служит одним из основных доказательств волновой природы света.


При нагреве вещество испускает лучи (излучение). Если излучение имеет одну длину волны, то оно называется монохроматическим. В большинстве же случаев излучение характеризуется несколькими длинами волн. При разложении излучения на монохроматические компоненты получают спектр излучения, где отдельные его составляющие выражаются спектральными линиями.

Спектры, получающиеся при излучении свободными или слабо связанными атомами (например, в газах или парах), называются атомными спектрами.


Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия дают - спектр, состоящий из трех линий, - двух красных и одной фиолетовой; в спектре паров кальция несколько красных, желтых и зеленых линий и т.д.

Излучение, испускаемое твердыми телами или жидкостями, всегда дает сплошной спектр. Излучение, испускаемое раскаленными газами и парами, в отличие от излучения твердых тел и жидкостей, содержит только определенные длины волн. Поэтому вместо сплошной полосы на экране получается ряд отдельных цветных линий, разделенных темными промежутками. Число и расположение этих линий зависят от природы раскаленного газа или пара. Так, пары калия дают спектр, состоящий из трех линий, - двух красных и одной фиолетовой; в спектре паров кальция несколько красных, желтых и зеленых линий и т.д.

Такие спектры называются линейчатыми. Было установлено, что свет, испускаемый атомами газов, имеет линейчатый спектр, в котором спектральные линии могут быть объединены в серии.

В каждой серии расположение линий соответствует определенной закономерности. Частоты отдельных линий могут быть описаны формулой Бальмера :

Тот факт, что атомы каждого элемента дают вполне определенный, присущий только этому элементу спектр, причем интенсивность соответствующих спектральных линий тем выше, чем больше содержание элемента во взятой пробе, широко применяется для определения качественного и количественного состава веществ и материалов. Этот метод исследования называется спектральным анализом .

Планетарная модель строения атома оказалась неспособной объяснить линейчатый спектр испускания атомов водорода и тем более объединение линий спектра в серии. Электрон, вращающийся вокруг ядра, должен приближаться к ядру, непрерывно меняя скорость своего движения. Частота испускаемого им света определяется частотой его вращения и, следовательно, должна непрерывно меняться. Это означает, что спектр излучения атома должен быть непрерывным, сплошным. Согласно данной модели частота излучения атома должна равняться механической частоте колебаний или быть кратной ей, что не согласуется с формулой Бальмера. Таким образом, теория Резерфорда не смогла объяснить ни существования устойчивых атомов, ни наличия у них линейчатых спектров.

Квантовая теория света

В 1900 г. М. Планк показал, что способность нагретого тела к лучеиспусканию можно правильно количественно описать, только предположив, что лучистая энергия испускается и поглощается телами не непрерывно, а дискретно, т.е. отдельными порциями - квантами. При этом энергия Е каждой такой порции связана с частотой излучения соотношением, получившим название уравнения Планка :

Сам Планк долгое время полагал, что испускание и поглощение света квантами есть свойство излучающих тел, а не самого излучения, которое способно иметь любую энергию и поэтому могло бы поглощаться непрерывно. Однако в 1905 г. Эйнштейн , анализируя явление фотоэлектрического эффекта, пришел к выводу, что электромагнитная (лучистая) энергия существует только в форме квантов и что, следовательно, излучение представляет собой поток неделимых материальных «частиц» (фотонов), энергия которых определяется уравнением Планка .

Фотоэлектрическим эффектом называется испускание металлом электронов под действием падающего на него света. Это явление было подробно изучено в 1888-1890 гг. А. Г. Столетовым . Если поместить установку в вакуум и подать на пластинку М отрицательный потенциал, то тока в цепи наблюдаться не будет, поскольку в пространстве между пластинкой и сеткой нет заряженных частиц, способных переносить электрический ток. Но при освещении пластинки источником света гальванометр обнаруживает возникновение тока (называемого фототоком), носителями которого служат электроны, вырываемые светом из металла.

Оказалось, что при изменении интенсивности освещения изменяется только число испускаемых металлом электронов, т.е. сила фототока. Но максимальная кинетическая энергия каждого вылетевшего из металла электрона не зависит от интенсивности освещения, а изменяется только при изменении частоты падающего на металл света. Именно с увеличением длины волны (т.е. с уменьшением частоты) энергия испускаемых металлом электронов уменьшается, а затем, при определенной для каждого металла длине волны, фотоэффект исчезает и не проявляется даже при очень высокой интенсивности освещения. Так, при освещении красным или оранжевым светом натрий не проявляет фотоэффекта и начинает испускать электроны только при длине волны, меньшей 590 нм (желтый свет); у лития фотоэффект обнаруживается при еще меньших длинах волн, начиная с 516 нм (зеленый свет); а вырывание электронов из платины под действием видимого света вообще не происходит и начинается только при облучении платины ультрафиолетовыми лучами.

Эти свойства фотоэлектрического эффекта совершенно необъяснимы с позиций классической волновой теории света, согласно которой эффект должен определяться (для данного металла) только количеством энергии, поглощаемой поверхностью металла в единицу времени, но не должен зависеть от типа излучения, падающего на металл. Однако эти же свойства получают простое и убедительное объяснение, если считать, что излучение состоит из отдельных порций, фотонов, обладающих вполне определенной энергией.

В самом деле, электрон в металле связан с атомами металла, так что для его вырывания необходима затрата определенной энергии. Если фотон обладает нужным запасом энергии (а энергия фотона определяется частотой излучения), то электрон будет вырван, фотоэффект будет наблюдаться. В процессе взаимодействия с металлом фотон полностью отдает свою энергию электрону, потому что дробиться на части фотон не может. Энергия фотона будет частично израсходована па разрыв связи электрона с металлом, частично на сообщение электрону кинетической энергии движения. Поэтому максимальная кинетическая энергия выбитого из металла электрона не может быть больше разности между энергией фотона и энергией связи электрона с атомами металла. Следовательно, при увеличении числа фотонов, падающих на поверхность металла в единицу времени (т.е. при повышении интенсивности освещения), будет увеличиваться только число вырываемых из металла электронов, что приведет к возрастанию фототока, но энергия каждого электрона возрастать не будет. Если же энергия фотона меньше минимальной энергии, необходимой для вырывания электрона, фотоэффект не будет наблюдаться при любом числе падающих на металл фотонов, т.е. при любой интенсивности освещения.

Квантовая теория света , развитая Эйнштейном , смогла объяснить не только свойства фотоэлектрического эффекта, но и закономерности химического действия света, температурную зависимость теплоемкости твердых тел и ряд других явлений. Она оказалась чрезвычайно полезной и в развитии представлений о строении атомов и молекул.

Из квантовой теории света следует, что фотон неспособен дробиться: он вза-модействует как целое с электроном металла, выбивая его из пластинки; как целое он взаимодействует и со светочувствительным веществом фотографической пленки, вызывая ее потемнение в определенной точке, и т. д. В этом смысле фотон ведет себя подобно частице, т.е. проявляет корпускулярные свойства. Однако фотон обладает и волновыми свойствами: это проявляется в волновом характере распространения света, в способности фотона к интерференции и дифракции. Фотон отличается от частицы в классическом понимании этого термина тем, что его точное положение в пространстве, как и точное положение любой волны, не может быть указано. Но он отличается и от «классической» волны - неспособностью делиться на части. Объединяя в себе корпускулярные и волновые свойства, фотон не является, строго говоря, ни частицей, ни волной - ему присуща корпускулярно-волновая двойственность.


Планетарную модель атома предложил Э. Резерфорд в 1910 году. Первые исследования структуры атома были сделаны им при помощи альфа-частиц. На основе результатов, полученных в экспериментах по их рассеянию, Резерфорд предположил, что весь положительный заряд атома сосредоточен в крошечном ядре в его центре. С другой стороны, отрицательно заряженные электроны распределены внутри всего остального его объема.

Немного предыстории

Первую гениальную догадку о существовании атомов сделал древнегреческий ученый Демокрит. С тех пор идея о существовании атомов, комбинации которых дают все окружающие нас вещества, не покидала воображения людей науки. Периодически к ней обращались различные ее представители, но до начала XIX века их построения были всего лишь гипотезами, не подкрепленными опытными данными.

Наконец, в 1804 году, более чем за сто лет до того как появилась планетарная модель атома, английский ученый Джон Дальтон представил доказательства его существования и ввел понятие атомного веса, явившееся его первой количественной характеристикой. Как и его предшественники, он представлял атомы мельчайшими частями материи, похожими на твердые шарики, которые не могут быть разделены на еще более мелкие частицы.

Открытие электрона и первая модель атома

Прошло почти целое столетие, когда, наконец, в конце XIX века также англичанин Дж. Дж. Томсон открыл первую субатомную частицу, отрицательно заряженный электрон. Поскольку атомы электрически нейтральны, Томсон думал, что они должны состоять из положительно заряженного ядра с электронами, разбросанными по его объему. Основываясь на различных результатах, полученных экспериментально, он в 1898 году предложил свою модель атома, иногда называемую «сливы в пудинге», потому что атом в ней представлялся в виде сферы, заполненной некоторой положительно заряженной жидкостью, в которую электроны были внедрены, как «сливы в пудинг». Радиус такой сферической модели был около 10 -8 см. Общий положительный заряд жидкости симметрично и равномерно сбалансирован отрицательными зарядами электронов, как показано на рисунке ниже.

Эта модель удовлетворительно объясняла то обстоятельство, что при нагревании вещества оно начинает излучать свет. Хотя это была первая попытка понимания того, что же такое атом, она не смогла удовлетворить результатам экспериментов, выполненных позже Резерфордом и другими. Томсон в 1911 году согласился, что его модель просто не может ответить, как и почему происходит наблюдаемое в опытах рассеяние α-лучей. Поэтому она была оставлена, а на смену ей пришла более совершенная планетарная модель атома.

Как же все таки устроен атом?

Эрнест Резерфорд дал объяснение явления радиоактивности, которое принесло ему Нобелевскую премию, однако его наиболее значительный вклад в науку был сделан позднее, когда он установил, что атом состоит из плотного ядра, окруженного орбитами электронов, подобно тому, как Солнце окружено орбитами планет.

Согласно планетарной модели атома, большая часть его массы сконцентрирована в крошечном (по сравнению с размерами всего атома) ядре. Электроны двигаются вокруг ядра, путешествуя с невероятной скоростью, но большая часть объема атомов является при этом пустым пространством.

Размер ядра настолько мал, что его диаметр в 100 000 раз меньше, чем у атома. Диаметр ядра была оценен Резерфордом как 10 -13 см, в отличие от размера атома - 10-8 см. За пределами ядра электроны вращаются вокруг него с высокими скоростями, в результате чего возникают центробежные силы, уравновешивающие электростатические силы притяжения между протонами и электронами.

Опыты Резерфорда

Планетарная модель атома возникла в 1911, после знаменитого эксперимента с золотой фольгой, позволившего получить некоторые фундаментальные сведения о его строении. Путь Резерфорда к открытию атомного ядра является хорошим примером роли творчества в науке. Его поиски начались еще в 1899 году, когда он обнаружил, что некоторые элементы испускают положительно заряженные частицы, которые могут проникать через что угодно. Он назвал эти частицы альфа (α) частицами (теперь мы знаем, что они были ядрами гелия). Как и все хорошие ученые, Резерфорд был любопытен. Он задавался вопросом, можно ли использовать альфа-частицы, чтобы узнать структуру атома. Резерфорд решил нацелить луч альфа-частиц на лист очень тонкой золотой фольги. Он выбрал золото, потому что из него можно получать листы толщиной всего 0,00004 см. За листом золотой фольги он поставил экран, который светился, когда альфа-частицы ударяли в него. Его использовали для обнаружения альфа-частиц после их прохождения через фольгу. Небольшая прорезь в экране позволяла лучу альфа-частиц достичь фольги после выхода из источника. Часть из них должна пройти сквозь фольгу и продолжать двигаться в том же направлении, другая их часть должна отскакивать от фольги и отражаться под острыми углами. Вы можете увидеть схему эксперимента на рисунке ниже.

Что же получилось в опыте Резерфорда?

Исходя из модели атома Дж. Дж. Томсона, Резерфорд предполагал, что сплошные области положительного заряда, заполняющие весь объем золотых атомов, будут отклонять или сгибать траектории всех альфа-частиц, когда они проходят через фольгу.

Однако подавляющее большинство альфа-частиц прошло прямо через золотую фольгу, как будто ее и не было. Казалось, они проходят через пустое пространство. Лишь немногие из них отклоняются от прямого пути, как и предполагалось вначале. Ниже приведен график зависимости количества частиц, рассеянных в соответствующем направлении, от угла рассеяния.

Удивительно, но крошечный процент частиц возвращался от фольги, как баскетбольный мяч отскакивает от щита. Резерфорд понял, что эти отклонения были результатом прямого столкновения между альфа-частицами и положительно заряженными компонентами атома.

Ядро занимает центральное место

Исходя из ничтожного процента отразившихся от фольги альфа-частиц, можно сделать вывод, что весь положительный заряд и практически вся масса атома сосредоточены в одной маленькой области, а в остальной части атома в основном находится пустое пространство. Резерфорд назвал площадь концентрированного положительного заряда ядром. Он предсказал и вскоре обнаружил, что оно содержит положительно заряженные частицы, которые он назвал протонами. Резерфорд предсказал существование нейтральных атомных частиц, называемых нейтронами, но он не смог обнаружить их. Тем не менее его ученик Джеймс Чедвик открыл их через несколько лет. На рисунке ниже показана структура ядра атома урана.

Атомы состоят из положительно заряженных тяжелых ядер, окруженных вращающимися вокруг них отрицательно заряженными чрезвычайно легкими частицами-электронами, причем на таких скоростях, что механические центробежные силы просто балансируют их электростатическое притяжение к ядру, и в этой связи якобы обеспечивается стабильность атома.

Недостатки этой модели

Основная идея Резерфорда относилась к идее малоразмерного атомного ядра. Предположение об орбитах электронов было чистой гипотезой. Он не знал точно, где и как электроны вращаются вокруг ядра. Поэтому планетарная модель Резерфорда не объясняет распределение электронов на орбитах.

Кроме того, стабильность атома Резерфорда была возможна только при непрерывном движении электронов по орбитам без потерь кинетической энергии. Но электродинамические расчеты показали, что движение электронов по любым криволинейным траекториям, сопровождающееся изменением направления вектора скорости и появлением соответствующего ускорения, неизбежно сопровождается излучением электромагнитной энергии. При этом, согласно закону сохранения энергии, кинетическая энергия электрона должна очень быстро израсходоваться на излучение, и он должен упасть на ядро, как схематически показано на рисунке ниже.

Но этого не происходит, так как атомы являются стабильными образованиями. Возникло типовое для науки противоречие между моделью явления и опытными данными.

От Резерфорда к Нильсу Бору

Следующий крупный шаг вперед в атомной истории произошел в 1913 году, когда датский ученый Нильс Бор опубликовал описание более детальной модели атома. Она определяла более четко места, где могут находиться электроны. Хотя позже ученые будут развивать и более изысканные атомные конструкции, но планетарная модель атома Бора была в основном правильной, и многое из нее принимается до сих пор. Она имела множество полезных приложений, например с ее помощью объясняют свойства различных химических элементов, характер спектра их излучений и строение атома. Планетарная модель и модель Бора явились важнейшими вехами, обозначившими появление нового направления в физике - физики микромира. Бор получил Нобелевскую премию 1922 по физике за его вклад в наше понимание структуры атома.

Что же нового привнес Бор в модель атома?

Будучи еще молодым человеком, Бор работал в лаборатории Резерфорда в Англии. Поскольку в модели Резерфорда была слабо проработана концепция электронов, Бор сосредоточился именно на них. В результате была существенно доработана планетарная модель атома. Постулаты Бора, которые он сформулировал в своей статье «О строении атомов и молекул», вышедшей в 1913 году, гласят:

1. Электроны могут двигаться вокруг ядра только на фиксированных расстояниях от него, определяемых тем количеством энергии, которое у них есть. Он назвал эти фиксированные уровни энергетическими уровнями или электронными оболочками. Бор представлял их в виде концентрических сфер, с ядром в центре каждой из них. При этом электроны с меньшей энергией будут найдены на более низких уровнях, ближе к ядру. Те же из них, у кого больше энергии, будут найдены на более высоких уровнях, дальше от ядра.

2. Если электрон поглощает некоторое (вполне определенное для данного уровня) количество энергии, то он будет прыгать на следующий, более высокий энергетический уровень. И наоборот, если он потеряет такое ​​же количество энергии, то вернется назад к исходному уровню. Однако электрон не может существовать на двух энергетических уровнях.

Эта идея иллюстрируются рисунком.

Энергетические порции для электронов

Модель атома Бора на самом деле является сочетанием двух различных идей: атомной модели Резерфорда с электронами, вращающимися вокруг ядра (по сути это планетарная модель атома Бора-Резерфорда), и идеи немецкого ученого Макса Планка о квантовании энергии вещества, опубликованной в 1901 году. A квант (во множественном числе - кванты) является минимальным количеством энергии, которая может быть поглощена или излучена веществом. Он является своего рода шагом дискретизации количества энергии.

Если энергию сравнить с водой и вы хотите добавить ее к материи в виде стакана, вы не можете просто залить воду непрерывной струей. Вместо этого вы можете добавить ее в небольших количествах, например, по чайной ложке. Бор считал, что если электроны могут поглощать или терять только фиксированные количества энергии, то они должны варьировать свою энергию только этими фиксированными количествами. Таким образом, они могут занимать только фиксированные энергетические уровни вокруг ядра, которые соответствуют квантованным приращениям их энергии.

Так из модели Бора вырастает квантовый подход к объяснению, что же из себя представляет строение атома. Планетарная модель и модель Бора явились своеобразными ступенями от классической физики к квантовой, являющейся основным инструментом в физике микромира, включая и атомную физику.

Исторические модели1 атома отражают уровни знаний, соответствующие опреде­лённому периоду развития науки.

Первый этап развития моделей атома характеризовался отсутствием экспериментальных данных о его строении.

Объясняя явления микромира, учёные искали аналогии в макромире, опираясь на законы класси­ческой механики.

Дж. Дальтон – создатель химической атомистики (1803 г.), предполагал, что атомы одного и того же химического элемента представляют собой одинаковые шарообразные мельчайшие, а следовательно, неделимые частицы.

Французский физик Жан Батист Перрен (1901 г.) предложил модель, фактически предвосхитившую "плане­тарную" модель. Согласно этой модели в центре атома расположено положительно заряженное ядро, вокруг которо­го движутся по определённым орбитам, как планеты вокруг Солнца, отрицательно заряженные электроны. Модель Перрена не привлекла внимания учёных, так как давала только ка­чественную, но не количественную характеристику атома (на рис. 7 это показано несоответствием заряда ядра атома числу элек­тронов).

В 1902 г. английский физик Уильям Томсон (Кельвин) разработал представле­ние об атоме как о положительно заряженной сферической частице, внутри которой совершают колебания (излучая и поглощая энергию) отрицательно заряженные электроны. Кельвин обратил внима­ние на то, что число электронов равно положительному заряду сферы, поэтому в целом атом не имеет электрического заряда (рис. 7).

Годом позже немецкий физик Филипп Ленард предложил модель, согласно которой атом – полая сфера, внутри которой находят­ся электрические диполи (динамиды). Объём, занимаемый этими диполями, значительно меньше объёма сферы, и основная часть атома оказывается незаполненной.

По представлениям японского физика Гонтаро (Хантаро) Нагаоки (1904 г.), в центре атома находится положительно заряженное ядро, а электроны движутся в пространстве вокруг ядра в плоских кольцах, напоминающих кольца планеты Сатурн (эта модель называлась "сатурнианским" атомом). Большинство учёных не об­ратили внимания на идеи Нагаоки, хотя они в какой-то мере перекли­каются с современным представлением об атомной орбитали.

Ни одна из рассмотренных моделей (рис. 7) не объясняла, каким образом свойства химических элементов связаны со строением их атомов.

Рис. 7. Некоторые исторические модели атома

В 1907 г. Дж. Дж. Томсон предложил статическую модель строения атома, представлявшую атом как заряженную положительным электричеством шарообразную частицу, в которой равномерно распределены отрицательно заряженные электроны (модель "пудинга ", рис. 7).

Математичес­кие расчёты показали, что электроны в атоме должны находиться на концентри­чески расположенных кольцах. Томсон сделал весьма важный вывод: причина периодического изменения свойств химических элементов связана с осо­бенностями электронного строения их атомов. Благодаря этому, модель атома Томсона была высоко оценена современниками. Однако она не объясняла некоторых явлений, например, рассеяния α-частиц при прохождении их через металлическую пластину.

На основании своих представлений об атоме Томсон вывел формулу для рас­чёта среднего отклонения α-частиц, и этот расчёт показал, что вероятность рассеяния таких частиц под большими углами близка к нулю. Однако экспе­риментально было доказано, что приблизительно одна из восьми тысяч падающих на золотую фольгу α-частиц отклоняется на угол больше 90°. Это противоречило модели Томсона, которая предполагала отклонения только на малые углы.

Эрнест Резерфорд, обобщая экспериментальные данные, в 1911 г. предложил "планетарную" (её иногда называют "ядерной") модель строения атома, согласно которой 99,9 % массы атома и его положительный заряд сосредоточены в очень маленьком ядре, а отрицательно заряженныеэлектроны, число которых равно заряду ядра, вращаются вокруг него, подобно планетам Солнечной системы1 (рис. 7).

Резерфорд вместе со своими учениками поставил опыты, позволившие исследовать строение атома (рис. 8). На поверхность тонкой металлической (золотой) фольги 2 от источника радиоактивного излучения 1 направлялся поток положительно заряженных частиц (α-частицы). На их пути был установлен флуоресцирующий экран 3, позволяющий наблюдать за направлением дальнейшего движения α-частиц.

Рис. 8. Опыт Резерфорда

Было установлено, что большинство α-частиц проходило сквозь фольгу, практически не меняя своего направления. Лишь отдельные частицы (в среднем одна из десяти тысяч) отклонялись и летели почти в обратном направлении. Был сделан вывод, что бóльшая часть массы атома сосредоточена в положительно заряженном ядре, поэтому α-частицы так сильно отклоняются (рис. 9).

Рис. 9. Рассеивание α-частиц атомным ядром

Движущиеся в атоме электроны в соответствии с законами электромагнетизма должны излучать энергию и, теряя её, притягиваться к противоположно заряженному ядру и, следовательно, "падать" на него. Это должно приводить к ис­чезновению атома, но так как этого не происходило, был сделан вывод о неадекватности этой модели.

В начале XX века немецкими физиком Максом Планком и физиком-теоретиком Альбертом Эйнштейном была создана квантовая теория света. Согласно этой теории лучистая энергия, например свет, испускается и поглощается не непрерывно, а отдельными порциями (квантами). При­чём величина кванта энергии неодинакова для разных излуче­ний и пропорциональна частоте колебаний электромагнитной волны: Е = hν, гдеhпо­стоянная Планка, равная 6,6266·10 –34 Дж·с, ν – частота излучения. Эту энергию несут частицы света – фотоны .

Пытаясь искусственно соединить зако­ны классической механики и квантовой теории, датский физик Нильс Бор в 1913 г. дополнил модель атома Резерфорда двумя постулатами о скачкообразном (дискретном) изменении энергии электронов в атоме. Бор считал, что электрон в атоме водорода может находиться лишь на впол­не определённых стационарных орбитах , радиусы которых отно­сятся друг к другу как квадраты натуральных чисел (1 2: 2 2: 3 2: ... : п 2 ). Электро­ны движутся вокруг атомного ядра по стационарным орбитам. Атом пребывает в устойчивом состоянии, не поглощая и не излучая энергию, – это первый постулат Бора. Согласно второму постулату излучение энергии происходит только при переходе электрона на более близкую к атомному ядру орбиту. При переходе электрона на более отдалённую орби­ту энергия атомом поглощается. Эта модель была усовершенствована в 1916 г. немецким физиком-теоретиком Арнольдом Зоммерфельдом, указавшим на движение электронов по эллиптическим орбитам .

Планетарная модель, благодаря своей наглядности и постулатам Бора, долгое время использовалась для объяснения атомно-молекулярных явлений. Однако оказалось, что движение электрона в атоме, устойчивость и свойства атома, в отличие от движения планет и устойчивости Солнечной системы, нельзя опи­сать законами классической механики. В основе этой механики лежат законы Ньютона, и предметом её изучения является движение макроскопических тел, совершаемое со скоростями, малыми по сравнению со скоростью света. Для описания строения атома необходимо применять представления квантовой (волновой) механики о двойственной корпускулярно-волновой природе микрочастиц, которые сформулировали в 1920-е годы физики-теоретики: француз Луи де Бройль, немцы Вернер Гейзенберг и Эрвин Шрёдингер, англичанин Поль Дирак и др.

В 1924 году Луи де Бройль выдвинул гипотезу о наличии у электрона волновых свойств (первый принцип квантовой механики) и предложил формулу для вычисления его длины волны. Стабильность атома объясняется тем, что электроны в нём движутся не по орбитам, а в неких областях пространства вокруг ядра, называе­мых атомными орбиталями. Электрон занимает практически весь объём атома и не может "упасть на ядро", находящееся в его центре.

В 1926 году Шрёдингер, продолжая развитие идей Л. де Бройля о волно­вых свойствах электрона, эмпирически подобрал математическое уравнение, похожее на уравне­ние колебания струны, с помощью которого можно вычислять энергии связи элек­трона в атоме на разных энергетических уровнях. Это уравнение стало основным уравне­нием квантовой механики.

Открытие волновых свойств электрона показало, что распространение знаний о макромире на объекты микромира неправомерно. В 1927 г. Гейзенберг установил, что невозможно определить точное положение в пространстве электрона, имеющего определённую ско­рость, поэтому представления о движении электрона в атоме носят ве­роятностный характер (второй принцип квантовой механики).

Квантово-механическая модель атома (1926 г.) описывает состояние атома посредством математических функций и не имеет геометричес­кого выражения (рис. 10). В такой модели не рассматриваются динамический характер устройства атома и вопрос о размере электрона как частицы. Считается, что электроны занимают определённые энергетические уровни и излучают или поглощают энергию при переходах на другие уровни. На рис. 10 энергетические уровни изобра­жены схематически в виде концентрических колец, расположенных на разных расстояниях от атомного ядра. Стрелками показаны переходы электронов между энергетическими уровнями и излучение фотонов, сопровождающих эти переходы. Схема показана качественно и не отражает реальных расстояний между энергетическими уровнями, которые могут отличаться между собой в десятки раз.

В 1931 году американским учёным Гилбертом Уайтом впервые были предложены гра­фическое представление атомных орбиталей и "орбитальная" модель атома (рис. 10). Модели атомных орбиталей используются для отражения понятия "электронная плотность" и демонстрации распределения отрицательного заряда вокруг ядра в атоме или системы атомных ядер в молекуле.


Рис. 10. Исторические и современные модели атома

В 1963 году американский художник, скульптор и инженер Кеннет Снельсон предложил "кольцегранную модель" электронных оболочек атома (рис. 10), которая объясняет количественное распределение электронов в атоме по устойчивым электронным оболочкам. Каждый электрон моделируется кольцевым ма­гнитом (или замкнутым контуром с электрическим током, имеющим магнитный момент). Кольцевые магниты притягиваются друг к другу и образуют симметрич­ные фигуры из колец – кольцегранники . Наличие у магнитов двух полюсов накладывает ограничение на возможные варианты сборки кольцегранников. Модели устойчивых электронных оболочек – это наиболее симметричные фигуры из колец, составленные с учётом наличия у них магнитных свойств.

Наличие у электрона спина (см. раздел 5) является одной их основ­ных причин образования в атоме устойчивых электронных оболочек. Электроны образуют пары с противоположными спинами. Кольцегранная модель электронной пары, или заполненной атомной орбитали, – это два кольца, расположенных в параллельных плоскостях с противоположных сторон от атомного ядра. При расположении около ядра атома более одной пары электронов кольца-электро­ны вынужденно взаимно ориентируются, образуя электронную оболочку. При этом близко распо­ложенные кольца имеют разные направления магнитных силовых линий, что обозначается разным цветом колец, изображающих электроны.

Модель­ный эксперимент показывает, что самой устойчивой из всех возможных кольцегранных моделей является модель из 8 колец. Геометрически модель образована таким образом, как будто атом в виде сферы поделили на 8 частей (трижды разделив пополам) и в каждую часть поместили по одному кольцу-электрону. В кольцегранных моделях используют кольца двух цветов: красного и синего, которые отражают положительное и отрицательное значение спина электрона.

"Волногранная модель" (рис. 10) похожа на "кольцегранную" с тем отличием, что каж­дый электрон атома представлен "волновым" кольцом, которое содержит целое число волн (как это было предложено Л. де Бройлем).

Взаимо­действие электронов электронной оболочки на этой модели атома показано совпадением точек контакта синих и красных "волновых" колец с узлами стоячих волн.

Модели атома имеют право на существование и границы применения. Всякая модель атома – это прибли­жение, отражающее в упрощённой форме определённую часть знаний об атоме. Но ни одна из моделей не от­ражает полностью свойств атома или его составляющих частиц.

Многие модели сегодня представляют только исторический интерес. При построении моде­лей объектов микромира учёные опирались на то, что можно непо­средственно наблюдать. Так появились модели Перрена и Резерфор­да (аналогия со строением Солнечной системы), Нагаоки (некое подобие планеты Сатурн), Томсона ("пудинг с изюмом"). Некоторые идеи были отброшены (динамичная модель Ленарда), к другим через некоторое время вновь обращались, но уже на новом, более высоком теоретическом уровне: модели Перрена и Кельвина получили развитие в моделях Резерфорда и Томсона. Представления о строении атома постоянно совер­шенствуются. Насколько точ­на современная – "квантово-механическая" модель – покажет время. Именно поэтому в верхней части спирали, символизирующей путь познания, нарисован вопро­сительный знак (рис. 7).

Стали важным шагом в развитии физики. Огромное значение имела модель Резерфорда. Атом как система и частицы, его составляющие, был изучен более точно и подробно. Это привело к успешному становлению такой науки, как ядерная физика.

Античные представления о строении вещества

Предположение о том, что окружающие тела состоят из мельчайших частиц, были высказаны еще в античные времена. Мыслители того времени представляли атом в виде мельчайшей и неделимой частицы любого вещества. Они утверждали, что нет во Вселенной ничего меньшего по размеру, чем атом. Таких взглядов придерживались великие древнегреческие ученые и философы - Демокрит, Лукреций, Эпикур. Гипотезы этих мыслителей сегодня объединены под названием «античный атомизм».

Средневековые представления

Времена античности прошли, и в средние века также были ученые, которые высказывали различные предположения о строении веществ. Однако преобладание религиозных философских взглядов и власть церкви в тот период истории на корню пресекали любые попытки и стремления человеческого разума к материалистическим научным выводам и открытиям. Как известно, средневековая инквизиция весьма недружелюбно вела себя с представителями научного мира того времени. Остается сказать, что у тогдашних светлых умов было пришедшее из античности представление о неделимости атома.

Исследования 18-19 веков

18 столетие было отмечено серьезными открытиями в области элементарного строения вещества. Во многом благодаря стараниям таких ученых, как Антуан Лавуазье, Михаил Ломоносов и Независимо друг от друга они сумели доказать, что атомы действительно существуют. Но вопрос об их внутреннем строении оставался открытым. Конец 18 века был отмечен таким знаменательным событием в научном мире, как открытие Д. И. Менделеевым периодической системы химических элементов. Это стало по-настоящему мощным прорывом того времени и приоткрыло завесу над пониманием того, что все атомы имеют единую природу, что они родственны друг другу. В дальнейшем, в 19 веке, еще одним важным шагом на пути к разгадке строения атома стало доказательство того, что в составе любого из них присутствует электрон. Работа ученых этого периода подготовила благодатную почву для открытий 20-го века.

Эксперименты Томсона

Английский физик Джон Томсон в 1897 году доказал, что в состав атомов входят электроны с отрицательным зарядом. На этом этапе ложные представления о том, что атом - предел делимости любого вещества, были окончательно разрушены. Как же Томсон сумел доказать существование электронов? Ученый в своих опытах помещал в сильно разреженные газы электроды и пропускал электрический ток. В результате возникали катодные лучи. Томсон тщательно изучил их особенности и обнаружил, что они являются потоком заряженных частиц, которые движутся с огромной скоростью. Ученый сумел высчитать массу этих частиц и их заряд. Он также выяснил, что их нельзя преобразовать в нейтральные частицы, поскольку электрический заряд - это основа их природы. Так были Томсон является и создателем первой в мире модели строения атома. Согласно ей, атом - это сгусток положительно заряженной материи, в которой равномерно распределены отрицательно заряженные электроны. Такое строение объясняет общую нейтральность атомов, так как противоположные заряды уравновешивают друг друга. Опыты Джона Томсона стали неоценимо важными для дальнейшего изучения строения атома. Однако многие вопросы оставались без ответа.

Исследования Резерфорда

Томсон открыл существование электронов, но он не сумел найти в атоме положительно заряженных частиц. исправил это недоразумение в 1911 году. Во время экспериментов, изучая активность альфа-частиц в газах, он обнаружил, что в атоме присутствуют частицы, положительно заряженные. Резерфорд увидел, что при прохождении лучей сквозь газ или через тонкую металлическую пластину происходит резкое отклонение незначительного количества частиц от траектории движения. Их буквально отбрасывало назад. Ученый догадался, что такое поведение объясняется столкновением с положительно заряженными частицами. Такие эксперименты позволили физику создать модель строения атома Резерфорда.

Планетарная модель

Теперь представления ученого несколько отличались от предположений, высказанных Джоном Томсоном. Разными стали и их модели атомов. позволил ему создать совершенно новую теорию в этой области. Открытия ученого имели решающее значение для дальнейшего развития физики. Модель Резерфорда описывает атом как ядро, расположенное в центре, и движущиеся вокруг него электроны. Ядро обладает положительным зарядом, а электроны - отрицательным. Модель атома по Резерфорду предполагала вращение электронов вокруг ядра по определенным траекториям - орбитам. Открытие ученого помогло объяснить причину отклонения альфа-частиц и стало толчком к развитию ядерной теории атома. В модели атома Резерфорда прослеживается аналогия с движением планет Солнечной системы вокруг Солнца. Это очень точное и яркое сравнение. Поэтому модель Резерфорда, атом в которой движется вокруг ядра по орбите, была названа планетарной.

Работы Нильса Бора

Двумя годами позже датский физик Нильс Бор попытался объединить представления о строении атома с квантовыми свойствами светового потока. Ядерная модель атома Резерфорда была положена ученым в основу его новой теории. По предположению Бора, атомы вращаются вокруг ядра по круговым орбитам. Такая траектория движения приводит к ускорению электронов. Кроме того, кулоновское взаимодействие этих частиц с центром атома сопровождается созданием и расходованием энергии для поддержания пространственного электромагнитного поля, возникающего из-за движения электронов. При таких условиях отрицательно заряженные частицы должны когда-нибудь упасть на ядро. Но этого не происходит, что указывает на большую устойчивость атомов как систем. Нильс бор понял, что законы классической термодинамики, описанные уравнениями Максвелла, не работают во внутриатомных условиях. Поэтому ученый поставил перед собой задачу вывести новые закономерности, которые были бы справедливы в мире элементарных частиц.

Постулаты Бора

Во многом благодаря тому, что существовала модель Резерфорда, атом и его составляющие были неплохо изучены, Нильс Бор смог подойти к созданию своих постулатов. Первый из них гласит о том, что атом имеет при которых он не изменяет свою энергию, а электроны при этом движутся по орбитам, не меняя своей траектории. Согласно второму постулату, при переходе электрона с одной орбиты на другую происходит выделение или поглощение энергии. Она равна разности энергий предшествующего и последующего состояний атома. При этом, если электрон перепрыгивает на более близкую к ядру орбиту, то происходит излучение и наоборот. Несмотря на то что движение электронов мало напоминает орбитальную траекторию, расположенную строго по окружности, открытие Бора позволило получить великолепное объяснение существованию линейчатого спектра Приблизительно в это же время ученые-физики Герц и Франк, жившие в Германии, подтвердили учение Нильса Бора о существовании стационарных, стабильных состояний атома и возможность изменения значений атомной энергии.

Сотрудничество двух ученых

Кстати, Резерфорд длительное время не мог определить Ученые Марсден и Гейгер попытались осуществить перепроверку утверждений Эрнеста Резерфорда и в результате подробных и тщательных экспериментов и расчетов пришли к выводу о том, что именно ядро является важнейшей характеристикой атома, и в нем сосредоточен весь его заряд. В дальнейшем было доказано, что значение заряда ядра численно равно порядковому номеру элемента в периодической системе элементов Д. И. Менделеева. Интересно, что Нильс Бор вскоре познакомился с Резерфордом и полностью согласился с его взглядами. В последующем ученые длительно работали вместе в одной лаборатории. Модель Резерфорда, атом как система, состоящая из элементарных заряженных частиц, - все это Нильс Бор посчитал справедливым и навсегда отложил в сторону свою электронную модель. Совместная научная деятельность ученых была очень успешной и принесла свои плоды. Каждый из них углубился в изучение свойств элементарных частиц и сделал значимые для науки открытия. Позже Резерфорд обнаружил и доказал возможность разложения ядра, но это уже тема другой статьи.

 
Статьи по теме:
Презентация по теме безопасность опасные предметы
Причины возникновения пожара Неосторожное обращение с огнем: разведение костров и небрежное обращение с ними, разогревание горючих веществ на газовых или электрических плитах и т. п. Нарушение правил эксплуатации бытовых электроприборов: телевизор перегре
Основные идеи философии эпикура
15. Эпикур и эпикурейцыВыдающимися представителями эпикуреизма являются Эпикур (341–270 до н. э.) и Лукреций Кар (ок. 99–55 до н. э.). Это философское направление относится к рубежу старой и новой эры. Эпикурейцев интересовали вопросы устроения, комфорта
Распространение тюркских языков Сильная ветвь алтайского дерева
Расселены на огромной территории нашей планеты, начиная от бассейна холодной Колымы до юго-западного побережья Средиземного моря. Тюрки не принадлежат к какому-то определенному расовому типу, даже среди одного народа встречаются как европеоиды, так и монг
Куда ехать за исполнением желаний в Курской области
Отец Вениамин служит в одном из храмов Коренной пустыни. Несколько раз в неделю священник проводит молебны, на которые съезжается множество людей. Летом службы часто проходят на улице, так как все желающие не умещаются в крохотной церквушке. Прихожане уве