С4 Скорость фотосинтеза зависит от факторов, среди которых выделяют. Зависимость процесса фотосинтеза от факторов внешней среды Какова функция хлорофилла в растительной клетке

Раздел 5. Задачи ЕГЭ. 1. Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет

1. Скорость фотосинтеза зависит от лимитирующих (ограничивающих) факторов, среди которых выделяют свет, концентрацию углекислого газа, температуру. Почему эти факторы являются лимитирующими для реакций фотосинтеза?

2. Приведите не менее 3-х факторов, которые способствуют регуляции численности волков в экосистеме.

3. В небольшом водоеме, образовавшемся после разлива реки, обнаружены следующие организмы: инфузории – туфельки, дафнии, белые планарии, большой прудовик, циклопы, гидры. Объясните, можно ли этот


4. В водной экосистеме обитают цапли, водоросли, окуни, плотва. Опишите размещение этих организмов по разным трофическим уровням в соответствии с правилом экологической пирамиды и объясните изменения, которые произойдут в экосистеме, если численность водорослей увеличится, а цапель – уменьшится.

5. В биогеоценозе леса провели обработку деревьев ядохимикатами для уничтожения комаров и мошек. Укажите не менее трех последствий воздействия этого мероприятия на биогеоценоз леса.

6. К каким изменениям в экосистеме озера может привести сокращение численности хищных рыб? Укажите не менее трех изменений.

7. Объясните, какой вред растениям наносят кислотные дожди. Приведите не менее трех причин.

8. Как повлияет на круговорот углерода на Земле сокращение численности редуцентов?

9. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, объясните их.

1. В состав пищевой цепи биогеоценоза входят продуценты, консументы и редуценты. 2. Первым звеном пищевой цепи являются консументы. 3. У консументов на свету накапливается энергия, усвоенная в процессе фотосинтеза. 4. В темной фазе фотосинтеза выделяется кислород. 5. Редуценты способствуют освобождению энергии, накопленной консументами и продуцентами.

10. Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых они сделаны, объясните их.


1. Согласно В.И. Вернадскому, живое вещество – это совокупность живых организмов, существующих в данный момент, численно выраженное в весе и химическом составе. 2. Живое вещество пронизывает всю атмосферу, часть гидросферы и литосферы. 3. Живое вещество выполняет в биосфере газовую и концентрационную функции. 4. В ходе эволюции живого вещества его функции изменялись, становились более разнообразными.

5. Некоторые функции живого вещества, такие, как усвоение молекулярного азота, окисление и восстановление элементов с переменной валентностью, могут выполнять только растения. 6. Живое вещество организовано в биоценозы – живые компоненты экосистемы.


Ответы к задачам




1. Ц Г Т ГАТТТТ ГГТ Т ГТА Г Ц АЦТААААЦЦААЦАТ

2. ЦАЦАУУГЦУГГЦУАУАААЦАУ; 7,14 нм. 3. А=25%; Т=25%; Г=25%; Ц=25%.

4. ААААААТЦЦТАГТ; ААААААУЦЦУАЦГУ. 5. 1120; 1120; 880; 680 нм.

6. ТЦАТГГЦТАТГААЦТАААТГЦ; 7,14 нм.

| | | | | | | | | | | | | | | | | | | | |

АГТАЦЦГАТАЦТТГАТТТАЦГ

7. Т=15%; Г=35%; Ц=35%; 340нм.

9. А=26%; Т=26%; Г=24%; Ц=24%.

10. 51 нм. Раздел 2.

3. Валин, лизин, лейцин; ЦАА, ЦАГ, ЦАТ, ЦАЦ; ААА, ААГ; АЦЦ.

6. Ген, в 16,4 раз.

7. Г=180; Ц=180; А=270; Т=270; 153 нм.

8. 120; А=90, Т=90, Ц=270, Г=270.

10. 612 нм; 400; А=16,7%, У=25%, Г=50%, Ц=8,3%; 400.

1. Лиз-глн-вал-тре-асп-фен;

2. Глн-асп-фен-про-гли; глн-асп-лей-сер-арг;


3. ТГА – ЦГА – ТТТ – ЦАА (один из вариантов);

4. Тре-иле- лиз-вал;

5. УУУ; ГУУ; ЦАА; УГУ;

6. ААУ; ЦАЦ; ГАУ; ЦЦУ;

7. В первом, если выбитый нуклеотид стоит в начале гена;

8. Меняется триплет ЦТТ (ЦТЦ) в кодирующей цепи гена на триплет ЦАА (ЦАГ, ЦАТ, ЦАЦ);

9. Иле-тир-тре-фен-тир (один из вариантов);

10. ЦГА-ТГА-ЦАА (один из вариантов); ЦГА, ЦГГ, ЦГУ, ЦГЦ; УГА, УГГ, УГУ, УГЦ; ЦГА, ЦГГ, ЦГУ, ЦГЦ.

1. а) 28; 18; б) 142; в) 5680 кдж, в макроэргических связях; г) 84;

2. а) 7; б) 2,5; 4,5; в) 176; 7040 кдж; г) 15;

4. 8400 кдж; 30.

6. Нет; 0,36.

7. 28,4 г; 0,95.

1. А=15%; Г=35%; Ц=35%.

2. ГГТАТЦГ; 18. 3. 52,02 НМ; 51.

4. А=400; Т=400; Г=350; Ц=350; 250.

7. ГГГТГГЦГТЦАТ; ГГГ, УГГ, ЦГУ, ЦАУ; про-тре- ала-вал.


8. ЦАЦАААЦУЦГУА; ГУГ, УУУ, ГАГ,ЦАУ; гис-лиз- лей-вал.

9. ГТЦГААГЦАТГГГЦТ; ЦАГЦУУЦГУАЦЦЦГА; глн-лей-арг-тре-арг.

10. ЦГГАУУААУГЦЦЦГУ; лей.

11. АУГАААЦГГГУУ; ТАЦТТТГЦЦЦАА; мет-лиз-арг- вал.

12. Элементы ответа:

А) произойдёт генная мутация – изменится кодон третьей аминокислоты;

Б) в белке может произойти замена одной аминокислоты на другую, в результате изменится первичная структура белка;

В) могут изменится все остальные структуры белка, что повлечёт за собой появление у организма нового признака.




1. AbDCE, AbDCe, AbDcE, AbDce, abDCE, abDCe, abDcE, abDce. Образование каждого из них равновероятно (по 12,5%).

2. Два типа гамет: AbC и aBc с равной вероятностью

3. Четыре типа гамет: MnP, Mnp, mnP и mnp с вероятностью 25% каждый.

4. FjH, fJh, Fjh, fJH (по 15 %); FJH, fjh, fjH, FJh (по 10

5. а)Некроссоверные гаметы: Ab cd , AB CD , Ab CD , AB cd (по 20 % каждый тип); кроссоверные гаметы: Ab cD , AB Cd , AB cD , Ab Cd (по 5 %). Реально число потомков с рекомбинантными сочетаниями


генов будет несколько меньше, т.к. между генами одной хромосомы возможны также случаи двойного кроссинговера, возвращающие анализируемые гены в исходные хромосомы.

б) Некроссоверные гаметы: AB CD , ab cd , AB cd , abCD (всего 72 %); кроссоверные типы гамет по генам AB: Ab CD , aB cd , Ab cd , aB CD (всего 8 %); кроссоверные типы гамет по генам СD: AB Cd , abcD , AB cD , ab Cd (всего 18 %); кроссоверные типы гамет одновременно по генам СD и AB: Ab Cd , aBcD , Ab cD , aB Cd (всего 2%).

с) Некроссоверные гаметы: Ab cD , AB Cd , Ab Cd , AB cD (всего 80 %); кроссоверные гаметы: Ab CD , Ab cd , AB CD , Ab cd (всего около 20 %).

2. F1: все черные, F2: 3 доли черных: 1- красных; Fa:

красных и черных примерно поровну.

3. F1: все коричневые, F2: 3 доли коричневых: 1- серых; Fa: 50% коричневых: 50% серых.

4. F1: все иммунные, F2: 3 доли иммунных: 1- больных; Fa: 50% иммунных: 50% больных.

5. Окраска определяется по типу неполного доминирования, кремовые свинки всегда гетерозиготны, поэтому при скрещиваниях между собой дают расщепление 1:2:1.

6. Признак наследуется по типу аллельного исключения. Горностаевая окраска наблюдается у гетерозигот; родителей белых и черных пород.

7. Самка 1 – Aa, самка 2 – AA, самец – аа; F: в первом случае – Аа и аа, во втором случае – Аа.


8. Вероятность рождения здоровых детей – 50%,

больных - 50%

9. Доминантным геном; 50 %.

1. Ребенок первой родительской пары имеет группу крови – O (I); второй – A (II), третьей – AB (VI), четвертой – B (III).

2. Ребенок с группой крови O – сын первой пары; ребенок с группой крови A – сын второй пары.

3. I – 50 %, II – 25 %, III – 25 %, IV – 0%.

4. Ребенок с первой группой крови – родной, со второй

– приемный.

1. F1- все черные, комолые; F2: - 9 долей черных комолых, 3 доли – черных рогатых, 3 доли – красных комолых, 1 доля – красных рогатых.

2. Все гибриды F1– нормального роста раннеспелые; F2: 9 долей – раннеспелых нормального роста, 3 – раннеспелых гигантов, 3 – позднеспелых нормального роста, 1 – позднеспелых гигантов.

3. Генотип мужчины – aaBb, генотип первой жены – AaBb, генотип второй жены – AABB.

4. Мальчики: 3 доли – кареглазых, предрасположенных к раннему облысению, 3 доли – голубоглазых, предрасположенных к раннему облысению; 1 доля – кареглазых, с нормальными волосами, 1 доля – голубоглазых с нормальными волосами. Девочки: 3 доли – кареглазых с нормальными волосами, 3 доли – голубоглазых с нормальными волосами, 1 доля – кареглазых, предрасположенных к раннему облысению, 1 доля – голубоглазых, предрасположенных к раннему облысению.


5. Вероятность рождения ребенка с требуемым фенотипом – 3/16.

6. F1: курчавые, короткошерстные, черные; F2: следует ожидать появления 8 фенотипических классов в соотношении: 27:9:9:9:3:3:3:1; Fа: 8 фенотипических классов в равном соотношении.

7. Дигетерозиготы.

8. Типы гамет мужчины (Ab и ab); генотипы детей. AaBb, aabb, aaBb; с обеими аномалиями – 25 %; с одной – 50 %; без аномалий – 25 %.

9. Признак остистости определяется по типу полного доминирования, плотность колоса – по типу неполного доминирования. Генотипы родительских форм: AAbb, aaBB.

10. По обоим признакам имеет место моногенное наследование при полном доминировании между аллелями.

11. а) 3%; б) 0%; в) 6 %.

1. 1 доля желтых: 1 доля серых; 2 доли желтых: 1 доля серых; в первом скрещивании.

2. 50% – хохлатых, 50% – нормальных.

3. Серая окраска доминирует над черной, гомозиготы по гену серой окраски – летальны.

4. Гомозиготы по каждому из анализируемых генов летальны, что приводит к соответствующему нарушению ожидаемого расщепления (9:3:3:1).

1. Вероятность рождения больных мальчиков – 20 %;

девочки не болеют.


2. В 50% случаев дети будут иметь ген шизофрении, однако лишь 10 % детей будут страдать данным заболеванием.

3. Вероятность, что девушка является носителем гена диабета составляет 50%; вероятность того, что она заболеет с возрастом – 10 %; вероятность того, что ее дети будут иметь ген сахарного диабета (при условии, что муж здоров) – 25%, что они будут больные – 5%.

4. 55%, 15% и 0% соответственно. Раздел 7.

1. Соотношение в F2составляет 9:7, что соотвествует дигибридному скрещиванию при взаимодействии генов по типу двойного рецессивного эпистаза.

2. В F2при анализе по одному признаку наблюдается соотношение 9:3:3:1, что происходит при взаимодействии генов по типу комплементарности; генотипы: P – ААВВ и аавв; F1– 9А_В_, 3А_вв, 3ааВ_, 1аавв. Такие же результаты скрещиваний получатся, если скрестить гомозиготных желтого и голубого попугайчиков (при этом не важно какой из полов будет иметь тот или иной признак).

3. Родительcкие норки: AAbb и aaBB (обе платиновые), в F29 коричневых к 7 платиновым.

4. Соотношение в потомстве F2примерно 12:3:1 (отклонения связаны с небольшой выборкой), что соответствует взаимодействию неаллельных генов по типу доминантного эпистаза, при условии, что рецессивная дигомозигота имеет специфический фенотип. Генотипы родителей: aaSS (агути), AAss (черный); S – ген-супрессор.

5. Наследование по типу доминантного эпистаза

(соотношение 13:3), при этом рецессивная


дигомозигота не имеет специфического фенотипа. Генотипы P – ААВВ и аавв, F1– АаВа, F2– 9А_В_, 3А_вв, аавв (все белые), 3ааВ_(пурпурные).

6. Соотношение фенотипических классов 1:4:6:4:1 соответствует взаимодействию генов по типу кумулятивной полимерии при дигибридном скрещивании. Генотипы P – А1А1А2А2и а1а1а2а2, F1– А1а1А2а2, F2– 1А1А1А2А2(негры), 2А1А1А2а2+ 2 А1а1А2А2(темные мулаты), 4А1а1А2а2+1А1А1а2а2+ 1а1а1А2А2(мулаты), 2А1а1а2а2+ 2 а1а1А2а2 – (светлые мулаты), 1а1а1а2а2(белые). Т.к. белая женщина передаст детям гены белой кожи, в таких браках негры появиться не могут.

7. Соотношение 15:1 наблюдается при взаимодействии двух генов по типу некумулятивной полимерии, появление белых проростков возможно лишь при самоопылении дигетерозиготного растения; генотип А1а1А2а2.

1. Вероятность рождения больной дочери – 0%;

больного сына – 50%.

2. Все девочки будут здоровы (из них половина являются носительницами гена гемофилии). Половина мальчиков – здоровы, половина – гемофилики.

3. Мать – гетерозиготный носитель (XHXh). У дочери возможно появление больных гемофилией детей с

вероятностью 25 % (только мальчиков), у сына вероятность рождения больных детей равна 0 (если его жена не будет носительницей гена гемофилии).

4. В первом случае все кошки будут черепаховые, все коты – желтые, во втором - равновероятно появление


черепаховых и черных кошек, черных и желтых котов. Черепаховую окраску в типичном случае кот иметь не может (т.к. является гемизиготой по анализируемому гену). Теоретически он может появиться при геномной аномалии у гетерозиготной самки (нерасхождение X-хромосом при образовании яйцеклетки), генотип XAXaY.

5. В F1все самцы будут зеленые (ZBZb), все самки – коричневые (ZbW); в F2– половина самок коричневые (ZbW), половина – зеленые (ZBW); половина самцов – зеленые (ZBZb), половина – коричневые (ZbZb).

6. Ген дальтонизма сын может получить только с X-

хромосомой от матери.

7. a) Все дети и внуки будут здоровы; б) все дочери будут больны, все мальчики – здоровы (но будут нести аллель диатеза в X-хромосоме).

8. Все мальчики будут больны, все девочки – здоровы; голандрическое наследование.

9. Ген окраски глаз сцеплен с полом, ген длины крыла – аутосомный. Родительская самка – гетерозиготна по обоим генам, самец – доминантная гемизигота по окраске глаз и гетерозигота по гену длины крыла.

10. Вероятность рождения ребенка без аномалии составляет 25 % (обязательно девочки). Дочь здорова, поэтому вероятность рождения больных внуков равна 0.

11. Вероятность рождения детей с обеими аномалиями

1. а) нет; б) да, но для перевода данных о доле появляющихся кроссоверных потомков на расстояние между генами, процент кроссоверов


нужно умножить на 2 (т.к. половина особей, получивших кроссоверные гаметы от самки, будут нести одновременно и два доминантных аллеля от самца, и, следовательно, иметь некроссоверный фенотип).

2. Признаки частично сцеплены.

3. Растение 1: AB ; растение 2: Ab .Частота

кроссинговера между генами – примерно 10 %.

4. a) самки: XABXab, XabXab(по 40 %); XAbXab, XaBXab(по 10 %); самцы: XABY, XabY (по 40 %), XAbY, XaBY (по 10 %);

б) самки: XAbXAB, XabXAB(по 50%); самцы: XAbY, XabY (по 50%);

в) самки: XAbXAb, XaBXAb(по 40 %); XABXАb, XabXAb(по 10 %); самцы: XAbY, XaBY (по 40 %); XABY, XabY (по 10 %).

Раздел 10.

1. а) 2Aa, 2A, AA, a, AAa, 0; б) 2Aa, 2a, aa, A, Aaa, 0. Триплоиды являются несбалансированными полиплоидами и почти всегда образуют лишь анеуплоидные (стерильные) гаметы.

2. 1 доля темно-розовых, 2 доли розовых, 1 доля –

светло-розовых.

3. Генотипы родителей: a)AAAA и aaaa б) AAaa и aaaa.

4. 5 долей - растения, имеющие окрашенные цветки, 1

доля – белые.

Раздел 11.

1. F1– 50 %, F2– 33%, F3– 14 %, F4– 6,6%.

2. Частота аллеля A – 68,5%, частота аллеля B – 31,5%; частоты генотипов: AA – 39,5%, AB – 58%; BB – 2,5%.


3. Частоты генотипов: AA – 30,2%, Aa – 49,5%, aa – 20,3%.

4. а) F1: частоты аллелей: A – 57,1%, a – 42,9%; частоты генотипов AA – 32,6%, Aa – 49%, aa – 18,4%; F2: A – 70,7%, a – 29,3%; частоты генотипов AA – 49,9%, Aa

– 41,5%, aa – 8,6%.

б) в следующем поколении останутся только особи с генотипом aa.

5. В Казани – 31,4%; во Владивостоке – 5,3%.

Раздел 12.

1. P – aaBB, AAbb; F1 - AaBb – черные короткошерстные – 100%; F2– 1 AABB, 2 AaBB, 2 AABb, 4 AaBb, 1 aaBB, 2 aaBb, 1AAbb, 2 Aabb, 1 aabb; 9/16 черных короткошерстных, 3/16 черных длинношерстных, 3/16 коричневых короткошерстных, 1/16 коричневых длинношерстных.

2. P – AaBb, Aabb; F1- 1 AABb, 2 AaBb, 1 AAbb, 2 Aabb, 1 aaBb, 1 aabb; действует III закон Менделя – независимое комбинирование генов (признаков).

3. P – aaBB, Aabb; F1- AaBb, aaBb: F2– 3/8 черные с гребнем, 3/8 красные с гребнем, 1/8 черные без гребня, 1/8 красные без гребня.

4. P – AaBb, AaBb; aabb; F1– дети: со свободно мочкой и треугольной ямкой, свободной мочкой и гладким подбородком, сросшейся мочкой и треугольной ямкой; AABB, AaBB, AABb, AaBb, AAbb, Aabb, aaBB, aaBb.

5. P – aabb, AaBb; F1- AaBb, Aabb, aaBb, aabb; 25%.

6. Бабушки – AАbb, aaBB; дедушки – AABB; P – AABb, AaBB, здоровые; 0%.


7. P – aabb, AaBb; AaBb – нормальное зрение, синдром Марфана; aaBb – глаукома, синдром Марфана; aabb – глаукома, норма; Aabb – здоровый; 25%.

8. P – AABB, aaBb; F1- AaBB, AaBb; F2– 3/8 комолые красные, 3/8 комолые чалые, 1/8 рогатые красные, 1/8 рогатые чалые.

9. P – AaBb, aaBB; F1- AaBB, aaBB, AaBb, aaВb; 1/4 - розовые узкие, 1/4 – белые узкие, 1/4 - розовые с промежуточными листьями, 1/4 – белые с промежуточными листьями.

10. P – AABB, aabb; F1 - AaBb; F2– AABB, 2 AaBb, aabb; 3/4 нормальной высоты, округлые плоды; 1/4 карликовые с овальными плодами.

11. P – AaBb, aabb; F1 - AaBb (серое тело, нормальные крылья), aabb (черное тело, укороченные крылья), Aabb (серое тело, укороченные крылья), aaBb (черное тело, нормальные крылья); происходит кроссинговер.

12. P – AaXDXd, aaXDY; F1– AaXDXD, aaXDXD, AaXDXd, aaXDXd, AaXDY, aaXDY, AaXdY, aaXdY; 25% (девочки).

13. Темный цвет эмали; P – XaXa, XAY; F1– XAXa, XaY.

14. P – AAXHXH, aaXHY; F1– AaXHXh– здоровая девочка, AaXHY – здоровый мальчик.

15. P - IAi0, IBIB; F1– IAIB(IV группа), IBi0(III группа); 0%.

16. Доминантный, не сцеплен с полом; F1– 1, 3, 5, 6 – Aa; - 2, 4 –aa.

17. Рецессивный, сцеплен с полом; P - XAXa, XAY; F1– XaY.




1. 1. На одной территории не могут совместно обитать виды 1 и 2, поскольку их экологические требования к среде обитания диаметрально противоположны.

2. Распространение вида 3 в большей степени лимитирует влажность.

3. Вид 1 – криофильный ксеробионт, а вид 2 –

термофильный гигробионт.

4. Диапазон условий среды, обозначенный белым квадратом, лучше других видов будет переносить вид 1.

5. Эвритермным является вид 3, а виды 1 и 2 –

стенотермны.

Для того чтобы избавиться от клещика без использования пестицидов, нужно создать условия, выходящие за пределы его толерантности (например,


те, что обозначены на рисунке черным кружком –

температура ниже 7°С и влажность воздуха ниже 10%).

3. 1. Весовая нагрузка на опорную поверхность определяет возможности лучшего передвижения животных в условиях сыпучего субстрата (песка, снега). На примере куропаток и копытных видно, что у северных животных, проводящих значительную часть времени жизни в условиях снегового покрова, этот показатель меньше, чем у тех животных, которые приспособлены к этому экологическому фактору в меньшей степени.

2. Заяц-беляк, живущий в условиях рыхлого лесного снега, имеет меньшую весовую нагрузку, чем заяц- русак, обитающий в открытых местообитаниях, где снег уплотнен действием ветра.

3. Хотя у рыси и лося показатели весовой нагрузки на опорную поверхность сходные, огромное значение имеет еще и длина конечности и подвижность сустава

– по глубокому и рыхлому снегу лось передвигается лучше, чем рысь.

4. 1. Гомойотермное («теплокровное») животное.

2. Птицы и большинство млекопитающих (кроме тех, которые впадают в состояние сезонной неактивности

Зимнюю спячку).

3. Пороговые значения температур (кардинальные точки); зона нормы (обычные значения температур); зона оптимальных температур (теплопродукция минимальна).

4. Морфологические: перьевой и волосяной покров, подкожная жировая клетчатка; физиологические: деятельность потовых желез, изменение просвета капилляров кожи, интенсивный обмен веществ,


обеспечиваемый прогрессивным строением кровеносной и дыхательной систем.

5. Высокая теплопродукция в зоне от t1 до t2 должно обеспечить прогрев организма за счет интенсивной выработки эндогенного тепла. Повышение теплопродукции в зоне от t5 до t6 – в условиях перегрева организма белки-регуляторы перестают обеспечивать согласованную терморегуляцию, в результате чего температура тела резко растет, что может привести к денатурации термонестабильных белков и гибели организма.

5.1. В точке 1 - высокой температурой; в точке 2 – запредельно низкой влажностью; в точке 3 – крайне низкой температурой.

2. Значения температур в диапазоне от 12 до 22°С при влажности от 65 до 85%.

3. Пределы выносливости вида в отношении температур составляют от 2 до 40°С. Минимально-допустимая влажность составляет 20%, но она находится в сильной зависимости от температуры воздуха.

6.1. Скорость развития насекомых находится в зависимости от температуры среды обитания, подчиняясь в определенном интервале правилу Вант- Гоффа: «Скорость эндотермических химических реакций с повышением температуры на 10° увеличивается в 2-3 раза».

2. Такая же зависимость скорости развития от температуры обнаружена и у других пойкилотермных животных – ракообразных, паукообразных, рыб и амфибий.

3. При температурах, близких к минимально-пороговым, скорость реакций мала и незначительное увеличение


ее не вызывает такого существенного увеличения скорости, как при температурах в физиологически- нормальном диапазоне.

4. Поскольку катализаторами биохимических реакций в организме являются белки, при достижении предельных температур (выше 33°), скорость этих реакций начинает лавинообразно снижаться по причине денатурации белков.

7.1. Муравьи в качестве кормового объекта доступны пестрому дятлу лишь в весенне-летний период, причем в это время они являются массовым источником пищи. В разгар лета и осенью дятлы делают ставку на размножившихся насекомых- ксилофагов, чьих личинок добывают из-под коры деревьев. Однако, их извлечение сопряжено со значительной тратой времени и энергии, что невыгодно в зимних условиях. Поэтому в осенне- зимний период излюбленным кормом дятлов становятся поспевающие в шишках семена хвойных, на добывание которых тратится меньше времени и сил.

2. Во второй половине лета (июль-август).

3. Необходимы для обеспечения полноценными кормами растущих птенцов.

8.1. Характер активности песчанок определяется ходом температур.

2. В марте они активны лишь в дневное время суток, когда воздух и субстрат достаточно прогреты (максимум активности наблюдается в полдень, когда наиболее тепло). В июле, когда в пустыне слишком жарко, у песчанок наблюдается два пика активности: один – рано утром, другой – вечером. Неактивное


состояние в разгар дня (с 10 до 15 часов) связано с очень высокими дневными температурами.

3. В сентябре достаточно высокая активность песчанок удерживается на протяжении большей части светлого времени суток (с 8 до 17 часов), что связано как с более комфортными температурными условиями, так и с большим количеством корма (созревшие семена), который необходим для того, чтобы можно было запасти его для выживания на протяжении грядущей зимы.

9. Менее чем через 4,5 часа.

1. Увеличилась в 1,5 раза; можно выдать 2025 лицензий на отстрел.

2. В популяции будет насчитываться 480 самок, 720 самцов и 1440 молодых.

3. 10 взрослых лещей; 99,98%.

4. На стадии от икры до малька - 80%, от малька до серебрянки – 90%, от серебрянки до взрослой стадии – 97%; общая смертность составляет 99,94%.

5. Наиболее интенсивное самоизреживание елей происходит в возрасте от 20 до 40 лет.

В 20-летних насаждениях на одно дерево приходится 1,5 м2 площади, в 40-летних – 4,2 м2, в 60-летних – 8,6м2, в 80-летних – 13,2 м2, в 120-летних – 21,5 м2. Заранее снижать плотность посадки деревьев до уровня, соответствующего зрелому лесу не стоит, поскольку совместное выживание густых молодых посадок более вероятно, чем отдельных деревьев. Кроме того, это в дальнейшем обеспечит


преимущественное выживание наиболее приспособленных особей.

7000

Интенсивность фотосинтеза зависит от целого ряда факторов. Во-первых, от длины световой волны. Наиболее эффективно процесс протекает под действием волн сине-фиолетовой и красной части спектра. Кроме того, на скорость фотосинтеза влияет степень освещенности, и до определенного момента скорость процесса возрастает пропорционально количеству света, нот далее уже не зависит от него.

Другим фактором является концентрация углекислого газа. Чем она выше, тем интенсивнее идет процесс фотосинтеза. В обычных условиях недостаток углекислого газа – главный ограничивающий фактор, так как в атмосферном воздухе его содержится небольшой процент. Однако в тепличных условиях можно устранить этот дефицит, что благоприятно скажется на скорости фотосинтеза и темпе роста растений.

Немаловажным фактором интенсивности фотосинтеза является температура. Все реакции фотосинтеза катализируются ферментами, для которых оптимальной температурой является интервал 25-30 О С. При более низких температурах скорость действия ферментов резко снижается.

Вода - важный фактор, влияющий на фотосинтез. Однако оценить количественно этот фактор невозможно, поскольку вода участвует во многих других обменных процессах, происходящих в растительной клетке.

Значение фотосинтеза . Фотосинтез является основополагающим процессом в живой природе. Благодаря ему из неорганических веществ – углекислого газа и воды – при участии энергии солнечного света зеленые растения синтезируют органические вещества, необходимые для жизнедеятельности всего живого на Земле. Первичный синтез этих веществ обеспечивает осуществление процессов ассимиляции и диссимиляции у всех организмов.

Продукты фотосинтеза – органические вещества – используются организмами:

  • для построения клеток;
  • как источник энергии для процессов жизнедеятельности.

Человек использует созданные растениями вещества:

  • в качестве продуктов питания (плоды, семена и др.);
  • в качестве источника энергии (уголь, торф, древесина);
  • как строительный материал.

Человечество своим существованием обязано фотосинтезу. Все запасы горючего на Земле – это продукция фотосинтеза. Используя ископаемое топливо, мы получаем энергию, запасенную в результате фотосинтеза древними растениями, существовавшими в прошлые геологические эпохи.

Одновременно с синтезом органических веществ в атмосферу Земли выделяется побочный продукт фотосинтеза – кислород, который необходим для дыхания организмов. Без кислорода жизнь на нашей планете невозможна. Его запасы постоянно расходуются на продукты горения, окисления, дыхания, происходящие в природе. По подсчетам ученых, без фотосинтеза весь запас кислорода был бы израсходован в течение 3000 лет. Следовательно, фотосинтез имеет величайшее значение для жизни на Земле.

В течение многих веков ученые биологи пытались разгадать тайну зеленого листа. Долгое время считалось, что растения создают питательные вещества из воды и минеральных веществ. Это убеждение связано с экспериментом голландского исследователя Анна ванн Гельмонта, проведенным еще в 17 веке. Он посадил деревце ивы в кадку, точно измерив массу растения (2,3 кг) и сухой почвы (90,8 кг). В течении пяти лет он только поливал растение, ничего не внося в почву. Через пять лет масса дерева увеличилась на 74 кг, тогда как масса почвы уменьшилась лишь на 0,06 кг. Ученый сделал вывод, что растение образует все вещества из воды. Таким образом, было установлено одно вещество, которое усваивает растение при фотосинтезе.

Первую попытку научного определения функции зеленого листа предпринял в 1667 итальянский натуралист Марчелло Мальпиги. Он заметил, что если у проростков тыквы оторвать первые зародышевые листочки, то растение перестает развиваться. Изучая строения растений, он сделал предположение: под действием солнечных лучей в листьях растения происходит какие-то преобразования и испаряется вода. Однако на эти предположения в то время не обратили внимания.

Через 100 лет швейцарский ученый Шарль Бонне провел несколько экспериментов с помещением листа растения в воду и освещением его солнечным светом. Только вывод он сделал неверный, считая, что растение не участвует в образовании пузырьков.

Открытие роли зеленого листа принадлежит химику, англичанину Джозефу Пристли. В 1772 году, изучая значение воздуха для горения веществ и дыхания, он поставил опыт и выяснил, что растения улучшают воздух и делают его пригодным для дыхания и горения. После серии опытов Пристли обратил внимание, что растения улучшают воздух на свету. Он первым высказал предположение о роли света в жизнедеятельности растений.

В 1800 году швейцарский ученый Жан Сенебье научно разъяснил сущность этого процесса (к тому времени Лавуазье уже открыл кислород и изучил его свойства): листья растений разлагают углекислый газ и выделяют кислород только под действием солнечного света.

Во второй половине 19 века была получена спиртовая вытяжка из листьев растений зеленого цвета. Это вещество назвали хлорофиллом.

Немецкий естествоиспытатель Роберт Майер открыл поглощение растением солнечного света и превращение ее в энергию химических связей органических веществ (количество запасающегося в растении углерода в виде органических веществ напрямую зависит от количества падающего на растение света).

Климент Аркадьевич Тимирязев, русский ученый исследовал влияние различных участков спектра солнечного света на процесс фотосинтеза. Ему удалось установить, что именно в красных лучах фотосинтез протекает наиболее эффективно, и доказать, что интенсивность этого процесса соответствует поглощению света хлорофиллом.

К.А. Тимирязев подчеркнул, что, усваивая углерод, растение усваивает и солнечный свет, переводя его энергию в энергию органических веществ

При оценке действия внешних факторов необходимо различать два уровня. Первый их них генетический, который определяется влиянием факторов на генетический аппарат и экспрессию генов. Второй уровень обусловлен прямым действием внешних факторов на отдельные реакции фотосинтеза. Ответная реакция организма на изменение внешних факторов может быть быстрой, когда определяется непосредственно их воздействие на фотосинтетический аппарат, и более медленной, когда в новых условиях происходит формирование структур. Действие экзогенных факторов взаимосвязано и взаимообусловлено и реализуется через конкретные механизмы, сопряженные со всем комплексом физических, фотохимических и энзиматических реакций фотосинтеза. Познание этих механизмов необходимо для глубокого понимания основных закономерностей и оптимальных условий функционирования фотосинтетического аппарата как целостной системы.

Рассмотрим отдельно влияние на фотосинтез основных факторов внешней среды, хотя в природе они действуют на растение одновременно, и продуктивность растения является интегральной функцией совместного действия ряда экологических факторов.

Влияние интенсивности и спектрального состава света на фотосинтез

Интенсивность света и фотосинтез. Зависимость фотосинтеза о т л у ч и с т о й энергии является наиболее очевидной и существенной. Уже в ранних работах К.А.Тимирязева и других исследователей установлено отсутствие линейной зависимости между активностью процесса фотосинтеза и напряженностью действующего фактора. Зависимость активности фотосинтеза от интенсивности света -- световая кривая фотосинтеза -- имеет форму логарифмической кривой. Прямая зависимость скорости процесса от притока энергии имеет место только при низких интенсивностях света. В области насыщающих интенсивностей света дальнейшее увеличение освещенности не увеличивает скорость фотосинтеза.

Эти данные послужили основанием для представлений о включении в процесс фотосинтеза наряду с фотохимическими, световыми реакциями также темновых, энзиматических реакций, ограничивающее действие которых начинает проявляться особенно заметно при высоких, насьпдающих интенсивностях света. Результаты опытов А. А. Рихтера и Р. Эмерсона с прерывистым светом позволили оценить скорость световых и темновых реакций фотосинтеза: соответственно 10-5 и 10-2 с. Эти значения были полностью подтверждены в лаборатории Х.Витта (Witt, 1966) с использованием высокочувствительных методов импульсной спектрофотометрии.

При проведении физиологических исследований анализ световой кривой фотосинтеза дает информацию о характере работы фотохимических систем и ферментативного аппарата. Угол наклона кривой характеризует скорость фотохимических реакций: чем он больше, тем активнее система использует энергию света. По углу наклона линейного участка можно вести приближенные расчеты расхода квантов на восстановление моля С02. Скорость фотосинтеза в области насыщающей интенсивности света характеризует мощность систем поглощения и восстановления С02 и в значительной мере определяется концентрацией углекислоты в среде. Чем выше расположена кривая в области насыщающих интенсивностей света, тем более мощным аппаратом поглощения и восстановления углекислоты обладает система.

Минимальная интенсивность света, при которой возможен фотосинтез, различна у разных групп растений. Определенное практическое значение имеет световой компенсационный пункт (СКП) -- уровень освещения, когда интенсивности газообмена в процессах фотосинтеза и дыхания равны. Только при интенсивности света свыше СКП устанавливается положительный баланс углерода. Положение светового компенсационного пункта определяется генотипом растения и зависит от соотношения фотосинтеза и темнового дыхания. Любое усиление темнового дыхания, например при повышении температуры, увеличивает значение СКП. У С4-растений световой компенсационный пункт расположен выше, чем у С3-растений, у теневыносливых растений он ниже, чем у светолюбивых.

Повышение интенсивности света до определенного уровня действует в первую очередь на фотохимические реакции хлоропластов. При освещении сначала включается нециклический транспорт электронов. По мере увеличения скорости электронного потока и насыщения электронных пулов часть электронов переключается на образование циклических потоков. Переключение связано с восстановлением переносчиков, занимающих ключевое положение в ЭТЦ (к ним относятся пул пластохинонов, ферредоксин), и изменением конформации редокс-агентов. В условиях избыточной освещенности циклический транспорт электронов может играть защититную роль в хлоропластах, а также служить источником энергии для дополнительного синтеза АТФ и таким образом способствовать активации процессов ассимиляции углерода в хлоропластах и адаптационных процессов в растении.

При увеличении интенсивности светового потока и скорости транспорта электронов возрастает активность фотовосстановления НАДФ+ и синтеза АТФ. Скорость образования восстановленных коферментов активируется в большей степени, чем синтез АТФ, что приводит к некоторому снижению отношения АТФ/НАДФН при увеличении интенсивности света. Изменение соотношения энергетического и восстановительного потенциалов является одним из факторов, определяющих зависимость от интенсивности освещения характера метаболизма углерода и соотношение продуктов фотосинтеза. При низком уровне освещения (около 2000 люкс) образуются главным образом вещества неуглеводной природы (аминокислоты, органические кислоты), при высокой интенсивности света главную часть конечных продуктов фотосинтеза составляют углеводы (сахароза и др.). Интенсивность освещения определяет характер формирующихся фотосинтезируюших структур. В условиях интенсивного освещения формируется большое число более мелких фотосинтетических единиц что характерно для высокоактивных систем, увеличивается отношение хлорофиллов а/b.

С3- и С4-группы растений существенно различаются по зависимости процесса фотосинтеза от интенсивности света. Сравнение хода кривых показывает, что высокий уровень фотосинтеза, свойственный С4-растениям, проявляется главным образом при высоких уровнях освещенности.

Спектральный состав света. Помимо интенсивности существенное значение для фотосинтеза имеет спектральный состав света. Основные закономерности действия на фотосинтез лучей разных длин волн были установлены К. А. Тимирязевым. Дальнейшие исследования показали, что интенсивность фотосинтеза в участках спектра, выровненных по количеству энергии, различна: наиболее высокая интенсивность фотосинтеза отмечена в красных лучах (O.Warburg, Е.Negelein, 1923; Е.Gabrielsen, 1935, и др.).

Спектр действия фотосинтеза (кривая его зависимости от длины волны падающего света) при выровненном числе квантов имеет два четко выраженных максимума -- в красной и синей части спектра, аналогичных максимумам поглощения хлорофилла. Следовательно, красные и синие лучи наиболее эффективны в фотосинтезе. Анализ кривой квантового выхода фотосинтеза в зависимости от длины волны показывает, что он имеет близкие значения в диапазоне длин волн 580 -- 680 нм (около 0,11). В сине-фиолетовой части спектра (400 -- 490 нм), поглощаемой наряду с хлорофиллами также и каротиноидами, квантовый выход снижается (до 0,06), что связывают с менее продуктивным использованием энергии, поглощаемой каротиноидами. В дальней красной области спектра (более 680 нм) наблюдается резкое снижение квантового выхода. Явление «красного падения» фотосинтеза и последующие опыты Р. Эмерсона, показавшие усиление фотосинтеза при дополнительном освещении коротковолновым светом («эффект усиления»), привели к одному из фундаментальных положений современного фотосинтеза о последовательном функционировании двух фотосистем.

Качество света, как показали многолетние исследования Н.П.Воскресенской (1965--1989), оказывает сложное и разностороннее влияние на фотосинтез. Синий свет по сравнению с красным (выравненный по числу квантов) оказывает специфическое действие на фотосинтетический аппарат растений. На синем свету более активна общая ассимиляция С02, что обусловлено активирующим действием синего света на процессы электронного транспорта и на реакции углеродного цикла. В системе, где донором электронов служила вода, синий свет повышал активность фотовосстановления НАДФ+ почти в два раза по сравнению с активностью этой реакции у растений на красном свету. Спектральный состав света определяет состав продуктов, синтезируемых при фотосинтезе: на синем свету преимущественно синтезируются органические кислоты и аминокислоты, а позднее -- белки, тогда как красный свет индуцировал синтез растворимых углеводов, а со временем -- крахмала. Отмечено регулирующее действие синего света на активность ферментов фотосинтетического превращения углерода. У растений, выращенных на синем свету, обнаружена более высокая активность РуБФ-карбоксилазы, глицеральдегидфосфатдегидрогеназы, гликолатоксидазы, глиоксилатаминотрансферазы. Отмеченные в работе изменения активности ферментов связаны с активирующим действием синего света на синтез белков de novo. Вопрос о природе фоторецепторов синего света остается неясным. В качестве возможных акцепторов предполагаются флавины, каротиноиды, фитохромная система.

Влияние концентрации углекислоты на фотосинтез

Углекислый газ воздуха является субстратом фотосинтеза. Доступность С02 и его концентрация определяют активность углеродного метаболизма растений. В воздухе концентрация С02 составляет 0,03 %. Вместе с тем установлено, что максимальная скорость фотосинтеза достигается при концентрации углекислого газа на порядок выше (около 0,3 -- 0,5 %). Таким образом, концентрация С02 -- один из ограничивающих факторов фотосинтеза. Лимитирующее действие концентрации углекислого газа особенно проявляется при высоких интенсивностях света, когда фотохимические реакции производят максимально возможное количество НАДФН и АТФ, необходимых для метаболизма углерода в растении.

Как видно из рис, зависимость интенсивности фотосинтеза от концентрации С02 имеет логарифмический характер. Увеличение концентрации С02 приводит к быстрому увеличению интенсивности фотосинтеза. При концентрации С02 0,06--0,15 % у большинства растений достигается насыщение фотосинтеза. Увеличение интенсивности фотосинтеза при повышении концентрации С02 обусловлено реализацией в этих условиях потенциальной карбоксилазной активности Рубиско и созданием в хлоропластах большого пула акцептора С02 -- рибулозобисфосфата.

Увеличение концентрации С02 одновременно с повышением интенсивности света приводит к сдвигу насыщающей концентрации С02 в область еще больших концентраций (вплоть до 0,5%) и к значительному увеличению ассимиляции углерода растениями. Однако длительное выдерживание растений при высоких концентрациях углекислого газа может привести к «перекорму» растений и ингибированию фотосинтеза.

Концентрация углекислоты, при которой поглощение углекислого газа при фотосинтезе уравновешивает выделение его в ходе дыхания (темнового и светового), называется углекислотным компенсационным пунктом (УКП). У разных видов растений положение УКП может существенно различаться. Особенно выражены различия между С3- и С4-растениями. Так, у С3-растений УКП находится при довольно высоких концентрациях С02 (около 0,005 %), что связано с наличием активного фотодыхания у этой группы растений. С4-растения, обладающие способностью фиксировать С02 через фермент ФЕП-карбоксилазу, производят рефиксацию углекислого газа при слабом фотодыхании. Поэтому у С4-растений УКП приближается к нулевой концентрации С02 (ниже 0,0005 % С02). При увеличении концентрации С02 выше компенсационного пункта интенсивность фотосинтеза быстро возрастает.

В естественных условиях концентрация С02 довольно низка (0,03 %, или 300 мкл/л), поэтому диффузия С02 из атмосферы во внутренние воздушные полости листа очень затруднена. В этих условиях низких концентраций углекислоты существенная роль в процессе ее ассимиляции при фотосинтезе принадлежит ферменту карбоангидразе, значительная активность которой обнаружена у С3-растений. Карбоангидраза способствует повышению концентрации С02 в хлоропластах, что обеспечивает более активную работу РуБФ-карбоксилазы.

Карбоксилирующий потенциал РуБФ-карбоксилазы существенно изменяется в зависимости от концентрации С02. Как правило, максимальная активность РуБФ-карбоксилазы достигается при концентрациях С02, значительно превышающих содержание ее в атмосфере. Анализ кинетики фотосинтеза в листьях в зависимости от концентрации С02 показал, что при одних и тех же концентрациях углекислоты активность РуБФ-карбоксилазы значительно выше, чем интенсивность фотосинтеза. Это обусловлено лимитирующим действием на фотосинтез ряда факторов: сопротивления диффузии С02 через устьица и водную фазу, активности фотодыхания и фотохимических процессов. У С4-растений ФЕП-карбоксилаза, использующая в качестве субстрата HCO3-, при насыщающих концентрациях субстратов (HCO3-, ФЕП) характеризуется высокими значениями vmax, достигающими 800-- 1200 мкмоль.мг Хл-1ч-1, что значительно превышает скорость фотосинтеза в листьях (Дж. Эдварде, Д.Уокер, 1986).

Низкая концентрация углекислоты в атмосфере часто является фактором, ограничивающим фотосинтез, особенно при высокой температуре и в условиях водного дефицита, когда уменьшается растворимость С02 и возрастает устьичное сопротивлениерастение высоких концентраций С02 после временной активации фотосинтеза наступает его торможение вследствие разбаланса донорно-акцепторных систем. Происходящие вслед за этим морфо-генетические изменения, связанные с активирующим действием С02 на ростовые процессы, восстанавливают функциональные донорно-акцепторные взаимодействия. С02 оказывает регуляторное действие на ростовую функцию. Выдерживание растений при высоких концентрациях С02 сопровождается увеличением площади листьев, стимуляцией роста побегов 2-го порядка, возрастанием доли корней и запасающих органов, усилением клубнеобразования. Прирост биомассы при подкормке С02 происходит адекватно приросту площади листьев. В результате повышение концентрации С02 в атмосфере приводит к увеличению биомассы растения. Известным приемом повышения интенсивности и продуктивности фотосинтеза служит увеличение концентрации С02 в теплицах. Этот метод позволяет повысить прирост сухого вещества более чем в 2 раза.

Следует отметить также регуляторное действие углекислоты на первичные процессы фотосинтеза. Работами последних лет показано, что С02 регулирует скорость транспорта электронов на уровне фотосистемы II. Центры связывания углекислоты находятся на белке D1 вблизи QB. Следовые количества С02, связанные в этих центрах, изменяя конформацию белка, обеспечивают высокую активность электронного транспорта в ЭТЦ на участке между ФС II и ФСI.

Структурная организация листа, свойства его поверхности, число и степень открытости устьиц, а также градиент концентрации углекислого газа определяют возможность поступления углекислого газа к карбоксилирующим ферментам. Основными параметрами, определяющими диффузию углекислого газа к хлоропластам, являются сопротивление пограничной поверхности листа, устьиц и клеток мезофилла. Сопротивление пограничных поверхностей прямо пропорционально площади поверхности листа и обратно пропорционально скорости ветра. Вклад сопротивления пограничных поверхностей относительно невелик (около 8 -- 9 % от общего сопротивления листа диффузии С02). Сопротивление устьиц примерно в 10 раз больше, чем сопротивление пограничных поверхностей. Оно прямо пропорционально глубине устьиц и обратно пропорционально числу устьиц и размеру устьичных щелей. Все факторы, способствующие открыванию устьиц, будут снижать устьичное сопротивление. При расчете сопротивления устьиц учитывается также коэффициент диффузии С02. Его увеличение приводит к снижению сопротивления устьиц. Сопротивление мезофилла определяется диффузионными процессами, связанными с концентрационными градиентами углекислоты в отдельных структурах листа, сопротивлением клеточных стенок, скоростью движения цитоплазмы, активностью и кинетическими характеристиками карбоксилирующих ферментов и др.

Влияние кислорода на процесс фотосинтеза

Зависимость фотосинтеза от концентрации кислорода в среде довольно сложна. Как правило, процесс фотосинтеза высших растений осуществляется в аэробных условиях при концентрации кислорода около 21 %. Исследования показали, что как увеличение концентрации кислорода, так и отсутствие его неблагоприятны для фотосинтеза.

Действие кислорода зависит от его концентрации, вида и физиологического состояния растения, других условий внешней среды. Обычная концентрация кислорода в атмосфере (21 %) не является оптимальной, а значительно превышает последнюю. Поэтому снижение парциального давления кислорода до 3 % практически не сказывается отрицательно на фотосинтезе, а в ряде случаев может даже активировать его. У растений различных видов снижение концентрации кислорода вызывает неодинаковый эффект. Так, по данным А.А Ничипоровича (1973), уменьшение концентрации кислорода от 21 до 3 % сказывалось благоприятно на растениях с активным фотодыханием (бобы). Для кукурузы, у которой фотодыхание почти отсутствует, не отмечено изменений в интенсивности фотосинтеза при переходе от 21 до 3 % 02.

Неоднозначное и часто противоположное влияние разных концентраций кислорода на фотосинтез обусловлено тем, что конечный эффект зависит от направленности действия нескольких механизмов. Известно, что присутствие кислорода необходимо дляпотоке кислород, конкурируя за электроны, также снижает эффективность работы ЭТЦ.

Другим достаточно хорошо изученным механизмом действия кислорода на фотосинтез является его влияние на ключевой фермент фотосинтеза -- РуБФ-карбоксилазу. Хорошо установлено ингибирующее действие высоких концентраций 02 на карбоксилазную функцию фермента и активирующее действие на его оксигеназную функцию (на скорость фотодыхания). В зависимости от концентрации С02 в среде ингибирующее действие высоких концентраций кислорода на фотосинтез может проявиться в большей или меньшей степени. Этот механизм лежит в основе явления, известного как «эффект Варбурга». В 1920 г. Варбург впервые обнаружил ингибирующее действие высоких концентраций кислорода на фотосинтез водоросли Chlorella. Эффект Варбурга отмечен для многих видов высших растений (O.Bjorkman, 1966), а также при исследовании фиксации С02 изолированными хлоропластами (R.Everson, M.Gibbs, 1967). Кислородное ингибирование фотосинтеза, по мнению многих исследователей, обусловлено двумя составляющими -- прямым ингибированием РуБФ-карбоксилазы за счет высоких концентраций 02 и активацией процесса фотодыхания. При повышении концентрации С02 в атмосфере степень кислородного ингибирования фотосинтеза существенно снижается.

Эффект Варбурга проявляется не у всех растений, у ряда растений аридных пустынь обнаружен «антиэффект Варбурга» -- подавление фотосинтеза низкими концентрациями кислорода (1 % О2) (А. Т. Мокроносов, 1981, 1983). Исследования показали, что положительное или отрицательное влияние 02 на фотосинтез зависит от соотношения в листе фототрофных и гетеротрофных тканей. У растений, где фототрофные ткани составляют большую часть объема листа, при низком содержании кислорода проявляется усиление фотосинтеза. У растений, содержащих большую долю гетеротрофных тканей, в этих условиях проявляется «антиэффект Варбурга» -- подавление фотосинтеза в бескислородной среде. Это противоположное действие низких концентраций кислорода обусловлено сложным взаимодействием фотосинтеза, фотодыхания и темнового дыхания в клетках листа разного типа (фототрофных, гетеротрофных).

У С3-растений при естественном соотношении 02 и С02 (21 и 0,03 %) доля фотодыхания составляет 20 -- 30% от скорости фотосинтетического карбоксилирования.

Влияние температуры на фотосинтез

Интегральный ответ фотосинтетического аппарата на изменения температуры, как правило, может быть представлен одновершинной кривой. Вершина кривой зависимости фотосинтеза от температуры находится в области оптимальных для фотосинтеза температур. У разных групп высших растений максимальная скорость фотосинтеза соответствует различным значениям температур, что определяется адаптацией фотосинтетического аппарата к различным пределам температур. Так, для большинства С3-растений умеренной зоны произрастания оптимальная для фотосинтеза температура находится в интервале 20--25 °С. У растений с С4-путем фотосинтеза и с САМ-фотосинтезом температурный оптимум приходится на 30--35°С. Для одного и того же вида растения температурный оптимум фотосинтеза непостоянен. Он зависит от возраста растения, адаптации к определенным условиям температур и может изменяться в течение сезона. К Нижний предел температур, при которых еще наблюдается фотосинтез, колеблется от -15 (сосна, ель) до +3 °С; у большинства высших растений фотосинтез прекращается приблизительно при 0о.

Анализ кривой зависимости фотосинтеза от температуры показывает быстрое возрастание скорости фотосинтеза при повышении температуры от минимальной к оптимальной (Q10 = 2). Дальнейшее повышение температуры сверхоптимальной ведет к быстрому ингибированию процесса. Верхний предел температуры для поглощения С02 для большинства С3-растений находится в области 40--50 °С, для С4-растений -- при 50 --60 °С.

Зависимость фотосинтеза от температуры изучена на разных уровнях организации фотосинтезирующих систем. Наиболее термозависимыми в растении являются реакции углеродных циклов. Снижение интенсивности фотосинтеза в области сверхоптимальных температур объясняют снижением тургора в листьях и закрыванием устьиц в этих условиях, что затрудняет поступление углекислого газа к центрам его фиксации. Кроме того, при повышении температуры снижается растворимость С02, увеличивается отношение растворимостей 02/С02 и степень кислородного ингибирования, изменяются кинетические константы карбоксилирующих ферментов. Реакции транспорта электронов и синтеза АТФ, будучи по своей природе ферментативными процессами, также весьма чувствительны к температуре. Первичные же реакции фотосинтеза, связанные с поглощением света, миграцией энергии возбуждения и разделением зарядов в реакционных центрах, практически не зависят от температуры.

Влияние водного режима на фотосинтез

Значение водного режима для фотосинтеза определяется в первую очередь действием воды на состояние устьиц листа: до тех пор пока устьица остаются оптимально открытыми, интенсивность фотосинтеза не изменяется под влиянием колебаний водного баланса. Частичное или полное закрывание устьиц, вызванное дефицитом воды в растении, приводит к нарушению газообмена и снижению поступления углекислого газа к карбоксилирующим системам листа. Вместе с тем водный дефицит вызывает снижение активности ферментов ВПФ цикла, обеспечивающих регенерацию рибулозобисфосфата, и значительное ингибирование фотофосфорилирования. В результате в условиях водного дефицита наблюдается ингибирование фотосинтетической активности растений. Длительное действие дефицита воды может привести к снижению общей фотосинтетической продуктивности растений, в том числе и за счет уменьшения величины листьев, а значительное обезвоживание растений может в итоге вызвать нарушение структуры хлоропластов и полную потерю их фотосинтетической активности.

Различные стадии фотосинтеза в разной степени чувствительны к снижению содержания воды в тканях листа. Наиболее лабильны и быстрее всего ингибируются в условиях водного дефицита реакции фотофосфорилирования (при водном потенциале 11 бар), что обусловлено нарушением ультраструктуры сопрягающих мембран и разобщением транспорта электронов и фосфорилирования (R.Keck, Р. Воуеr, 1974). Транспорт электронов в целом более устойчив к обезвоживанию, однако потеря воды приводит к изменению конформационной лабильности мембранных белков и снижению скорости электронного потока. При дегидратации системы образуется жесткая матрица, в которой подвижность компонентов ЭТЦ понижена.

Высокочувствительны к обезвоживанию ферментативные реакции углеродных циклов. При низком водном потенциале значительно снижается активность ключевых ферментов -- РуБФ-карбоксилазы и глицеральдегидфосфатдегидрогеназы (W. Stewart, Lee, 1972; O.Bjorkman et al., 1980).

Фотосинтез в условиях светового, водного и температурного стресса. Адаптивные системы фотосинтеза

Напряженность любого внешнего фактора, выходящая за пределы нормы реакции генотипа, создает условия экологического стресса. Наиболее часто факторами экологического стресса дляназемных растений являются высокие интенсивности света, водный дефицит и предельные температуры.

В ряде работ исследовано влияние экстремальных условий освещения на активность фотосинтетического аппарата. Световое насыщение фотосинтеза у большинства растений находится в пределах 100--300тыс. эрг/см2*с; дальнейшее повышение интенсивности света может приводить к снижению скорости фотосинтеза. У теневыносливых растений световое насыщение достигается при значительно более низком освещении.

Обычно растения хорошо адаптированы к световому режиму местообитания. Адаптация достигается путем изменения количества и соотношения пигментов, размеров антенного комплекса, количества карбоксилирующих ферментов и компонентов электрон-транспортной цепи (О. Bjorkman, 1981). Так, у теневыносливых растений обычно ниже световой компенсационный пункт, больше размеры ФСБ и выше (3:1) отношение ФС И/ФС I (D. Fork, R. Govindjee, 1980). При резком изменении светового режима у растений, адаптированных к иным условиям освещения, происходит ряд нарушений в работе фотосинтетического аппарата. В условиях чрезмерно высокого освещения (более 300--400 тыс. эрг/см2с) резко нарушается биосинтез пигментов, ингибируются фотосинтетические реакции и ростовые процессы, что приводит в итоге к снижению общей продуктивности растений. В опытах с использованием мощных лазерных источников света показано (Т. Е. Кренделева и др., 1972), что световые импульсы, поглощаемые ФС I, значительно изменяют ряд фотохимических реакций: снижаются содержание П700, скорость восстановления акцепторов I класса (НАДФ+, феррицианид), скорость фотофосфорилирования. Действие лазерного облучения значительно уменьшает величину отношения Р/2е- и амплитуду быстрой компоненты фотоиндуцированного изменения поглощения при 520 нм. Авторы считают, что отмеченные выше изменения являются следствием необратимого повреждения реакционных центров ФС I.

Механизмы адаптации к различным интенсивностям света включают процессы, контролирующие распределение, использование и диссипацию поглощенной световой энергии. Эти системы обеспечивают эффективное поглощение энергии при низких уровнях освещения и сброс избыточной энергии при высокой освещенности. К ним относится процесс обратимого фосфорилирования белков светособирающих комплексов II (состояния 1 и 2), который контролирует относительное поперечное сечение поглощающих систем ФСI и ФС II. Защитные механизмы против фотоингибирования при высокой интенсивности света включают активируемые светом электрон-транспортные и сопряженные с ними эффекты (формирование циклических потоков вокруг ФС I и ФС II, виолаксантиновый цикл и др.), а также процессы дезактивации возбужденных состояний хлорофилла (A.Horton et al., 1989; Н.Г.Бу-хов, 2004).

Влияние водного дефицита на фотосинтез проявляется, прежде всего, в нарушении газообмена. Недостаток водоснабжения приводит к закрыванию устьиц, связанному с изменением содержания абсцизовой кислоты (АБК). Водный дефицит уже на уровне 1 -- 5 бар служит сигналом к быстрому увеличению количества АБК в листьях. В зависимости от генотипической устойчивости вида к засухе содержание АБК при потере воды в листьях возрастает от 20 до 100--200 раз, вызывая закрывание устьиц.

Устьичный аппарат регулирует поступление С02 в воздушные полости листа. Изменение ширины устьичной щели в зависимости от водного потенциала у разных видов высших растений определяется степенью их засухоустойчивости. В условиях водного дефицита, при закрывании устьичных отверстий, подавляется процесс фотосинтеза, ближний и дальний транспорт ассимилятов и снижается общий уровень продуктивности растений. При слабом водном дефиците отмечена временная активация фотосинтеза, дальнейшее увеличение дефицита воды приводит к значительным нарушениям активности фотосинтетического аппарата.

У растений С3- и С4-групп соотношение между фотосинтетической продуктивностью и водным балансом значительно различается. Для С4-растений характерно более экономное использование воды. Коэффициент транспирации, выражающий отношение количества транспирированной воды (в литрах), при образовании 1 кг сухого вещества у С4-растений значительно ниже: 250-350 л воды на 1 кг сухого вещества, у С3-растений - 600 -800. Последнее связано с функционированием у С4-растений специальных адаптивных механизмов, к числу которых относятся:

1. Кинетические свойства карбоксилирующих ферментов -- высокое сродство ФЕП-карбоксил азы к С02, а также более высокая ее удельная активность (в расчете на белок). Активность ФЕП-карбокеилазы (25 мкмольмг-1 мин-1) в 5--10 раз больше активности РуБФ-карбоксилазы (2 мкмоль*мг-1*мин-1). Это позволяет С4-растениям более эффективно осуществлять процесс фотосинтеза при слабо открытых устьицах.

2. Характерные для С4-растений более низкие значения сопротивления мезофилла диффузии С02 и более высокое сопротивление устьиц диффузии водяных паров. Последнее связано с меньшим числом устьиц на единицу поверхности листа и с меньшей величиной устьичных щелей.|

Эти анатомо-биохимические особенности С4-растений обеспечивают более высокую эффективность использования воды по сравнению с С3-растениями.

При закрывании устьиц концентрация С02 в хлоропластах снижается до компенсационного пункта, что нарушает процессы ассимиляции С02 и работу углеродных циклов. У С3-растений в этих условиях вследствие процесса фотодыхания продолжается функционирование электрон-транспортной цепи и потребление образующихся НАДФН и АТФ. Это отчасти защищает фотосинтетический аппарат С3-растений от фотоингибирования, которое вызывается избытком энергии при ограниченном снабжении С02 и интенсивном освещении. У С4-растений механизм, предохраняющий фотосинтетический аппарат от фотоповреждения, связан с транспортом углерода из клеток мезофилла в клетки обкладки. Способность к рециклизации С02 является одним из путей адаптации фотосинтетического аппарата к нарушению газообмена при водном дефиците.

Однако несмотря на эти защитные механизмы, в условиях водного стресса при интенсивном освещении происходит ингибирование транспорта электронов, процессов ассимиляции С02, снижение квантового выхода фотосинтеза.

В условиях обезвоживания ткани листа, по-видимому, не происходит синхронного обезвоживания хлоропластов. Как показывают электронно-микроскопические исследования, хлоропласт сохраняет свою нативную структуру даже при значительном водном дефиците в листе. Полагают, что хлоропласт может поддерживать водный гомеостаз даже при значительной потере воды растением. Однако при значительном водном дефиците происходит набухание хлоропластов и нарушение их тилакоидной структуры. Увеличение содержания АБК вследствие водного дефицита вызывает синхронное системное ингибирование функций фотосинтеза и роста. Нарушается система репликации, транскрипции I и трансляции, контролируемая генами ядра и хлоропласта, происходит деструкция полисом, нарушается деление и структурно- функциональная дифференцировка клеток и хлоропластов, блокируются процессы роста и морфогенез. В этих условиях резко подавляются энергетические процессы. И.А.Тарчевский (1982) предполагает, что блок АБК связан с нарушением функции сопрягающих мембран и ингибированием фотофосфорилирования, результатом чего является дефицит АТФ.

В природных условиях водный стресс часто сопряжен с температурным стрессом. Специфика организации фотосинтетического аппарата, анатомические и биохимические особенности отдельных групп растений, их адаптация к температурным условиям окружающей среды определяют различные интервалы температур, благоприятные для протекания фотосинтеза. Неодинаковую зависимость от температурных условий проявляют С3- и С4-группы растений. Температурный оптимум фотосинтеза у С4 растений находится в области более высоких температур (35 --45 °С), чем у С3-растений (20 -- 30 °С). Это обусловлено спецификой организации биохимических систем ассимиляции С02 у С4-растений и рядом адаптивных механизмов. За счет работы С4-цикла концентрация С02 в хлоропластах поддерживается на достаточно высоком уровне, что предотвращает кислородное ингибирование фотосинтеза и обеспечивает его высокую интенсивность в широком интервале температур. Ферментативный аппарат хлоропластов С4 -растений более активен при повышении температуры до 35 °С, в то время как у С3-растений при этих температурах отмечено ингибирование фотосинтеза.

Наиболее термозависимыми являются реакции углеродных циклов, для которых характерны высокие значения Q10: 2,0--2,5. Активность НАДФ-малатдегидрогеназы (маликоэнзим) в клетках обкладки у С4-растений значительно возрастает при повышении температуры до 39 °С за счет увеличения сродства фермента к субстрату. При этом увеличиваются активность декарбоксилирования малата, скорость его транспорта из клеток мезофилла в клетки обкладки, активируются карбоксилирующие системы (ФЕП-карбоксилаза) вследствие уменьшения ингибирующего действия малата как конечного продукта. Благодаря этому общая интенсивность фотосинтеза при высоких температурах у С4-растений выше, чем у Сз-растений.

Высокой степенью термочувствительности отличаются также реакции электронного транспорта. Все фотофизические и фотохимические реакции, протекающие в реакционных центрах, мало зависят от температуры, однако процессы переноса электронов между функциональными комплексами являются термозависимыми. Фотосистема II и сопряженные с нею реакции фотоокисления воды легко повреждаются при экстремальных температурах; фотосистема I более термостабильна.

Весьма чувствительны к температуре процессы фотосинтетического фосфорилирования. Наиболее благоприятен интервал температур 15--25 °С. У большинства высших растений повышение температуры выше 30--35° резко ингибирует реакции фотофосфорилирования, фотопоглощения протонов и активность каталитических центров CF. По-видимому, ингибирующее действие высоких температур на систему сопряжения связано с нарушением характера конформационных изменений, с изменением конформационных свойств белка. Повышение температуры искажает также нормальное функционирование сопрягающих мембран.

Высокая термоустойчивость фотосинтетического аппарата ряда сортов и видов растений связана со спецификой липидного состава мембран, физико-химических свойств мембранных белков, кинетическими свойствами ферментов пластид и рядом структурно-функциональных особенностей тилакоидных мембран. Одним из наиболее существенных факторов, определяющих устойчивость растений в стрессовых условиях, являются стабильность их энергетических систем и общий уровень энергообмена. Фонд АТФ обеспечивает восстановление нарушенных физиологических состояний, новообразование клеточных структур и нормализацию всего конструктивного обмена (В.Е.Петров, Н.Л.Лосева, 1986).

Зависимость фотосинтеза от засухи и температуры на уровне целого растительного организма оказывается еще более сложной, так как засуха в первую очередь тормозит ростовые процессы (деление и дифференцировку клеток, морфогенез). Это приводит к уменьшению «запроса» на ассимиляты со стороны морфогенеза, т. е. нарушается акцепторная функция в донорно-акцепторной системе, что вызывает торможение фотосинтеза через метаболитное и гормональное ингибирование.

Создание сортов сельскохозяйственных растений, сочетающих высокую термоустойчивость, засухоустойчивость и высокий уровень зерновой продуктивности является одной из важнейших проблем современной физиологической генетики и селекции.

В последние годы большое значение уделяется изучению действия на фотосинтез ряда техногенных экологических факторов, таких, как радиационное загрязнение, физические поля (электромагнитный «смог»), экология мегаполисов и др. В связи с этим возникает необходимость на новой молекулярно-генетической и физической основе расшифровать последовательность всех этапов адаптации основных реакций фотосинтеза ко всем видам природных и техногенных факторов.

Факторы, влияющие на эффективность фотосинтеза

Интенсивность, или скорость процесса фотосинтеза в растении, зависит от ряда внутренних и внешних факторов. Из внутренних факторов наибольшее значение имеют структура листа и содержание в нем хлорофилла, накопление продуктов фотосинтеза в хлоропластах, влияние ферментов, а также наличие малых количеств необходимых неорганических веществ. Внешние факторы - это параметры излучения, попадающего на листья, температура окружающей среды, концентрация углекислоты и кислорода в атмосфере вблизи растения. Рассмотрим подробнее некоторые из этих факторов.

Влияние физических и химических факторов на процесс фотосинтеза

При исследовании воздействия СВЧ излучения на пшеницу такими «косвенными» признаками являлись скорость прорастания, всхожесть, интенсивность (скорость) развития ростков , которые являются следствием неизученных в полной мере процессов, протекающих в биосистеме при СВЧ воздействии. Даже в тех случаях, когда удается моделировать изменения на клеточном уровне, корреляционные исследования проводятся после облучения и выращивания растений. Таким образом, в большинстве случаев, ответная реакция биообъекта на воздействие оценивается по «отдаленным» эффектам. Одним из таких «отдаленных» эффектов для зеленых растений может являться и интенсивность фотосинтетических реакций.

Влияние интенсивности света на фотосинтетическую активность показано на рис. 2. При низких интенсивностях света скорость фотосинтеза, измеренная по выделению кислорода, возрастает прямо пропорционально увеличению интенсивности света. Соответствующий участок на графике, обозначенный буквой X, называют начальным участком, или областью, в которой скорость фотосинтеза лимитируется светом. По мере дальнейшего увеличения интенсивности света нарастание фотосинтеза становится все менее и менее выраженным, и, наконец, когда освещенность достигает определенного уровня (около 10 000 лк), дальнейшее увеличение интенсивности света уже не влияет на скорость фотосинтеза. На рисунке это соответствует горизонтальным участкам кривых, или плато. Область плато, обозначенная буквой Y, называется областью светового насыщения. Если нужно увеличить скорость фотосинтеза в этой области, следует изменять не интенсивность света, а какие-либо другие факторы. Интенсивность солнечного света, попадающего в ясный летний день на поверхность земли, во многих местах нашей планеты составляет примерно 105 лк, или около 1000 Вт/м2.

Кроме того важную роль для фотосинтеза играет и температура (второй фактор). В случае низких интенсивностей света скорость фотосинтеза при 15°С и 25°С одинакова. Реакции, протекающие при таких интенсивностях света, которые соответствуют области лимитирования светом, подобно истинным фотохимическим реакциям, не чувствительны к температуре. Однако при более высоких интенсивностях скорость фотосинтеза при 25°С гораздо выше, чем при 15°С. Большинство растений в умеренном климате хорошо функционируют в интервале температур от 10°С до 35°С, наиболее благоприятные условия-- это температура около 25°С.

Третьим фактором, влияющим на скорость фотосинтеза, является изменение частоты светового кванта (цвета волны). Лучистая энергия излучается и распространяется в виде дискретных единиц - квантов, или фотонов. Квант света обладает энергией E = h·н= h·c /л где h - постоянная Планка. Из этой формулы ясно, что значение энергии квантов для разных участков спектра различна: чем короче длина волны, тем она больше.

Энергия квантов, соответствующих крайним участкам видимого диапазона -- фиолетовому (около 400 нм) и дальнему красному различается всего лишь в два раза, и все фотоны в этом диапазоне в принципе способны осуществить запуск фотосинтеза, хотя, как мы увидим далее, пигменты листа избирательно поглощают свет определенных длин волн.

Сравнительная характеристика разных участков спектра приведена в таблице 1.

Таблица 1.

В области лимитирования светом скорость фотосинтеза не изменяется при уменьшении концентрации СО2 в окружающей среде (четвертый фактор). Но при более высоких интенсивностях освещения, лежащих за пределами области лимитирования светом, фотосинтез существенно возрастает при увеличении концентрации СО2. У некоторых зерновых культур фотосинтез линейно возрастал при увеличении концентрации СО2 до 0,5% (эти измерения проводили в кратковременных опытах, поскольку длительное воздействие столь высоких концентраций СО2 повреждает листья). Очень высоких значений скорость фотосинтеза достигает при содержании СО2 около 0,1%. Средняя концентрация углекислоты в атмосфере составляет от 0,03 до 0,04%. Поэтому в обычных условиях растениям не хватает СО2 для того, чтобы с максимальной эффективностью использовать попадающий на них солнечный свет.

Влияние внутренних факторов

Так же на скорость фотосинтеза влияют внутренние факторы, такие как количество хлорофилла в растении, площадь зеленной поверхности растения и пр. В нашей работе мы изучаем влияние внешних факторов.

«Скорость распространения звука» - Как отражается на здоровье человека систематическое действие громких звуков? Что называется чистым тоном? Вывод: Наличие среды- необходимое условие распространения звука. Скорость звука. Назовите единицы громкости и уровня громкости звука. Опытное подтверждение. Распространение звука. Скорость звука в воздухе » 330 м/с.

«Скорость чтения» - В 6 классе – падает более сильно. Хоровое чтение. «Речевые зарядки» (На горке у речки уродилась гречка). При чтении будь внимателен к каждому слову. Выбирать Вам, а не ребёнку! «5» - 150 «4» - 120 «3» - 90. Расширение поля зрения. В 3 классе – 60 – 70% хорошистов. Экономический аспект. Старайся понять, о чём читаешь.

«Скорость реакции» - Лабораторная работа. Отчёт групп. Влияние концентрации реагирующих веществ (для гомогенных систем) 3ряд. Что такое энергия активации? Гомогенные системы: Газ + газ Жидкость + жидкость. Катализаторы и катализ. Почему не все столкновения между частицами приводят к осуществлению реакций? Определите тип реагирующих систем.

«Космическая скорость» - Окружность. Эллипс. Приветствие на 58 языках Земли. Гипербола. Звуки: голоса птиц и зверей, шум моря, дождя, ветра. Третья космическая скорость. Траектория движения тел движущихся с малой скоростью. Первый полет человека в космос. Запущен в 1977году. Первая космическая скорость. Изображение мужчины и женщины.

«Фотосинтез и дыхание растений» - Опыт доказывает испарение воды листьями. Какой ученый внес большой вклад в изучение процессов фотосинтеза? Какие приспособления выработали растения, обитающие в условиях недостатка влаги? Для улучшения дыхания корней проводят рыхление почвы. Что используют для дыхания все живые организмы? Чем питаются все живые организмы?

«Скорость звука» - Частое посещение дискотек и чрезмерное увлечение аудио плеерами. Формулы нахождения скорости звука. Высота звука Тембр звука Громкость звука. В вакууме звука нет! В каком диапазоне человеческое ухо способно воспринимать упругие волны? Животные в качестве звука воспринимают волны иных частот. Новый материал.

 
Статьи по теме:
Проект по изучению времени в подготовительной к школе группе детского сада Картотека тем проектов подготовительная группа
Клягина Дарья ПЛАН ПРОВЕДЕНИЯ ПРОЕКТА «ИСТОРИИ, РАССКАЗАННЫЕ ПОСУДОЙ» в подготовительной группе Проект подготовили и провели: Волк Т. И., Клягина Д. Б., Корнева Н. Ю., Суворова Е. В. Цель проекта: формирование у детей познавательного интереса к окружа
Чистые инвестиции в иностранное подразделение
МСФО (IAS) 21Международный стандарт финансовой отчетности (IAS) 21 Влияние изменений обменных курсов валют Цель 1 Предприятие может осуществлять валютные операции двумя способами: заключать сделки, деноминированные в иностранной валюте, или владеть иност
Где посмотреть какие налоговые вычеты были мною получены
Практика показывает, что наибольшее число вопросов вызывает Лист Д1 в 3-НДФЛ за 2016 год, поскольку он позволяет вернуть часть расходов, потраченных на новострой или покупку недвижимости. Поэтому нашу консультацию мы решили всецело посвятить его заполнен
Оформление налогового вычета при покупке квартиры в ипотеку
Согласно Российскому законодательству официально трудоустроенный гражданин РФ, в том числе достигший пенсионного возраста, имеет право на вычеты с подоходного налога в связи с крупными тратами на жизненно необходимые вещи, такие как приобретение жилья,