Уравнения с логарифмами. Логарифмические уравнения

Заключительные видео из длинной серии уроков про решение логарифмических уравнений. В этот раз мы будем работать в первую очередь с ОДЗ логарифма — именно из-за неправильного учета (или вообще игнорирования) области определения возникает большинство ошибок при решении подобных задач.

В этом коротком видеоуроке мы разберем применение формул сложения и вычитания логарифмов, а также разберемся с дробно-рациональными уравнениями, с которыми у многих учеников также возникают проблемы.

О чем пойдет речь? Главная формула, с которой я хотел бы разобраться, выглядит так:

log a (f g ) = log a f + log a g

Это стандартный переход от произведения к сумме логарифмов и обратно. Вы наверняка знаете эту формулу с самого начала изучения логарифмов. Однако тут есть одна заминка.

До тех пор, пока в виде переменных a , f и g выступают обычные числа, никаких проблем не возникает. Данная формула работает прекрасно.

Однако, как только вместоf и g появляются функции, возникает проблема расширения или сужения области определения в зависимости от того, в какую сторону преобразовывать. Судите сами: в логарифме, записанном слева, область определения следующая:

fg > 0

А вот в сумме, записанной справа, область определения уже несколько иная:

f > 0

g > 0

Данный набор требований является более жестким, чем исходный. В первом случае нас устроит вариант f < 0, g < 0 (ведь их произведение положительное, поэтому неравенство fg > 0 выполняется).

Итак, при переходе от левой конструкции к правой возникает сужение области определения. Если же сначала у нас была сумма, а мы переписываем ее в виде произведения, то происходит расширение области определения.

Другими словами, в первом случае мы могли потерять корни, а во втором — получить лишние. Это необходимо учитывать при решении реальных логарифмических уравнений.

Итак, первая задача:

[Подпись к рисунку]

Слева мы видим сумму логарифмов по одному и тому же основанию. Следовательно, эти логарифмы можно сложить:

[Подпись к рисунку]

Как видите, справа мы заменил ноль по формуле:

a = log b b a

Давайте еще немного преобразуем наше уравнение:

log 4 (x − 5) 2 = log 4 1

Перед нами каноническая форма логарифмического уравнения, мы можем зачеркнуть знак log и приравнять аргументы:

(x − 5) 2 = 1

|x − 5| = 1

Обратите внимание: откуда взялся модуль? Напомню, что корень из точного квадрата равен именно модулю:

[Подпись к рисунку]

Затем решаем классическое уравнение с модулем:

|f | = g (g > 0) ⇒f = ±g

x − 5 = ±1 ⇒x 1 = 5 − 1 = 4; x 2 = 5 + 1 = 6

Вот два кандидат на ответ. Являются ли они решением исходного логарифмического уравнения? Нет, ни в коем случае!

Оставить все просто так и записать ответ мы не имеем права. Взгляните на тот шаг, когда мы заменяем сумму логарифмов одним логарифмом от произведения аргументов. Проблема в том, что в исходных выражениях у нас стоят функции. Следовательно, следует потребовать:

х(х − 5) > 0; (х − 5)/х > 0.

Когда же мы преобразовали произведение, получив точный квадрат, требования изменились:

(x − 5) 2 > 0

Когда это требование выполняется? Да практически всегда! За исключением того случая, когда х − 5 = 0. Т.е. неравенство сведется к одной выколотой точке:

х − 5 ≠ 0 ⇒ х ≠ 5

Как видим, произошло расширение области определения, о чем мы и говорили в самом начале урока. Следовательно, могут возникнуть и лишние корни.

Как же не допустить возникновения этих лишних корней? Очень просто: смотрим на наши полученные корни и сравниваем их с областью определения исходного уравнения. Давайте посчитаем:

х (х − 5) > 0

Решать будем с помощью метода интервалов:

х (х − 5) = 0 ⇒ х = 0; х = 5

Отмечаем полученные числа на прямой. Все точки выколотые, потому что неравенство строгое. Берем любое число, больше 5 и подставляем:

[Подпись к рисунку]

На интересуют промежутки (−∞; 0) ∪ (5; ∞). Если мы отметим наши корни на отрезке, то увидим, что х = 4 нас не устраивает, потому что этот корень лежит за пределами области определения исходного логарифмического уравнения.

Возвращаемся к совокупности, вычеркиваем корень х = 4 и записываем ответ: х = 6. Это уже окончательный ответ к исходному логарифмическому уравнению. Все, задача решена.

Переходим ко второму логарифмическому уравнению:

[Подпись к рисунку]

Решаем его. Заметим, что первое слагаемое представляет собой дробь, а второе — ту же самую дробь, но перевернутую. Не пугайтесь выражения lgx — это просто десятичный логарифм, мы можем записать:

lgx = log 10 x

Поскольку перед нами две перевернутые дроби, предлагаю ввести новую переменную:

[Подпись к рисунку]

Следовательно, наше уравнение может быть переписано следующим образом:

t + 1/t = 2;

t + 1/t − 2 = 0;

(t 2 − 2t + 1)/t = 0;

(t − 1) 2 /t = 0.

Как видим, в числителе дроби стоит точный квадрат. Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля:

(t − 1) 2 = 0; t ≠ 0

Решаем первое уравнение:

t − 1 = 0;

t = 1.

Это значение удовлетворяет второму требованию. Следовательно, можно утверждать, что мы полностью решили наше уравнение, но только относительно переменной t . А теперь вспоминаем, что такое t :

[Подпись к рисунку]

Получили пропорцию:

lgx = 2 lgx + 1

2 lgx − lgx = −1

lgx = −1

Приводим это уравнение к канонической форме:

lgx = lg 10 −1

x = 10 −1 = 0,1

В итоге мы получили единственный корень, который, по идее, является решением исходного уравнения. Однако давайте все-таки подстрахуемся и выпишем область определения исходного уравнения:

[Подпись к рисунку]

Следовательно, наш корень удовлетворяет всем требованиям. Мы нашли решение исходного логарифмического уравнения. Ответ: x = 0,1. Задача решена.

Ключевой момент в сегодняшнем уроке один: при использовании формулы перехода от произведения к сумме и обратно обязательно учитывайте, что область определения может сужаться либо расширяться в зависимости от того, в какую сторону выполняется переход.

Как понять, что происходит: сужение или расширение? Очень просто. Если раньше функции были вместе, а теперь стали по отдельности, то произошло сужение области определения (потому что требований стало больше). Если же сначала функции стояли отдельно, а теперь — вместе, то происходит расширение области определения (на произведение накладывается меньше требований, чем на отдельные множители).

С учетом данного замечания хотел бы отметить, что второе логарифмическое уравнение вообще не требует данных преобразований, т. е. мы нигде не складываем и не перемножаем аргументы. Однако здесь я хотел бы обратить ваше внимание на другой замечательный прием, который позволяет существенно упростить решение. Речь идет о замене переменной.

Однако помните, что никакие замены не освобождает нас от области определения. Именно поэтому после того были найдены все корни, мы не поленились и вернулись к исходному уравнению, чтобы найти его ОДЗ.

Часто при замене переменной возникает обидная ошибка, когда ученики находят значение t и думают, что на этом решение закончено. Нет, ни в коем случае!

Когда вы нашли значение t , необходимо вернуться к исходному уравнению и посмотреть, что именно мы обозначали этой буквой. В результате нам предстоит решить еще одно уравнение, которое, впрочем, будет значительно проще исходного.

Именно в этом состоит смысл введения новой переменной. Мы разбиваем исходное уравнение на два промежуточных, каждое из которых решается существенно проще.

Как решать «вложенные» логарифмические уравнения

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого логарифма. Оба уравнения мы будем решать с помощью канонической формы.

Сегодня мы продолжаем изучать логарифмические уравнения и разберем конструкции, когда один логарифм стоит под знаком другого. Оба уравнения мы будем решать с помощью канонической формы. Напомню, если у нас есть простейшее логарифмическое уравнение вида log a f (x ) = b , то для решения такого уравнения мы выполняем следующие шаги. В первую очередь, нам нужно заменить число b :

b = log a a b

Заметьте: a b — это аргумент. Точно так же в исходном уравнении аргументом является функция f (x ). Затем мы переписываем уравнение и получаем вот такую конструкцию:

log a f (x ) = log a a b

Уже затем мы можем выполнить третий шаг — избавится от знака логарифма и просто записать:

f (x ) = a b

В результате мы получим новое уравнение. При этом никаких ограничений на функцию f (x ) не накладывается. Например, на ее месте также может стоять логарифмическая функция. И тогда мы вновь получим логарифмическое уравнение, которое снова сведем к простейшему и решим через каноническую форму.

Впрочем, хватит лирики. Давайте решим настоящую задачу. Итак, задача № 1:

log 2 (1 + 3 log 2 x ) = 2

Как видим, перед нами простейшее логарифмическое уравнение. В роли f (x ) выступает конструкция 1 + 3 log 2 x , а в роли числа b выступает число 2 (в роли a также выступает двойка). Давайте перепишем эту двойку следующим образом:

Важно понимать, что первые две двойки пришли к нам из основания логарифма, т. е. если бы в исходном уравнении стояла 5, то мы бы получили, что 2 = log 5 5 2 . В общем, основание зависит исключительно от логарифма, который изначально дан в задаче. И в нашем случае это число 2.

Итак, переписываем наше логарифмическое уравнение с учетом того, что двойка, которая стоит справа, на самом деле тоже является логарифмом. Получим:

log 2 (1 + 3 log 2 x ) = log 2 4

Переходим к последнему шагу нашей схемы — избавляемся от канонической формы. Можно сказать, просто зачеркиваем знаки log. Однако с точки зрения математики «зачеркнуть log» невозможно — правильнее сказать, что мы просто просто приравниваем аргументы:

1 + 3 log 2 x = 4

Отсюда легко находится 3 log 2 x :

3 log 2 x = 3

log 2 x = 1

Мы вновь получили простейшее логарифмическое уравнение, давайте снова приведем его к канонической форме. Для этого нам необходимо провести следующие изменения:

1 = log 2 2 1 = log 2 2

Почему в основании именно двойка? Потому что в нашем каноническом уравнении слева стоит логарифм именно по основанию 2. Переписываем задачу с учетом этого факта:

log 2 x = log 2 2

Снова избавляемся от знака логарифма, т. е. просто приравниваем аргументы. Мы вправе это сделать, потому что основания одинаковые, и больше никаких дополнительных действий ни справа, ни слева не выполнялось:

Вот и все! Задача решена. Мы нашли решение логарифмического уравнения.

Обратите внимание! Хотя переменная х и стоит в аргументе (т. е. возникают требования к области определения), мы никаких дополнительных требований предъявлять не будем.

Как я уже говорил выше, данная проверка является избыточной, если переменная встречается лишь в одном аргументе лишь одного логарифма. В нашем случае х действительно стоит лишь в аргументе и лишь под одним знаком log. Следовательно, никаких дополнительных проверок выполнять не требуется.

Тем не менее, если вы не доверяете данному методу, то легко можете убедиться, что х = 2 действительно является корнем. Достаточно подставить это число в исходное уравнение.

Давайте перейдем ко второму уравнению, оно чуть интересней:

log 2 (log 1/2 (2x − 1) + log 2 4) = 1

Если обозначить выражение внутри большого логарифма функцией f (x ), получим простейшее логарифмическое уравнение, с которого мы начинали сегодняшний видеоурок. Следовательно, можно применить каноническую форму, для чего придется представить единицу в виде log 2 2 1 = log 2 2.

Переписываем наше большое уравнение:

log 2 (log 1/2 (2x − 1) + log 2 4) = log 2 2

Изваляемся от знака логарифма, приравнивая аргументы. Мы вправе это сделать, потому что и слева, и справа основания одинаковые. Кроме того, заметим, что log 2 4 = 2:

log 1/2 (2x − 1) + 2 = 2

log 1/2 (2x − 1) = 0

Перед нами снова простейшее логарифмическое уравнение вида log a f (x ) = b . Переходим к канонической форме, т. е. представляем ноль в виде log 1/2 (1/2)0 = log 1/2 1.

Переписываем наше уравнение и избавляемся от знака log, приравнивая аргументы:

log 1/2 (2x − 1) = log 1/2 1

2x − 1 = 1

Опять же мы сразу получили ответ. Никаких дополнительных проверок не требуется, потому что в исходном уравнении лишь один логарифм содержит функцию в аргументе.

Следовательно, никаких дополнительных проверок выполнять не требуется. Мы можем смело утверждать, что х = 1 является единственным корнем данного уравнения.

А вот если бы во втором логарифме вместо четверки стояла бы какая-то функция от х (либо 2х стояло бы не в аргументе, а в основании) — вот тогда потребовалось бы проверять область определения. Иначе велик шанс нарваться на лишние корни.

Откуда возникают такие лишние корни? Этот момент нужно очень четко понимать. Взгляните на исходные уравнения: везде функция х стоит под знаком логарифма. Следовательно, поскольку мы записали log 2 x , то автоматически выставляем требование х > 0. Иначе данная запись просто не имеет смысла.

Однако по мере решения логарифмического уравнения мы избавляемся от всех знаков log и получаем простенькие конструкции. Здесь уже никаких ограничений не выставляется, потому что линейная функция определена при любом значении х.

Именно эта проблема, когда итоговая функция определена везде и всегда, а исходная — отнюдь не везде и не всегда, и является причиной, по которой в решении логарифмических уравнениях очень часто возникают лишние корни.

Но повторю еще раз: такое происходить лишь в ситуации, когда функция стоит либо в нескольких логарифмах, либо в основании одного из них. В тех задачах, которые мы рассматриваем сегодня, проблем с расширением области определения в принципе не существует.

Случаи разного основания

Этот урок посвящен уже более сложным конструкциям. Логарифмы в сегодняшних уравнениях уже не будут решаться «напролом» — сначала потребуется выполнить некоторые преобразования.

Начинаем решение логарифмических уравнений с совершенно разными основаниями, которые не являются точными степенями друг друга. Пусть вас не пугают подобные задачи — решаются они ничуть не сложнее, чем самые простые конструкции, которые мы разбирали выше.

Но прежде, чем переходить непосредственно к задачам, напомню о формуле решения простейших логарифмических уравнений с помощью канонической формы. Рассмотрим задачу вот такого вида:

log a f (x ) = b

Важно, что функция f (x ) является именно функцией, а в роли чисел а и b должны выступать именно числа (без всяких переменных x ). Разумеется, буквально через минуту мы рассмотрим и такие случаи, когда вместо переменных а и b стоят функции, но сейчас не об этом.

Как мы помним, число b нужно заменить логарифмом по тому же самому основанию а, которое стоит слева. Это делается очень просто:

b = log a a b

Разумеется, под словом «любое число b » и «любое число а» подразумеваются такие значения, которые удовлетворяют области определения. В частности, в данном уравнении речь идет лишь основание a > 0 и a ≠ 1.

Однако данное требование выполняется автоматически, потому что в исходной задаче уже присутствует логарифм по основанию а — оно заведомо будет больше 0 и не равно 1. Поэтому продолжаем решение логарифмического уравнения:

log a f (x ) = log a a b

Подобная запись называется канонической формой. Ее удобство состоит в том, что мы сразу можем избавиться от знака log, приравняв аргументы:

f (x ) = a b

Именно этот прием мы сейчас будем использовать для решения логарифмических уравнений с переменным основанием. Итак, поехали!

log 2 (x 2 + 4x + 11) = log 0,5 0,125

Что дальше? Кто-то сейчас скажет, что нужно вычислить правый логарифм, либо свести их к одному основанию, либо что-то еще. И действительно, сейчас нужно привести оба основания к одному виду — либо 2, либо 0,5. Но давайте раз и навсегда усвоим следующее правило:

Если в логарифмическом уравнении присутствуют десятичные дроби, обязательно переведите эти дроби из десятичной записи в обычную. Такое преобразование может существенно упростить решение.

Подобный переход нужно выполнять сразу, еще до выполнения каких-либо действий и преобразований. Давайте посмотрим:

log 2 (x 2 + 4x + 11) = log 1 /2 1/8

Что нам дает такая запись? Мы можем 1/2 и 1/8 представить как степень с отрицательным показателем:


[Подпись к рисунку]

Перед нами каноническая форма. Приравниваем аргументы и получаем классическое квадратное уравнение:

x 2 + 4x + 11 = 8

x 2 + 4x + 3 = 0

Перед нами приведенное квадратное уравнение, которое легко решается с помощью формул Виета. Подобные выкладки в старших классах вы должны видеть буквально устно:

(х + 3)(х + 1) = 0

x 1 = −3

x 2 = −1

Вот и все! Исходное логарифмическое уравнение решено. Мы получили два корня.

Напомню, что определять область определения в данном случае не требуется, поскольку функция с переменной х присутствует лишь в одном аргументе. Поэтому область определения выполняется автоматически.

Итак, первое уравнение решено. Переходим ко второму:

log 0,5 (5x 2 + 9x + 2) = log 3 1/9

log 1/2 (5x 2 + 9x + 2) = log 3 9 −1

А теперь заметим, что аргумент первого логарифма тоже можно записать в виде степени с отрицательным показателем: 1/2 = 2 −1 . Затем можно вынести степени с обеих сторон уравнения и разделить все на −1:

[Подпись к рисунку]

И вот сейчас мы выполнили очень важный шаг в решении логарифмического уравнения. Возможно, кто-то что-то не заметил, поэтому давайте я поясню.

Взгляните на наше уравнение: и слева, и справа стоит знак log, но слева стоит логарифм по основанию 2, а справа стоит логарифм по основанию 3. Тройка не является целой степенью двойки и, наоборот: нельзя записать, что 2 — это 3 в целой степени.

Следовательно, это логарифмы с разными основаниями, которые не сводятся друг к другу простым вынесением степеней. Единственный путь решения таких задач — избавиться от одного из этих логарифмов. В данном случае, поскольку мы пока рассматриваем довольно простые задачи, логарифм справа просто сосчитался, и мы получили простейшее уравнение — именно такое, о котором мы говорили в самом начале сегодняшнего урока.

Давайте представим число 2, которое стоит справа в виде log 2 2 2 = log 2 4. А затем избавимся от знака логарифма, после чего у нас остается просто квадратное уравнение:

log 2 (5x 2 + 9x + 2) = log 2 4

5x 2 + 9x + 2 = 4

5x 2 + 9x − 2 = 0

Перед нами обычное квадратное уравнение, однако оно не является приведенным, потому что коэффициент при x 2 отличен от единицы. Следовательно, решать мы его будем с помощью дискриминанта:

D = 81 − 4 5 (−2) = 81 + 40 = 121

x 1 = (−9 + 11)/10 = 2/10 = 1/5

x 2 = (−9 − 11)/10 = −2

Вот и все! Мы нашли оба корня, а значит, получили решение исходного логарифмического уравнения. Ведь в исходной задачи функция с переменной х присутствует лишь в одном аргументе. Следовательно, никаких дополнительных проверок на область определения не требуется — оба корня, которые мы нашли, заведомо отвечают всем возможным ограничениям.

На этом можно было бы закончить сегодняшний видеоурок, но в заключении я хотел бы сказать еще раз: обязательно переводите все десятичные дроби в обычные при решении логарифмических уравнений. В большинстве случаев это существенно упрощает их решение.

Редко, очень редко попадаются задачи, в которых избавление от десятичных дробей лишь усложняет выкладки. Однако в таких уравнениях, как правило, изначально видно, что избавляться от десятичных дробей не надо.

В большинстве остальных случаев (особенно если вы только начинаете тренироваться в решении логарифмических уравнений) смело избавляйтесь от десятичных дробей и переводите их в обычные. Потому что практика показывает, что таким образом вы значительно упростите последующее решение и выкладки.

Тонкости и хитрости решения

Сегодня мы переходим к более сложным задачам и будем решать логарифмическое уравнение, в основании которого стоит не число, а функция.

И пусть даже эта функция линейна — в схему решения придется внести небольшие изменения, смысл которых сводится к дополнительным требованиям, накладываемым на область определения логарифма.

Сложные задачи

Этот урок будет довольно длинным. В нем мы разберем два довольно серьезных логарифмических уравнения, при решении которых многие ученики допускают ошибки. За свою практику работы репетитором по математике я постоянно сталкивался с двумя видами ошибок:

  1. Возникновение лишних корней из-за расширения области определения логарифмов. Чтобы не допускать такие обидные ошибки, просто внимательно следите за каждым преобразованием;
  2. Потери корней из-за того, что ученик забыл рассмотреть некоторые «тонкие» случаи — именно на таких ситуациях мы сегодня и сосредоточимся.

Это последний урок, посвященный логарифмическим уравнениям. Он будет длинным, мы разберем сложные логарифмические уравнения. Устраивайтесь поудобней, заварите себе чай, и мы начинаем.

Первое уравнение выглядит вполне стандартно:

log x + 1 (x − 0,5) = log x − 0,5 (x + 1)

Сразу заметим, что оба логарифма являются перевернутыми копиями друг друга. Вспоминаем замечательную формулу:

log a b = 1/log b a

Однако у этой формулы есть ряд ограничений, которые возникают в том случае, если вместо чисел а и b стоят функции от переменной х:

b > 0

1 ≠ a > 0

Эти требования накладываются на основание логарифма. С другой стороны, в дроби от нас требуется 1 ≠ a > 0, поскольку не только переменная a стоит в аргументе логарифма (следовательно, a > 0), но и сам логарифм находится в знаменателе дроби. Но log b 1 = 0, а знаменатель должен быть отличным от нуля, поэтому a ≠ 1.

Итак, ограничения на переменную a сохраняется. Но что происходит с переменной b ? С одной стороны, из основания следует b > 0, с другой — переменная b ≠ 1, потому что основание логарифма должно быть отлично от 1. Итого из правой части формулы следует, что 1 ≠ b > 0.

Но вот беда: второе требование (b ≠ 1) отсутствует в первом неравенстве, посвященном левому логарифму. Другими словами, при выполнении данного преобразования мы должны отдельно проверить , что аргумент b отличен от единицы!

Вот давайте и проверим. Применим нашу формулу:

[Подпись к рисунку]

1 ≠ х − 0,5 > 0; 1 ≠ х + 1 > 0

Вот мы и получили, что уже из исходного логарифмического уравнения следует, что и а, и b должны быть больше 0 и не равны 1. Значит, мы спокойно можем переворачивать логарифмическое уравнение:

Предлагаю ввести новую переменную:

log x + 1 (x − 0,5) = t

В этом случае наша конструкция перепишется следующим образом:

(t 2 − 1)/t = 0

Заметим, что в числителе у нас стоит разность квадратов. Раскрываем разность квадратов по формуле сокращенного умножения:

(t − 1)(t + 1)/t = 0

Дробь равна нулю, когда ее числитель равен нулю, а знаменатель отличен от нуля. Но в числителе стоит произведение, поэтому приравниваем к нулю каждый множитель:

t 1 = 1;

t 2 = −1;

t ≠ 0.

Как видим, оба значения переменной t нас устраивают. Однако на этом решение не заканчивается, ведь нам требуется найти не t , а значение x . Возвращаемся к логарифму и получаем:

log x + 1 (x − 0,5) = 1;

log x + 1 (x − 0,5) = −1.

Давайте приведем каждое из этих уравнений к канонической форме:

log x + 1 (x − 0,5) = log x + 1 (x + 1) 1

log x + 1 (x − 0,5) = log x + 1 (x + 1) −1

Избавляемся от знака логарифма в первом случае и приравниваем аргументы:

х − 0,5 = х + 1;

х − х = 1 + 0,5;

Такое уравнение не имеет корней, следовательно, первое логарифмическое уравнение также не имеет корней. А вот со вторым уравнением все намного интересней:

(х − 0,5)/1 = 1/(х + 1)

Решаем пропорцию — получим:

(х − 0,5)(х + 1) = 1

Напоминаю, что при решении логарифмических уравнений гораздо удобней приводить все десятичные дроби обычные, поэтому давайте перепишем наше уравнение следующим образом:

(х − 1/2)(х + 1) = 1;

x 2 + x − 1/2x − 1/2 − 1 = 0;

x 2 + 1/2x − 3/2 = 0.

Перед нами приведенное квадратное уравнение, оно легко решается по формулам Виета:

(х + 3/2) (х − 1) = 0;

x 1 = −1,5;

x 2 = 1.

Получили два корня — они являются кандидатами на решение исходного логарифмического уравнения. Для того чтобы понять, какие корни действительно пойдут в ответ, давайте вернемся к исходной задаче. Сейчас мы проверим каждый из наших корней на предмет соответствия области определения:

1,5 ≠ х > 0,5; 0 ≠ х > −1.

Эти требования равносильны двойному неравенству:

1 ≠ х > 0,5

Отсюда сразу видим, что корень х = −1,5 нас не устраивает, а вот х = 1 вполне устраивает. Поэтому х = 1 — окончательное решение логарифмического уравнения.

Переходим ко второй задаче:

log x 25 + log 125 x 5 = log 25 x 625

На первый взгляд может показаться, что у всех логарифмов разные основания и разные аргументы. Что делать с такими конструкциями? В первую очередь заметим, что числа 25, 5 и 625 — это степени 5:

25 = 5 2 ; 625 = 5 4

А теперь воспользуемся замечательным свойством логарифма. Дело в том, что можно выносить степени из аргумента в виде множителей:

log a b n = n ∙ log a b

На данное преобразование также накладываются ограничения в том случае, когда на месте b стоит функция. Но у нас b — это просто число, и никаких дополнительных ограничений не возникает. Перепишем наше уравнение:

2 ∙ log x 5 + log 125 x 5 = 4 ∙ log 25 x 5

Получили уравнение с тремя слагаемыми, содержащими знак log. Причем аргументы всех трех логарифмов равны.

Самое время перевернуть логарифмы, чтобы привести их к одному основанию — 5. Поскольку в роли переменной b выступает константа, никаких изменений области определения не возникает. Просто переписываем:


[Подпись к рисунку]

Как и предполагалось, в знаменателе «вылезли» одни и те же логарифмы. Предлагаю выполнить замену переменной:

log 5 x = t

В этом случае наше уравнение будет переписано следующим образом:

Выпишем числитель и раскроем скобки:

2 (t + 3) (t + 2) + t (t + 2) − 4t (t + 3) = 2 (t 2 + 5t + 6) + t 2 + 2t − 4t 2 − 12t = 2t 2 + 10t + 12 + t 2 + 2t − 4t 2 − 12t = −t 2 + 12

Возвращаемся к нашей дроби. Числитель должен быть равен нулю:

[Подпись к рисунку]

А знаменатель — отличен от нуля:

t ≠ 0; t ≠ −3; t ≠ −2

Последние требования выполняются автоматически, поскольку все они «завязаны» на целые числа, а все ответы — иррациональные.

Итак, дробно-рациональное уравнение решено, значения переменной t найдены. Возвращаемся к решению логарифмического уравнения и вспоминаем, что такое t :

[Подпись к рисунку]

Приводим это уравнение к канонической форме, получим число с иррациональной степенью. Пусть это вас не смущает — даже такие аргументы можно приравнять:

[Подпись к рисунку]

У нас получилось два корня. Точнее, два кандидата в ответы — проверим их на соответствие области определения. Поскольку в основании логарифма стоит переменная х, потребуем следующее:

1 ≠ х > 0;

С тем же успехом утверждаем, что х ≠ 1/125, иначе основание второго логарифма обратится в единицу. Наконец, х ≠ 1/25 для третьего логарифма.

Итого мы получили четыре ограничения:

1 ≠ х > 0; х ≠ 1/125; х ≠ 1/25

А теперь вопрос: удовлетворяют ли наши корни указанным требованиям? Конечно удовлетворяют! Потому что 5 в любой степени будет больше нуля, и требование х > 0 выполняется автоматически.

С другой стороны, 1 = 5 0 , 1/25 = 5 −2 , 1/125 = 5 −3 , а это значит, что данные ограничения для наших корней (у которых, напомню, в показателе стоит иррациональное число) также выполнены, и оба ответа являются решениями задачи.

Итак, мы получили окончательный ответ. Ключевых моментов в данной задаче два:

  1. Будьте внимательны при перевороте логарифма, когда аргумент и основание меняются местами. Подобные преобразования накладывают лишние ограничения на область определения.
  2. Не бойтесь преобразовывать логарифмы: их можно не только переворачивать, но и раскрывать по формуле суммы и вообще менять по любым формулам, которые вы изучали при решении логарифмических выражений. Однако при этом всегда помните: некоторые преобразования расширяют область определения, а некоторые — сужают.

На данном уроке мы повторим основные теоретические факты о логарифмах и рассмотрим решение простейших логарифмических уравнений.

Напомним центральное определение - определение логарифма. Оно связано с решением показательного уравнения . Данное уравнение имеет единственный корень, его называют логарифмом b по основанию а:

Определение:

Логарифмом числа b по основанию а называется такой показатель степени, в которую нужно возвести основание а, чтобы получить число b.

Напомним основное логарифмическое тождество .

Выражение (выражение 1) является корнем уравнения (выражение 2). Подставим значение х из выражения 1 вместо х в выражение 2 и получим основное логарифмическое тождество:

Итак мы видим, что каждому значению ставится в соответствие значение . Обозначим b за х (), с за у, и таким образом получаем логарифмическую функцию:

Например:

Вспомним основные свойства логарифмической функции.

Еще раз обратим внимание, здесь , т. к. под логарифмом может стоять строго положительное выражение, как основание логарифма.

Рис. 1. График логарифмической функции при различных основаниях

График функции при изображен черным цветом. Рис. 1. Если аргумент возрастает от нуля до бесконечности, функция возрастает от минус до плюс бесконечности.

График функции при изображен красным цветом. Рис. 1.

Свойства данной функции:

Область определения: ;

Область значений: ;

Функция монотонна на всей своей области определения. При монотонно (строго) возрастает, большему значению аргумента соответствует большее значение функции. При монотонно (строго) убывает, большему значению аргумента соответствует меньшее значение функции.

Свойства логарифмической функции являются ключом к решению разнообразных логарифмических уравнений.

Рассмотрим простейшее логарифмическое уравнение, все остальные логарифмические уравнения, как правило, сводятся к такому виду.

Поскольку равны основания логарифмов и сами логарифмы, равны и функции, стоящие под логарифмом, но мы должны не упустить область определения. Под логарифмом может стоять только положительное число, имеем:

Мы выяснили, что функции f и g равны, поэтому достаточно выбрать одно любое неравенство чтобы соблюсти ОДЗ.

Таким образом, мы получили смешанную систему, в которой есть уравнение и неравенство:

Неравенство, как правило, решать необязательно, достаточно решить уравнение и найденные корни подставить в неравенство, таким образом выполнить проверку.

Сформулируем метод решения простейших логарифмических уравнений:

Уравнять основания логарифмов;

Приравнять подлогарифмические функции;

Выполнить проверку.

Рассмотрим конкретные примеры.

Пример 1 - решить уравнение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства первый логарифм:

Пример 2 - решить уравнение:

Данное уравнение отличается от предыдущего тем, что основания логарифмов меньше единицы, но это никак не влияет на решение:

Найдем корень и подставим его в неравенство:

Получили неверное неравенство, значит, найденный корень не удовлетворяет ОДЗ.

Пример 3 - решить уравнение:

Основания логарифмов изначально равны, имеем право приравнять подлогарифмические выражения, не забываем про ОДЗ, выберем для составления неравенства второй логарифм:

Найдем корень и подставим его в неравенство:

Очевидно, что только первый корень удовлетворяет ОДЗ.

Логарифмическим уравнением называется уравнение, в котором неизвестное (х) и выражения с ним находятся под знаком логарифмической функции. Решение логарифмических уравнений подразумевает, что вы уже знакомы с и .
Как решать логарифмические уравнения?

Самое простое уравнение имеет вид log a x = b , где a и b -некоторые числа,x - неизвестное.
Решением логарифмическое уравнения является x = a b при условии: a > 0, a 1.

Следует отметить, что если х будет находиться где-нибудь вне логарифма, например log 2 х = х-2, то такое уравнение уже называется смешанным и для его решения нужен особый подход.

Идеальным случаем является ситуация, когда Вам попадется уравнение, в котором под знаком логарифма находятся только числа, например х+2 = log 2 2. Здесь достаточно знать свойства логарифмов для его решения. Но такая удача случается не часто, поэтому приготовьтесь к более сложным вещам.

Но сначала, все-таки, начнём с простых уравнений. Для их решения желательно иметь самое общее представление о логарифме.

Решение простейших логарифмических уравнений

К таковым относятся уравнения типа log 2 х = log 2 16. Невооруженным глазом видно, что опустив знак логарифма получим х = 16.

Для того, чтобы решить более сложное логарифмическое уравнение, его обычно приводят к решению обычного алгебраического уравнения или к решению простейшего логарифмического уравнения log a x = b. В простейших уравнениях это происходит в одно движение, поэтому они и носят название простейших.

Вышеиспользованный метод опускания логарифмов является одним из основных способов решения логарифмических уравнений и неравенств. В математике эта операция носит название потенцирования. Существуют определенные правила или ограничения для подобного рода операций:

  • одинаковые числовые основания у логарифмов
  • логарифмы в обоих частях уравнения находятся свободно, т.е. без каких бы то ни было коэффициентов и других разного рода выражений.

Скажем в уравнении log 2 х = 2log 2 (1- х) потенцирование неприменимо - коэффициент 2 справа не позволяет. В следующем примере log 2 х+log 2 (1 - х) = log 2 (1+х) также не выполняется одно из ограничений - слева логарифма два. Вот был бы один – совсем другое дело!

Вообщем, убирать логарифмы можно только при условии, что уравнение имеет вид:

log a (...) = log a (...)

В скобках могут находится совершенно любые выражения, на операцию потенцирования это абсолютно никак не влияет. И уже после ликвидации логарифмов останется более простое уравнение – линейное, квадратное, показательное и т.п., которое Вы уже, надеюсь, умеете решать.

Возьмем другой пример:

log 3 (2х-5) = log 3 х

Применяем потенцирование, получаем:

log 3 (2х-1) = 2

Исходя из определения логарифма, а именно, что логарифм - это число, в которое надо возвести основание, чтобы получить выражение, которое находится под знаком логарифма, т.е. (4х-1), получаем:

Опять получили красивый ответ. Здесь мы обошлись без ликвидации логарифмов, но потенцирование применимо и здесь, потому как логарифм можно сделать из любого числа, причем именно такой, который нам надо. Этот способ очень помогает при решении логарифмических уравнений и особенно неравенств.

Решим наше логарифмическое уравнение log 3 (2х-1) = 2 с помощью потенцирования:

Представим число 2 в виде логарифма, например, такого log 3 9, ведь 3 2 =9.

Тогда log 3 (2х-1) = log 3 9 и опять получаем все то же уравнение 2х-1 = 9. Надеюсь, все понятно.

Вот мы и рассмотрели как решать простейшие логарифмические уравнения, которые на самом деле очень важны, ведь решение логарифмических уравнений , даже самых страшных и закрученных, в итоге всегда сводится к решению простейших уравнений.

Во всем, что мы делали выше, мы упускали из виду один очень важный момент, который в последующем будет иметь решающую роль. Дело в том, что решение любого логарифмического уравнения, даже самого элементарного, состоит из двух равноценных частей. Первая – это само решение уравнения, вторая - работа с областью допустимых значений (ОДЗ). Вот как раз первую часть мы и освоили. В вышеприведенных примерах ОДЗ на ответ никак не влияет, поэтому мы ее и не рассматривали.

А вот возьмем другой пример:

log 3 (х 2 -3) = log 3 (2х)

Внешне это уравнение ничем не отличается от элементарного, которое весьма успешно решается. Но это не совсем так. Нет, мы конечно же его решим, но скорее всего неправильно, потому что в нем кроется небольшая засада, в которую сходу попадаются и троечники, и отличники. Давайте рассмотрим его поближе.

Допустим необходимо найти корень уравнения или сумму корней, если их несколько:

log 3 (х 2 -3) = log 3 (2х)

Применяем потенцирование, здесь оно допустимо. В итоге получаем обычное квадратное уравнение.

Находим корни уравнения:

Получилось два корня.

Ответ: 3 и -1

С первого взгляда все правильно. Но давайте проверим результат и подставим его в исходное уравнение.

Начнем с х 1 = 3:

log 3 6 = log 3 6

Проверка прошла успешно, теперь очередь х 2 = -1:

log 3 (-2) = log 3 (-2)

Так, стоп! Внешне всё идеально. Один момент - логарифмов от отрицательных чисел не бывает! А это значит, что корень х = -1 не подходит для решения нашего уравнения. И поэтому правильный ответ будет 3, а не 2, как мы написали.

Вот тут-то и сыграла свою роковую роль ОДЗ, о которой мы позабыли.

Напомню, что под областью допустимых значений принимаются такие значения х, которые разрешены или имеют смысл для исходного примера.

Без ОДЗ любое решение, даже абсолютно правильное, любого уравнения превращается в лотерею - 50/50.

Как же мы смогли попасться при решении, казалось бы, элементарного примера? А вот именно в момент потенцирования. Логарифмы пропали, а с ними и все ограничения.

Что же в таком случае делать? Отказываться от ликвидации логарифмов? И напрочь отказаться от решения этого уравнения?

Нет, мы просто, как настоящие герои из одной известной песни, пойдем в обход!

Перед тем, как приступать к решению любого логарифмического уравнения, будем записывать ОДЗ. А вот уж после этого можно делать с нашим уравнением все, что душа пожелает. Получив ответ, мы просто выбрасываем те корни, которые не входят в нашу ОДЗ, и записываем окончательный вариант.

Теперь определимся, как же записывать ОДЗ. Для этого внимательно осматриваем исходное уравнение и ищем в нем подозрительные места, вроде деления на х, корня четной степени и т.п. Пока мы не решили уравнение, мы не знаем – чему равно х, но твердо знаем, что такие х, которые при подстановке дадут деление на 0 или извлечение квадратного корня из отрицательного числа, заведомо в ответ не годятся. Поэтому такие х неприемлемы, остальные же и будут составлять ОДЗ.

Воспользуемся опять тем же уравнением:

log 3 (х 2 -3) = log 3 (2х)

log 3 (х 2 -3) = log 3 (2х)

Как видим, деления на 0 нет, квадратных корней также нет, но есть выражения с х в теле логарифма. Тут же вспоминаем, что выражение, находящееся внутри логарифма, всегда должно быть >0. Это условие и записываем в виде ОДЗ:

Т.е. мы еще ничего не решали, но уже записали обязательное условие на всё подлогарифменное выражение. Фигурная скобка означает, что эти условия должны выполняться одновременно.

ОДЗ записано, но необходимо еще и решить полученную систему неравенств, чем и займемся. Получаем ответ х > v3. Теперь точно известно – какие х нам не подойдут. А дальше уже приступаем к решению самого логарифмического уравнения, что мы и сделали выше.

Получив ответы х 1 = 3 и х 2 = -1, легко увидеть, что нам подходит лишь х1= 3, его и записываем, как окончательный ответ.

На будущее очень важно запомнить следующее: решение любого логарифмического уравнения делаем в 2 этапа. Первый - решаем само уравнение, второй – решаем условие ОДЗ. Оба этапа выполняются независимо друг от друга и только лишь при написании ответа сопоставляются, т.е. отбрасываем все лишнее и записываем правильный ответ.

Для закрепления материала настоятельно рекомендуем посмотреть видео:

На видео другие примеры решения лог. уравнений и отработка метода интервалов на практике.

На это по вопросу, как решать логарифмические уравнения , пока всё. Если что то по решению лог. уравнений осталось не ясным или непонятным, пишите свои вопросы в комментариях.

Заметка: Академия социального образования (КСЮИ) - готова принять новых учащихся.

С уравнениями мы все знакомы с начальных классов. Еще там мы учились решать самые простые примеры, и надо признать, что они находят свое применение даже в высшей математике. С уравнениями все просто, в том числи и с квадратными. Если у вас проблемы с этой темой, настоятельно рекомендуем вам повторить ее.

Логарифмы вы, вероятно, тоже уже прошли. Тем не менее, считаем важным рассказать, что это для тех, кто еще не знает. Логарифм приравнивается к степени, в которую нужно возвести основание, чтобы получилось число, стоящее справа от знака логарифма. Приведем пример, исходя из которого, вам все станет ясно.

Если вы возведете 3 в четвертую степень получится 81. Теперь подставьте по аналогии числа, и поймете окончательно, как решаются логарифмы. Теперь осталось лишь совместить два рассмотренных понятия. Изначально ситуация кажется чрезвычайно сложной, но при ближайшем рассмотрении весе становится на свои места. Мы уверены, что после этой короткой статьи у вас не будет проблем в этой части ЕГЭ.

Сегодня выделяют множество способов решения подобных конструкций. Мы расскажем о самых простых, эффективных и наиболее применимых в случае заданий ЕГЭ. Решение логарифмических уравнений должно начинаться с самого простого примера. Простейшие логарифмические уравнения состоят из функции и одной переменной в ней.

Важно учесть, что x находится внутри аргумента. A и b должны быть числами. В таком случае вы можете попросту выразить функцию через число в степени. Выглядит это следующим образом.

Разумеется, решение логарифмического уравнения таким методом приведет вас к верному ответу. Ног проблема подавляющего большинства учеников в этом случае заключается в том, что они не понимают, что и откуда берется. В результате приходится мириться с ошибками и не получать желаемых баллов. Самой обидной ошибкой будет, если вы перепутаете буквы местами. Чтобы решить уравнение этим способом, нужно зазубрить эту стандартную школьную формулу, потому что понять ее сложно.

Чтобы было проще, можно прибегнуть к другому способу – канонической форме. Идея крайне проста. Снова обратите внимание на задачу. Помните, что буква a – число, а не функция или переменная. A не равно одному и больше нуля. На b никаких ограничений не действует. Теперь из всех формул вспоминаем одну. B можно выразить следующим образом.

Из этого следует, что все исходные уравнения с логарифмами можно представить в виде:

Теперь мы можем отбросить логарифмы. Получится простая конструкция, которую мы уже видели ранее.

Удобство данной формулы заключается в том, что ее можно применять в самых разных случаях, а не только для самых простых конструкций.

Не переживайте насчет ООФ!

Многие опытные математики заметят, что мы не уделили внимание области определения. Сводится правило к тому, что F(x) обязательно больше 0. Нет, мы не упустили этот момент. Сейчас мы говорим об еще одном серьезном преимуществе канонической формы.

Лишних корней здесь не возникнет. Если переменная будет встречаться лишь в одном месте, то область определения не является необходимостью. Она выполняется автоматически. Чтобы убедиться в данном суждении, займитесь решением нескольких простых примеров.

Как решать логарифмические уравнения с разными основаниями

Это уже сложные логарифмические уравнения, и подход к их решению должен быть особым. Здесь редко получается ограничиться пресловутой канонической формой. Начнем наш подробный рассказ. Мы имеем следующую конструкцию.

Обратите внимание на дробь. В ней находится логарифм. Если вы увидите такое в задании, стоит вспомнить один интересный прием.

Что это значит? Каждый логарифм можно представить в виде частного двух логарифмов с удобным основанием. И у данной формулы есть частный случай, который применим с этим примером (имеем ввиду, если c=b).

Именно такую дробь мы и видим в нашем примере. Таким образом.

По сути, перевернули дробь и получили более удобное выражение. Запомните этот алгоритм!

Теперь нужно, что логарифмическое уравнение не содержало разных оснований. Представим основание дробью.

В математике есть правило, исходя из которого, можно вынести степень из основания. Получается следующая конструкция.

Казалось бы, что мешает теперь превратить наше выражение в каноническую форму и элементарно решить ее? Не все так просто. Дробей перед логарифмом быть не должно. Исправляем эту ситуацию! Дробь разрешается выносить в качестве степени.

Соответственно.

Если основания одинаковые, мы можем убрать логарифмы и приравнять сами выражения. Так ситуация станет в разы проще, чем была. Останется элементарное уравнение, которое каждый из нас умел решать еще в 8 или даже в 7 классе. Расчеты вы сможете произвести сами.

Мы получили единственно верный корень этого логарифмического уравнения. Примеры решения логарифмического уравнения достаточно просты, не так ли? Теперь и у вас получится самостоятельно разобраться даже с самыми сложными задачами для подготовки и сдачи ЕГЭ.

Что в итоге?

В случае с любыми логарифмическими уравнениями мы исходим из одного очень важного правила. Необходимо действовать так, чтобы привести выражение к максимально простому виду. В таком случае у вас будет больше шансов не просто решить задание правильно, но еще и сделать это максимально простым и логичным путем. Именно так всегда действуют математики.

Настоятельно не рекомендуем вам искать сложных путей, особенно в этом случае. Запомните несколько простых правил, которые позволят преобразовать любое выражение. К примеру, привести два или три логарифма к одному основанию или вывести степень из основания и выиграть на этом.

Также стоит помнить о том, что в решении логарифмических уравнений необходимо постоянно тренироваться. Постепенно вы будете переходить ко все более сложным конструкциям, а это приведет вас к уверенному решению всех вариантов задач на ЕГЭ. Готовьтесь к экзаменам заблаговременно, и удачи вам!

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

 
Статьи по теме:
Шашлык с дымком в духовке
Когда появляется желание полакомиться ароматным шашлыком, а за окном дождь или вообще зима, а очень хочется почувствовать запах лета и насладиться мясом с «дымком», тогда и вынимается из рукава вот этот рецепт. Домашний шашлык с запахом костра в «быстром»
Значение рыси в славянской культуре Работа с энергией тотема
...фигню всякую про вас думаю...:-)))Тотем Рысь... Будьте молчаливым.Станьте наблюдателем.Почитайте секрет мудрости,которую Вы храните! СЕКРЕТЫ Если Вы хотите узнать секрет, просите помощь у Рыси. К сожалению, трудно уговорить тихую Рысь, заговорить. Ры
Житийная литература «Сказание о Борисе и Глебе»
В XIX веке жанр жития переживал упадок. Казалось, что за двести лет на русской земле, прежде столь щедрой на подвижников, молчальников, святителей, юродивых, перевелись святые. За время существования Священного Синода, с 1721 по 1917 год, коронация в Росс
Что такое проектно-сметная документация
Капитальный ремонт объекта капитального строительства – одновременная разработка рабочего проекта и сметы, чертежи и расчеты производятся после утверждения проектного задания. состав:Раздел 5. "Сведения об инженерном оборудовании, о сетях инженерно – те