Некоторые исторические и современные модели атома. Модели строения атомов

Исторические модели1 атома отражают уровни знаний, соответствующие опреде­лённому периоду развития науки.

Первый этап развития моделей атома характеризовался отсутствием экспериментальных данных о его строении.

Объясняя явления микромира, учёные искали аналогии в макромире, опираясь на законы класси­ческой механики.

Дж. Дальтон – создатель химической атомистики (1803 г.), предполагал, что атомы одного и того же химического элемента представляют собой одинаковые шарообразные мельчайшие, а следовательно, неделимые частицы.

Французский физик Жан Батист Перрен (1901 г.) предложил модель, фактически предвосхитившую "плане­тарную" модель. Согласно этой модели в центре атома расположено положительно заряженное ядро, вокруг которо­го движутся по определённым орбитам, как планеты вокруг Солнца, отрицательно заряженные электроны. Модель Перрена не привлекла внимания учёных, так как давала только ка­чественную, но не количественную характеристику атома (на рис. 7 это показано несоответствием заряда ядра атома числу элек­тронов).

В 1902 г. английский физик Уильям Томсон (Кельвин) разработал представле­ние об атоме как о положительно заряженной сферической частице, внутри которой совершают колебания (излучая и поглощая энергию) отрицательно заряженные электроны. Кельвин обратил внима­ние на то, что число электронов равно положительному заряду сферы, поэтому в целом атом не имеет электрического заряда (рис. 7).

Годом позже немецкий физик Филипп Ленард предложил модель, согласно которой атом – полая сфера, внутри которой находят­ся электрические диполи (динамиды). Объём, занимаемый этими диполями, значительно меньше объёма сферы, и основная часть атома оказывается незаполненной.

По представлениям японского физика Гонтаро (Хантаро) Нагаоки (1904 г.), в центре атома находится положительно заряженное ядро, а электроны движутся в пространстве вокруг ядра в плоских кольцах, напоминающих кольца планеты Сатурн (эта модель называлась "сатурнианским" атомом). Большинство учёных не об­ратили внимания на идеи Нагаоки, хотя они в какой-то мере перекли­каются с современным представлением об атомной орбитали.

Ни одна из рассмотренных моделей (рис. 7) не объясняла, каким образом свойства химических элементов связаны со строением их атомов.

Рис. 7. Некоторые исторические модели атома

В 1907 г. Дж. Дж. Томсон предложил статическую модель строения атома, представлявшую атом как заряженную положительным электричеством шарообразную частицу, в которой равномерно распределены отрицательно заряженные электроны (модель "пудинга ", рис. 7).

Математичес­кие расчёты показали, что электроны в атоме должны находиться на концентри­чески расположенных кольцах. Томсон сделал весьма важный вывод: причина периодического изменения свойств химических элементов связана с осо­бенностями электронного строения их атомов. Благодаря этому, модель атома Томсона была высоко оценена современниками. Однако она не объясняла некоторых явлений, например, рассеяния α-частиц при прохождении их через металлическую пластину.

На основании своих представлений об атоме Томсон вывел формулу для рас­чёта среднего отклонения α-частиц, и этот расчёт показал, что вероятность рассеяния таких частиц под большими углами близка к нулю. Однако экспе­риментально было доказано, что приблизительно одна из восьми тысяч падающих на золотую фольгу α-частиц отклоняется на угол больше 90°. Это противоречило модели Томсона, которая предполагала отклонения только на малые углы.

Эрнест Резерфорд, обобщая экспериментальные данные, в 1911 г. предложил "планетарную" (её иногда называют "ядерной") модель строения атома, согласно которой 99,9 % массы атома и его положительный заряд сосредоточены в очень маленьком ядре, а отрицательно заряженныеэлектроны, число которых равно заряду ядра, вращаются вокруг него, подобно планетам Солнечной системы1 (рис. 7).

Резерфорд вместе со своими учениками поставил опыты, позволившие исследовать строение атома (рис. 8). На поверхность тонкой металлической (золотой) фольги 2 от источника радиоактивного излучения 1 направлялся поток положительно заряженных частиц (α-частицы). На их пути был установлен флуоресцирующий экран 3, позволяющий наблюдать за направлением дальнейшего движения α-частиц.

Рис. 8. Опыт Резерфорда

Было установлено, что большинство α-частиц проходило сквозь фольгу, практически не меняя своего направления. Лишь отдельные частицы (в среднем одна из десяти тысяч) отклонялись и летели почти в обратном направлении. Был сделан вывод, что бóльшая часть массы атома сосредоточена в положительно заряженном ядре, поэтому α-частицы так сильно отклоняются (рис. 9).

Рис. 9. Рассеивание α-частиц атомным ядром

Движущиеся в атоме электроны в соответствии с законами электромагнетизма должны излучать энергию и, теряя её, притягиваться к противоположно заряженному ядру и, следовательно, "падать" на него. Это должно приводить к ис­чезновению атома, но так как этого не происходило, был сделан вывод о неадекватности этой модели.

В начале XX века немецкими физиком Максом Планком и физиком-теоретиком Альбертом Эйнштейном была создана квантовая теория света. Согласно этой теории лучистая энергия, например свет, испускается и поглощается не непрерывно, а отдельными порциями (квантами). При­чём величина кванта энергии неодинакова для разных излуче­ний и пропорциональна частоте колебаний электромагнитной волны: Е = hν, гдеhпо­стоянная Планка, равная 6,6266·10 –34 Дж·с, ν – частота излучения. Эту энергию несут частицы света – фотоны .

Пытаясь искусственно соединить зако­ны классической механики и квантовой теории, датский физик Нильс Бор в 1913 г. дополнил модель атома Резерфорда двумя постулатами о скачкообразном (дискретном) изменении энергии электронов в атоме. Бор считал, что электрон в атоме водорода может находиться лишь на впол­не определённых стационарных орбитах , радиусы которых отно­сятся друг к другу как квадраты натуральных чисел (1 2: 2 2: 3 2: ... : п 2 ). Электро­ны движутся вокруг атомного ядра по стационарным орбитам. Атом пребывает в устойчивом состоянии, не поглощая и не излучая энергию, – это первый постулат Бора. Согласно второму постулату излучение энергии происходит только при переходе электрона на более близкую к атомному ядру орбиту. При переходе электрона на более отдалённую орби­ту энергия атомом поглощается. Эта модель была усовершенствована в 1916 г. немецким физиком-теоретиком Арнольдом Зоммерфельдом, указавшим на движение электронов по эллиптическим орбитам .

Планетарная модель, благодаря своей наглядности и постулатам Бора, долгое время использовалась для объяснения атомно-молекулярных явлений. Однако оказалось, что движение электрона в атоме, устойчивость и свойства атома, в отличие от движения планет и устойчивости Солнечной системы, нельзя опи­сать законами классической механики. В основе этой механики лежат законы Ньютона, и предметом её изучения является движение макроскопических тел, совершаемое со скоростями, малыми по сравнению со скоростью света. Для описания строения атома необходимо применять представления квантовой (волновой) механики о двойственной корпускулярно-волновой природе микрочастиц, которые сформулировали в 1920-е годы физики-теоретики: француз Луи де Бройль, немцы Вернер Гейзенберг и Эрвин Шрёдингер, англичанин Поль Дирак и др.

В 1924 году Луи де Бройль выдвинул гипотезу о наличии у электрона волновых свойств (первый принцип квантовой механики) и предложил формулу для вычисления его длины волны. Стабильность атома объясняется тем, что электроны в нём движутся не по орбитам, а в неких областях пространства вокруг ядра, называе­мых атомными орбиталями. Электрон занимает практически весь объём атома и не может "упасть на ядро", находящееся в его центре.

В 1926 году Шрёдингер, продолжая развитие идей Л. де Бройля о волно­вых свойствах электрона, эмпирически подобрал математическое уравнение, похожее на уравне­ние колебания струны, с помощью которого можно вычислять энергии связи элек­трона в атоме на разных энергетических уровнях. Это уравнение стало основным уравне­нием квантовой механики.

Открытие волновых свойств электрона показало, что распространение знаний о макромире на объекты микромира неправомерно. В 1927 г. Гейзенберг установил, что невозможно определить точное положение в пространстве электрона, имеющего определённую ско­рость, поэтому представления о движении электрона в атоме носят ве­роятностный характер (второй принцип квантовой механики).

Квантово-механическая модель атома (1926 г.) описывает состояние атома посредством математических функций и не имеет геометричес­кого выражения (рис. 10). В такой модели не рассматриваются динамический характер устройства атома и вопрос о размере электрона как частицы. Считается, что электроны занимают определённые энергетические уровни и излучают или поглощают энергию при переходах на другие уровни. На рис. 10 энергетические уровни изобра­жены схематически в виде концентрических колец, расположенных на разных расстояниях от атомного ядра. Стрелками показаны переходы электронов между энергетическими уровнями и излучение фотонов, сопровождающих эти переходы. Схема показана качественно и не отражает реальных расстояний между энергетическими уровнями, которые могут отличаться между собой в десятки раз.

В 1931 году американским учёным Гилбертом Уайтом впервые были предложены гра­фическое представление атомных орбиталей и "орбитальная" модель атома (рис. 10). Модели атомных орбиталей используются для отражения понятия "электронная плотность" и демонстрации распределения отрицательного заряда вокруг ядра в атоме или системы атомных ядер в молекуле.


Рис. 10. Исторические и современные модели атома

В 1963 году американский художник, скульптор и инженер Кеннет Снельсон предложил "кольцегранную модель" электронных оболочек атома (рис. 10), которая объясняет количественное распределение электронов в атоме по устойчивым электронным оболочкам. Каждый электрон моделируется кольцевым ма­гнитом (или замкнутым контуром с электрическим током, имеющим магнитный момент). Кольцевые магниты притягиваются друг к другу и образуют симметрич­ные фигуры из колец – кольцегранники . Наличие у магнитов двух полюсов накладывает ограничение на возможные варианты сборки кольцегранников. Модели устойчивых электронных оболочек – это наиболее симметричные фигуры из колец, составленные с учётом наличия у них магнитных свойств.

Наличие у электрона спина (см. раздел 5) является одной их основ­ных причин образования в атоме устойчивых электронных оболочек. Электроны образуют пары с противоположными спинами. Кольцегранная модель электронной пары, или заполненной атомной орбитали, – это два кольца, расположенных в параллельных плоскостях с противоположных сторон от атомного ядра. При расположении около ядра атома более одной пары электронов кольца-электро­ны вынужденно взаимно ориентируются, образуя электронную оболочку. При этом близко распо­ложенные кольца имеют разные направления магнитных силовых линий, что обозначается разным цветом колец, изображающих электроны.

Модель­ный эксперимент показывает, что самой устойчивой из всех возможных кольцегранных моделей является модель из 8 колец. Геометрически модель образована таким образом, как будто атом в виде сферы поделили на 8 частей (трижды разделив пополам) и в каждую часть поместили по одному кольцу-электрону. В кольцегранных моделях используют кольца двух цветов: красного и синего, которые отражают положительное и отрицательное значение спина электрона.

"Волногранная модель" (рис. 10) похожа на "кольцегранную" с тем отличием, что каж­дый электрон атома представлен "волновым" кольцом, которое содержит целое число волн (как это было предложено Л. де Бройлем).

Взаимо­действие электронов электронной оболочки на этой модели атома показано совпадением точек контакта синих и красных "волновых" колец с узлами стоячих волн.

Модели атома имеют право на существование и границы применения. Всякая модель атома – это прибли­жение, отражающее в упрощённой форме определённую часть знаний об атоме. Но ни одна из моделей не от­ражает полностью свойств атома или его составляющих частиц.

Многие модели сегодня представляют только исторический интерес. При построении моде­лей объектов микромира учёные опирались на то, что можно непо­средственно наблюдать. Так появились модели Перрена и Резерфор­да (аналогия со строением Солнечной системы), Нагаоки (некое подобие планеты Сатурн), Томсона ("пудинг с изюмом"). Некоторые идеи были отброшены (динамичная модель Ленарда), к другим через некоторое время вновь обращались, но уже на новом, более высоком теоретическом уровне: модели Перрена и Кельвина получили развитие в моделях Резерфорда и Томсона. Представления о строении атома постоянно совер­шенствуются. Насколько точ­на современная – "квантово-механическая" модель – покажет время. Именно поэтому в верхней части спирали, символизирующей путь познания, нарисован вопро­сительный знак (рис. 7).

В 1903 году английским ученым Томсоном была предложена модель атома, которую в шутку назвали «булочкой с изюмом». По его версии атом представляет собой сферу с равномерным положительным зарядом , в которой как изюминки вкраплены отрицательно заряженные электроны.

Однако дальнейшие исследования атома показали, что эта теория несостоятельна. И через несколько лет другой английский физик – Резерфорд провел серию опытов. На основе результатов им была выстроена гипотеза о строении атома, которая до сих пор является всемирно признанной.

Опыт Резерфорда: предложение своей модели атома

В своих опытах Резерфорд пропускал пучок альфа-частиц сквозь тонкую золотую фольгу. Золото было выбрано за пластичность, которая позволила создать очень тонкую фольгу, толщиной едва ли не в один слой молекул. За фольгой располагался специальный экран, подсвечивавшийся при бомбардировке попадающими на него альфа частицами. По теории Томсона альфа-частицы должны были беспрепятственно проходить сквозь фольгу, совсем немного отклоняясь в стороны. Однако, оказалось, что часть частиц так и вела себя, а совсем небольшая часть отскакивала назад, как будто ударившись во что-то.

То есть было установлено, что внутри атома существует нечто твердое и небольшое, от чего и отскакивали альфа-частицы. Тогда-то Резерфорд и предложил планетарную модель строения атома. Планетарная модель атома по Резерфорду объясняла результаты проведения как его экспериментов, так и опытов его коллег. До сего дня не предложено лучшей модели, хотя некоторые аспекты этой теории все равно не согласуются с практикой в некоторых очень узких областях науки. Но в основном, планетарная модель атома самая пригодная из всех. В чем же состоит эта модель?

Планетарная модель строения атома

Как следует из названия, атом сравнивается с планетой. В данном случае планету представляет из себя ядро атома. А вокруг ядра на довольно большом расстоянии вращаются электроны, как и вокруг планеты вращаются спутники. Только скорость вращения электронов в сотни тысяч раз превосходит скорость вращения самого быстрого спутника. Поэтому при своем вращении электрон создает как бы облако над поверхностью ядра. И существующие заряды электронов отталкивают такие же заряды, образованные другими электронами вокруг других ядер. Поэтому атомы не «слипаются», а располагаются на некотором расстоянии друг от друга.

И когда мы говорим о столкновении частиц, имеется в виду, что они подходят друг к другу на достаточно большое расстояние и отталкиваются полями своих зарядов . Непосредственного контакта не происходит. Частицы в веществе вообще расположены очень далеко друг от друга. Если бы каким-либо способом удалось схлопнуть вместе частицы какого-либо тела, оно бы уменьшилось в миллиарды раз. Земля стала бы меньше яблока размером. Так что основной объем любого вещества, как ни странно это звучит, занимает пустота, в которой расположены заряженные частицы, удерживающиеся на расстоянии электронными силами взаимодействия.

Масса электронов в несколько тысяч раз меньше массы атомов. Так как атом в целом нейтрален, то, следовательно, основная масса атома приходится на его положительно заряженную часть.

Для экспериментального исследования распределения положительного заряда, а значит, и массы внутри атома Резерфорд предложил в 1906 г. применить зондирование атома с помощьюα -частиц. Эти частицы возникают при распаде радия и некоторых других элементов. Их масса примерно в 8000 раз больше массы электрона, а положительный заряд равен по модулю удвоенному заряду электрона. Это не что иное, как полностью ионизированные атомы гелия. Скорость α -частиц очень велика: она составляет 1/15 скорости света.

Этими частицами Резерфорд бомбардировал атомы тяжелых элементов. Электроны вследствие своей малой массы не могут заметно изменить траекторию α -частицы, подобно тому как камушек в несколько десятков граммов при столкновении с автомобилем не в состоянии заметно изменить его скорость. Рассеяние (изменение направления движения) α -частиц может вызвать только положительно заряженная часть атома. Таким образом, по рассеянию α -частиц можно определить характер распределения положительного заряда и массы внутри атома.

Радиоактивный препарат, например радий, помещался внутри свинцового цилиндра 1, вдоль которого был высверлен узкий канал. Пучок α -частиц из канала падал на тонкую фольгу 2 из исследуемого материала (золото, медь и пр.). После рассеяния α -частицы попадали на полупрозрачный экран 3, покрытый сульфидом цинка. Столкновение каждой частицы с экраном сопровождалось вспышкой света (сцинтилляцией), которую можно было наблюдать в микроскоп 4. Весь прибор размещался в сосуде, из которого был откачан воздух.

При хорошем вакууме внутри прибора в отсутствие фольги на экране возникал светлый кружок, состоящий из сцинтилляций, вызванных тонким пучком α -частиц. Но когда на пути пучка помещали фольгу, α -частицы из-за рассеяния распределялись на экране по кружку большей площади. Модифицируя экспериментальную установку, Резерфорд попытался обнаружить отклонение α -частиц на большие углы. Совершенно неожиданно оказалось, что небольшое число α -частиц (примерно одна из двух тысяч) отклонилось на углы, большие 90°. Позднее Резерфорд признался, что, предложив своим ученикам эксперимент по наблюдению рассеяния α -частиц на большие углы, он сам не верил в положительный результат. «Это почти столь же невероятно, - говорил Резерфорд, - как если бы вы выстрелили 15-дюймовым снарядом в кусок тонкой бумаги, а снаряд возвратился бы к вам и нанес вам удар». В самом деле, предвидеть этот результат на основе модели Томсона было нельзя. При распределении по всему атому положительный заряд не может создать достаточно интенсивное электрическое поле, способное отбросить а-частицу назад. Максимальная сила отталкивания определяется по закону Кулона:

где q α - заряд α -частицы; q - положительный заряд атома; r - его радиус; k - коэффициент пропорциональности. Напряженность электрического поля равномерно заряженного шара максимальна на поверхности шара и убывает до нуля по мере приближения к центру. Поэтому, чем меньше радиус r, тем больше сила, отталкивающаяα -частицы.

Определение размеров атомного ядра. Резерфорд понял, что α -частица могла быть отброшена назад лишь в том случае, если положительный заряд атома и его масса сконцентрированы в очень малой области пространства. Так Резерфорд пришел к идее атомного ядра - тела малых размеров, в котором сконцентрированы почти вся масса и весь положительный заряд атома.

Планетарная модель атома , или модель Резерфорда , - историческая модель строения атома, которую предложил Эрнест Резерфорд в результате эксперимента с рассеянием альфа-частиц. По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны, - подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики. Исторически планетарная модель Резерфорда пришла на смену «модели сливового пудинга»Джозефа Джона Томсона, которая постулирует, что отрицательно заряженные электроны помещены внутрь положительно заряженного атома.

Планетарная модель атома

Планетарная модель атома: ядро (красное) и электроны (зелёные)

Планетарная модель атома , или модель Резерфорда , - историческая модель строения атома , которую предложил Эрнест Резерфорд в результате эксперимента с рассеянием альфа-частиц . По этой модели атом состоит из небольшого положительно заряженного ядра, в котором сосредоточена почти вся масса атома, вокруг которого движутся электроны , - подобно тому, как планеты движутся вокруг Солнца. Планетарная модель атома соответствует современным представлениям о строении атома с учётом того, что движение электронов имеет квантовый характер и не описывается законами классической механики . Исторически планетарная модель Резерфорда пришла на смену «модели сливового пудинга » Джозефа Джона Томсона , которая постулирует, что отрицательно заряженные электроны помещены внутрь положительно заряженного атома.

Новую модель строения атома Резерфорд предложил в 1911 году как вывод из эксперимента по рассеянию альфа-частиц на золотой фольге, проведённого под его руководством. При этом рассеянии неожиданно большое количество альфа-частиц рассеивалось на большие углы, что свидетельствовало о том, что центр рассеяния имеет небольшие размеры и в нём сосредоточен значительный электрический заряд. Расчёты Резерфорда показали, что рассеивающий центр, заряженный положительно или отрицательно, должен быть по крайней мере в 3000 раз меньше размера атома, который в то время уже был известен и оценивался как примерно 10 -10 м. Поскольку в то время электроны уже были известны, а их масса и заряд определены, то рассеивающий центр, который позже назвали ядром, должен был иметь противоположный электронам заряд. Резерфорд не связал величину заряда с атомным номером. Этот вывод был сделан позже. А сам Резерфорд предположил, что заряд пропорционален атомной массе.

Недостатком планетарной модели была её несовместимость с законами классической физики. Если электроны движутся вокруг ядра как планеты вокруг Солнца, то их движение ускоренное, и, следовательно, по законам классической электродинамики они должны были бы излучать электромагнитные волны, терять энергию и падать на ядро. Следующим шагом в развитии планетарной модели стала модель Бора , постулирующая другие, отличные от классических, законы движения электронов. Полностью противоречия электродинамики смогла решить квантовая механика .


Wikimedia Foundation . 2010 .

  • Планетарий Эйсе Эйсинги
  • Планетарная фантастика

Смотреть что такое "Планетарная модель атома" в других словарях:

    планетарная модель атома - planetinis atomo modelis statusas T sritis fizika atitikmenys: angl. planetary atom model vok. Planetenmodell des Atoms, n rus. планетарная модель атома, f pranc. modèle planétaire de l’atome, m … Fizikos terminų žodynas

    Боровская модель атома - Боровская модель водородоподобного атома (Z заряд ядра), где отрицательно заряженный электрон заключен в атомной оболочке, окружающей малое, положительно заряженное атомное ядро … Википедия

    Модель (в науке) - Модель (франц. modèle, итал. modello, от лат. modulus мера, мерило, образец, норма), 1) образец, служащий эталоном (стандартом) для серийного ли массового воспроизведения (М. автомобиля, М. одежды и т. п.), а также тип, марка какого либо… …

    Модель - I Модель (Model) Вальтер (24.1.1891, Гентин, Восточная Пруссия, 21.4.1945, близ Дуйсбурга), немецко фашистский генерал фельдмаршал (1944). В армии с 1909, участвовал в 1 й мировой войне 1914 18. С ноября 1940 командовал 3 й танковой… … Большая советская энциклопедия

    СТРОЕНИЕ АТОМА - (см.) построен из элементарных частиц трёх видов (см.), (см.) и (см.), образующих устойчивую систему. Протон и нейтрон входят в состав атомного (см.), электроны образуют электронную оболочку. В ядре действуют силы (см.), благодаря которым… … Большая политехническая энциклопедия

    Атом - У этого термина существуют и другие значения, см. Атом (значения). Атом гелия Атом (от др. греч … Википедия

    Резерфорд Эрнест - (1871 1937), английский физик, один из создателей учения о радиоактивности и строении атома, основатель научной школы, иностранный член корреспондент РАН (1922) и почетный член АН СССР (1925). Родился в Новой Зеландии, после окончания… … Энциклопедический словарь

    Άτομο

    Корпускул - Атом гелия Атом (др. греч. ἄτομος неделимый) наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и… … Википедия

    Корпускулы - Атом гелия Атом (др. греч. ἄτομος неделимый) наименьшая часть химического элемента, являющаяся носителем его свойств. Атом состоит из атомного ядра и окружающего его электронного облака. Ядро атома состоит из положительно заряженных протонов и… … Википедия

Книги

  • Комплект таблиц. Физика. 11 класс (15 таблиц) , . Учебный альбом из 15 листов. Трансформатор. Электромагнитная индукция в современной технике. Электронные лампы. Электронно-лучевая трубка. Полупроводники. Полупроводниковый диод. Транзистор.…

Планетарную модель атома предложил Э. Резерфорд в 1910 году. Первые исследования структуры атома были сделаны им при помощи альфа-частиц. На основе результатов, полученных в экспериментах по их рассеянию, Резерфорд предположил, что весь положительный заряд атома сосредоточен в крошечном ядре в его центре. С другой стороны, отрицательно заряженные электроны распределены внутри всего остального его объема.

Немного предыстории

Первую гениальную догадку о существовании атомов сделал древнегреческий ученый Демокрит. С тех пор идея о существовании атомов, комбинации которых дают все окружающие нас вещества, не покидала воображения людей науки. Периодически к ней обращались различные ее представители, но до начала XIX века их построения были всего лишь гипотезами, не подкрепленными опытными данными.

Наконец, в 1804 году, более чем за сто лет до того как появилась планетарная модель атома, английский ученый Джон Дальтон представил доказательства его существования и ввел понятие атомного веса, явившееся его первой количественной характеристикой. Как и его предшественники, он представлял атомы мельчайшими частями материи, похожими на твердые шарики, которые не могут быть разделены на еще более мелкие частицы.

Открытие электрона и первая модель атома

Прошло почти целое столетие, когда, наконец, в конце XIX века также англичанин Дж. Дж. Томсон открыл первую субатомную частицу, отрицательно заряженный электрон. Поскольку атомы электрически нейтральны, Томсон думал, что они должны состоять из положительно заряженного ядра с электронами, разбросанными по его объему. Основываясь на различных результатах, полученных экспериментально, он в 1898 году предложил свою модель атома, иногда называемую «сливы в пудинге», потому что атом в ней представлялся в виде сферы, заполненной некоторой положительно заряженной жидкостью, в которую электроны были внедрены, как «сливы в пудинг». Радиус такой сферической модели был около 10 -8 см. Общий положительный заряд жидкости симметрично и равномерно сбалансирован отрицательными зарядами электронов, как показано на рисунке ниже.

Эта модель удовлетворительно объясняла то обстоятельство, что при нагревании вещества оно начинает излучать свет. Хотя это была первая попытка понимания того, что же такое атом, она не смогла удовлетворить результатам экспериментов, выполненных позже Резерфордом и другими. Томсон в 1911 году согласился, что его модель просто не может ответить, как и почему происходит наблюдаемое в опытах рассеяние α-лучей. Поэтому она была оставлена, а на смену ей пришла более совершенная планетарная модель атома.

Как же все таки устроен атом?

Эрнест Резерфорд дал объяснение явления радиоактивности, которое принесло ему Нобелевскую премию, однако его наиболее значительный вклад в науку был сделан позднее, когда он установил, что атом состоит из плотного ядра, окруженного орбитами электронов, подобно тому, как Солнце окружено орбитами планет.

Согласно планетарной модели атома, большая часть его массы сконцентрирована в крошечном (по сравнению с размерами всего атома) ядре. Электроны двигаются вокруг ядра, путешествуя с невероятной скоростью, но большая часть объема атомов является при этом пустым пространством.

Размер ядра настолько мал, что его диаметр в 100 000 раз меньше, чем у атома. Диаметр ядра была оценен Резерфордом как 10 -13 см, в отличие от размера атома - 10-8 см. За пределами ядра электроны вращаются вокруг него с высокими скоростями, в результате чего возникают центробежные силы, уравновешивающие электростатические силы притяжения между протонами и электронами.

Опыты Резерфорда

Планетарная модель атома возникла в 1911, после знаменитого эксперимента с золотой фольгой, позволившего получить некоторые фундаментальные сведения о его строении. Путь Резерфорда к открытию атомного ядра является хорошим примером роли творчества в науке. Его поиски начались еще в 1899 году, когда он обнаружил, что некоторые элементы испускают положительно заряженные частицы, которые могут проникать через что угодно. Он назвал эти частицы альфа (α) частицами (теперь мы знаем, что они были ядрами гелия). Как и все хорошие ученые, Резерфорд был любопытен. Он задавался вопросом, можно ли использовать альфа-частицы, чтобы узнать структуру атома. Резерфорд решил нацелить луч альфа-частиц на лист очень тонкой золотой фольги. Он выбрал золото, потому что из него можно получать листы толщиной всего 0,00004 см. За листом золотой фольги он поставил экран, который светился, когда альфа-частицы ударяли в него. Его использовали для обнаружения альфа-частиц после их прохождения через фольгу. Небольшая прорезь в экране позволяла лучу альфа-частиц достичь фольги после выхода из источника. Часть из них должна пройти сквозь фольгу и продолжать двигаться в том же направлении, другая их часть должна отскакивать от фольги и отражаться под острыми углами. Вы можете увидеть схему эксперимента на рисунке ниже.

Что же получилось в опыте Резерфорда?

Исходя из модели атома Дж. Дж. Томсона, Резерфорд предполагал, что сплошные области положительного заряда, заполняющие весь объем золотых атомов, будут отклонять или сгибать траектории всех альфа-частиц, когда они проходят через фольгу.

Однако подавляющее большинство альфа-частиц прошло прямо через золотую фольгу, как будто ее и не было. Казалось, они проходят через пустое пространство. Лишь немногие из них отклоняются от прямого пути, как и предполагалось вначале. Ниже приведен график зависимости количества частиц, рассеянных в соответствующем направлении, от угла рассеяния.

Удивительно, но крошечный процент частиц возвращался от фольги, как баскетбольный мяч отскакивает от щита. Резерфорд понял, что эти отклонения были результатом прямого столкновения между альфа-частицами и положительно заряженными компонентами атома.

Ядро занимает центральное место

Исходя из ничтожного процента отразившихся от фольги альфа-частиц, можно сделать вывод, что весь положительный заряд и практически вся масса атома сосредоточены в одной маленькой области, а в остальной части атома в основном находится пустое пространство. Резерфорд назвал площадь концентрированного положительного заряда ядром. Он предсказал и вскоре обнаружил, что оно содержит положительно заряженные частицы, которые он назвал протонами. Резерфорд предсказал существование нейтральных атомных частиц, называемых нейтронами, но он не смог обнаружить их. Тем не менее его ученик Джеймс Чедвик открыл их через несколько лет. На рисунке ниже показана структура ядра атома урана.

Атомы состоят из положительно заряженных тяжелых ядер, окруженных вращающимися вокруг них отрицательно заряженными чрезвычайно легкими частицами-электронами, причем на таких скоростях, что механические центробежные силы просто балансируют их электростатическое притяжение к ядру, и в этой связи якобы обеспечивается стабильность атома.

Недостатки этой модели

Основная идея Резерфорда относилась к идее малоразмерного атомного ядра. Предположение об орбитах электронов было чистой гипотезой. Он не знал точно, где и как электроны вращаются вокруг ядра. Поэтому планетарная модель Резерфорда не объясняет распределение электронов на орбитах.

Кроме того, стабильность атома Резерфорда была возможна только при непрерывном движении электронов по орбитам без потерь кинетической энергии. Но электродинамические расчеты показали, что движение электронов по любым криволинейным траекториям, сопровождающееся изменением направления вектора скорости и появлением соответствующего ускорения, неизбежно сопровождается излучением электромагнитной энергии. При этом, согласно закону сохранения энергии, кинетическая энергия электрона должна очень быстро израсходоваться на излучение, и он должен упасть на ядро, как схематически показано на рисунке ниже.

Но этого не происходит, так как атомы являются стабильными образованиями. Возникло типовое для науки противоречие между моделью явления и опытными данными.

От Резерфорда к Нильсу Бору

Следующий крупный шаг вперед в атомной истории произошел в 1913 году, когда датский ученый Нильс Бор опубликовал описание более детальной модели атома. Она определяла более четко места, где могут находиться электроны. Хотя позже ученые будут развивать и более изысканные атомные конструкции, но планетарная модель атома Бора была в основном правильной, и многое из нее принимается до сих пор. Она имела множество полезных приложений, например с ее помощью объясняют свойства различных химических элементов, характер спектра их излучений и строение атома. Планетарная модель и модель Бора явились важнейшими вехами, обозначившими появление нового направления в физике - физики микромира. Бор получил Нобелевскую премию 1922 по физике за его вклад в наше понимание структуры атома.

Что же нового привнес Бор в модель атома?

Будучи еще молодым человеком, Бор работал в лаборатории Резерфорда в Англии. Поскольку в модели Резерфорда была слабо проработана концепция электронов, Бор сосредоточился именно на них. В результате была существенно доработана планетарная модель атома. Постулаты Бора, которые он сформулировал в своей статье «О строении атомов и молекул», вышедшей в 1913 году, гласят:

1. Электроны могут двигаться вокруг ядра только на фиксированных расстояниях от него, определяемых тем количеством энергии, которое у них есть. Он назвал эти фиксированные уровни энергетическими уровнями или электронными оболочками. Бор представлял их в виде концентрических сфер, с ядром в центре каждой из них. При этом электроны с меньшей энергией будут найдены на более низких уровнях, ближе к ядру. Те же из них, у кого больше энергии, будут найдены на более высоких уровнях, дальше от ядра.

2. Если электрон поглощает некоторое (вполне определенное для данного уровня) количество энергии, то он будет прыгать на следующий, более высокий энергетический уровень. И наоборот, если он потеряет такое ​​же количество энергии, то вернется назад к исходному уровню. Однако электрон не может существовать на двух энергетических уровнях.

Эта идея иллюстрируются рисунком.

Энергетические порции для электронов

Модель атома Бора на самом деле является сочетанием двух различных идей: атомной модели Резерфорда с электронами, вращающимися вокруг ядра (по сути это планетарная модель атома Бора-Резерфорда), и идеи немецкого ученого Макса Планка о квантовании энергии вещества, опубликованной в 1901 году. A квант (во множественном числе - кванты) является минимальным количеством энергии, которая может быть поглощена или излучена веществом. Он является своего рода шагом дискретизации количества энергии.

Если энергию сравнить с водой и вы хотите добавить ее к материи в виде стакана, вы не можете просто залить воду непрерывной струей. Вместо этого вы можете добавить ее в небольших количествах, например, по чайной ложке. Бор считал, что если электроны могут поглощать или терять только фиксированные количества энергии, то они должны варьировать свою энергию только этими фиксированными количествами. Таким образом, они могут занимать только фиксированные энергетические уровни вокруг ядра, которые соответствуют квантованным приращениям их энергии.

Так из модели Бора вырастает квантовый подход к объяснению, что же из себя представляет строение атома. Планетарная модель и модель Бора явились своеобразными ступенями от классической физики к квантовой, являющейся основным инструментом в физике микромира, включая и атомную физику.

 
Статьи по теме:
Сонник: к чему снится океан
Каждую ночь человеку снится около 5-8 снов. Обычно утром, проснувшись, мы не помним ничего из приснившегося. Нам кажется, что и видений не было. Но бывают такие сны, которые потрясают своей масштабностью или силой вызванных чувств, необычной эмоциональной
Cонник киви, к чему снится киви во сне видеть
Если вам приснился сочный киви, то вероятно подсознание сигнализирует, что нужно побольше кушать свежих фруктов. К чему еще снится этот образ? Сонник поведает о самых актуальных интерпретациях того, что случилось видеть во сне. На зависть всем! Экзотиче
К чему снится пруд с рыбами, что ждет наяву?
На вещи. Если пруд во сне грязный - вас ожидают домашние размолвки или чья-то болезнь. Если вам снится чистым пруд, полный «играющей» рыбы - то наяву дела ваши пойдут успешнее, чем прежде, и вас ждут развлечения. Если человек видит пруд с мутной водо
Александр толстой произведение петр 1 краткое содержание
«Петр Первый» — исторический роман. Жанровая специфика исторического романа предопределена временной дистанцией между моментом создания произведения и тем, к которому обращается автор. В отличие от романа о современности, обращенного к реалиям сегодняшнег